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New Method of A~Posteriori Estimates of Truncation Errors

for the Adams Predictor-Corrector Methods

B HERF
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Department of Mathematics, Fukuoka University of Education
1. Introduction , j

|
There have been many works which treat multistep methods with |
variable step/variable order forms (e.g.[4]). While the principal
local truncation error has been estimated by the method so called |
Milne's device which has been discussed in many literatures (e.g.[l,za
3,51). ‘ 1

Here we shall consider an accurate method for obtaining better
estimates of local truncation errors of the Adams-Bashforth-Moulton
methods of p-th order (p=2,3,4,5) with the fixed step/fixed order
form in the mode of correcting to convergence. We shall aiso

consider a method for estimating the global truncation errors by

using the estimated local truncation errors.

2. Preliminaries

We are concerned with an initial value problem
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(2.1) y' = f(k,y), y(a) = Yo (a < x <'b),
where we denote by y(x) the solution of this problem and
(2.2) X, =a+ nh (n=0,1,...,N), h = (b - a)/N.

»In what follows, we shall assume that f(x,y) in (2.1) is
reasonably smooth on regions in question and numerical operations are
carried out with sufficient precision in order to assure the

round-off errors are negligible in comparison with global truncation

errors.
Let us put

(2.3) v=n+p-1.

Then the formulae‘of the Adams predictor-corrector method of order p

are given by

- 1Y
(2-4) Y%*r - yV_l + hzj=lapjfv_j’
(2.5) y_ =y .+ 03Py ¢
) v v-1 j=0"pj v-j’

where yg is the value of the predictor, yv is that of the

corrector and f = f(x

v-j V-3’ yv—j)' Needless to say, Y

(n=0,1,...,p-1) are starting values. The coefficients in the

formulae (2.4) and (2.5) are shown in Henrici [2].

- 2 -
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For the formulae (2.4) and (2.5), we define the local truncation

errors at xn by

_ _ ~ h3P

(2.8) Tpln = y(x,) Y(Xv—l) hZJ':]_apjf[Xv—j’y(xv—j)]’
— —_— bl p—l |

(2.7) szn = y(xV) Y(Xv—l) h2j=0bpjf[xv—j’Y(Xv—j)]

respectively, and they are rewritten as follows:

(2.8) T, = Zgzlhp+3kpijy(p*3)(xn) s omP Ty (1=1,2), r21.

The coefficients kpij are shown in Table 2.1.

3. The behavior of y§ =Yy

In this section, we shall investigate the behavior of yE —y&.
By virtue of the consideration as a quadrature rule of p-th order,
'the coefficients bpj satisfy the relation
p-1.1 _ . . _
(3~1) 2j=0j bpj - l/(l + 1) (l - 0,1!"')p 1)’

which plays an important role in this paper.

For brevity, let us put

(3.2) g(x) = f&[x,y(x)];
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- (m) _ _(m)
(3.3) gy = g (xv),
(3.4) g, = g(xv).
(3.5) ey = Yy T y(xv),

that is, e. is the global truncation error at Xx

v v’

Suppose that p starting values are chosen so that
(3.6) e, = 0(h") (a2 p+l;u=0,1,...,p-1).
As is well known, e, can be expressed as follows [2]:

(3.7) e =hPe(x ) + onP*ly,

where e(x) 1is the solution of the initial value problem
(3.8) e' = g(x)e - Cy(p+l)(X). e(a) = 0,
where C 1is the error constant of the formula defined by (2.5).

For the analysation of the behavior of yé - yv; the following

lemma plays an important role:
LEMMA 3.1. For the Adams-Bashforth-Moulton pair of p-th order

3. - | p-1 J
(3.9) yg yv—l +h zj=0 Yjv fv—l’

_4'_
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(3.10) Yy = Yyo1

the identity

(3.11) yE - Y,

P-15 oJ
+ h 2j=0y.v f

J v

= - b
= yp_lhv L

holds, Here the rational numbers »?j and ?j

(3.12) Y. = %Tfés(s+1)---(s+j—1)ds,

~

(3.13) Y. = %Tfé(s—l)s--‘(s+j—2)ds.

Simirarly, we see that

(3.14) Tp2n - Tpln

Thus we have the relation

(3.15) yr - ¥, = - %

p-1

D '
hv [fv -y (xv)] + Tp

We also have the following

LEMMA 3.2. It holds that

o

(3.16) 2§=0(—1)jpi(j)(

p
j)

=0 for p-12>1i >0,

are given by

2n Tpln‘



where Pi(j) is a polynomial of i-th degree in
From (2.3), (2.5) and (2.7), we have
(3.17) e =e_ , +h3 Y g e . -T. + 0(
) v v-1 j=0"pj°v-3 v-j P2n

Then from (3.6) and (3.7), it is readily seen that

_ p+1l s ]
(3.18) vy & 7 O(h ) for v J>0;0p
Since

P - - P 1 2P
(3.19) v If_ - f(x,,y(x ))] = v (ge ) + 0(h™)
and
v-3Cv-j-

p - sP (I
(3.20) vi(gee ) = 2j=0( (s

From (3.18) and applying Lemma 3.2, we see that

(3.21) Pgey) = B_ 1)) ge, « 0mPh)

= 0(hp+1) for v > p.

From (3.15),(3.19) and (3.21), we have

v

J.

2p+1

nv
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(3.22) yy -y =T, - T, + o(hP*2) + on2P*l)

p2n bin for v > p.

Furthermore from (3.1), (3.18) and (3.17), it is seen that

_ _ g D+l (p+1)
(3.23) ey-j = ©y jhg e+ jh kp21y (x,)

2p+1

+ 0(hP*?) + o(n?P*Yy  for v-j > p-1; b

v
S
nv
[

Substituting (3.23) into (3.20) and applying Lemma 3.2, we obtain

(1) 2
v & e

p - sP Jp -3
(3.24) vi(gye,) = 25 _o(-1)7 () [gye ~Jh(g v

2p+ly

+

jhp+1kp21gvy(p+1lxn) + 0(h?*2) + o(n

2p+1

0(hP*?) + o(n®®*l)y  for v > 2(p-1)+1.

From (3.15), (3.19) and (3.24), we have

2p+1

(3.25) ye -y, =T, - T -+ o(h?*3) + o(n )

\' p2n pln
for v > 2(p-1)+1.

If p=2, then we cannot obtain a better relation thén (3.25)
even when n 1is large, becausq of (3.1) and p+3=2p+1. But when
P > 2, the above process can be repeated further and thus,
summerizing the whole results including (3.22) and (3.25) we have

the following
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THEOREM 3.1. It holds that

_ _ _ 2p+1
(3.286) yr - ¥, = Tp2n Tpln + sp,v + O(h ),
where
(3.27) e _ =omP My eor v>i(p-1)+1; b2 d 21

p;Vv

REMARK. If the solution y(x) of (2.1) a polynomial of which
degree is less than p+l1l (p 1is the order of the integration
method), then the local truncation error is vanish. Thus the exact

solution is obtained.

‘ 4, Estimation of the local truncation error

For simplicity, let us put

(4.1) d y® . - Y. . (i=0,1,...,p-1).

v+1 v+i v+i

L[}

Then, taking the results of Theorem 3.1 into consideration, we have

the following

THEOREM 4.1. If n > apr(the values of apr are given below in
' this Theorem for (p=2,3,4,5; r=1,2,...,P)), then the best estimate
| A - ~ . - p s
prn (r=1,2,...,p) Of*TpZn (p=2,3,4,5) among (r) linear

- 8 -
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combinations of the values of dv+i (i=0,1,...,p-1) are given as
follows:
For p=2,
Apip = dv+1/6 br d,/6 (a21=2),
Agon = (dg . * dV)/12 (0,5=1) .
For p=3,
Agin = v /10 (@gy= 3),
A32n = (—lldv+2 + 4ldv+1)/300/
or (19dV+1 +V11dv)/300 (a32=5).
Aggy = (-11d,, + 60d ., + 11d)/600 (@gy= 1).
For p=4,
A41n = 19dv+1/270 (a4l='4),
Agon =o(-11d,, + 49d_,,)/540  (a,,= 7),
A43n ='(191dV+3 - 844dV+2 + 2249dv+1)/22680
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or (—271dv+2 +1676dV+1 + 191dv)/22680 (a43=10),
Ag4n = (191d .- 1115d ,, + 3925d_,, + 191d )/45360 (oy,= 1)
‘For P=5,
A51n = 27dV+1/5024 (a51= 5),
A52n = (—271dV+2 + 1405dv+l)/21084 (a52= 9),
A53nb= (191dV+3 —'924dv;2 + 3001dv+1)/42168‘ (a53=13),
A54h = (—2497dv;4 +13221dV+3 - 35211d§+2 + 92527dv+1)/1265040
or (3233dV+3 - 20229dv+2 + 82539dV+l +«2497dv)/1265040
(0g,=17),
A55n = (—2497dv+4 + 16454dV+3 - 55440dv+2‘+ l75066dV+l
+ 2497d_)/2530080 (g = 1).
| Proof. We shall prove this theorem by investigating all
fpossible cases. Let us denote thy(i)(kh) and O(hi) simply by

i[Q]i and 0, respectively. Then applying Theorem 3.1, we see that

'the followingresults hold:

- 10 -
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For p=2,
r=1
O4 n=1
# dV/S - T22n = [1/24]4 +
O5 n > 2,
# dyi17/8 - Tog, = ~[1/24]1, + Of nzi,
(a21=2).

(When n=1,the right-hand side of the upper relation‘is not valid.
Thus we cannot say which of dv/6 and dv+1/6 is better. But when
n > 2,the values of both principal parts are same in magunitude.

Hence we take 2 as a21.)

# (d +d)/12 - T =

v+]1l 22n

(322=1).

(In this block, there is only one object. Hence we take 1 as a22. )

(By the samé consideration as in the case p=2, we can determine the

value of »qpr')

For p=3,

- 11 -
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v

+ { The same as the above },

r=1
q O 22mn21
dv/lo - T32n = [19/720]5 +
O6 n > 3,
[05 n =1
# d /10 - Tg, = - [11/720]5 +
O6 n > 2
dv+2/10 - T32n = —[41/720]5 + O6 n >
(a31=3),
r=2
# (19dv+1+ 11dv)/300 - T32n = —\ [11/1440]6 + O6
07
(19dV+2 + 41dv)/600 - T32n = - [30/1440]6 +
# (—11dV+2 + 4ldv+1)/300 - T32n = [11/1440]6 +

_12_

v

=5),

27
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r=3
O 2>n>1
# (—1ldv+2 + 60dV+1 + 11dV)/600 - T32n =d. O6 4 >n >3
O7 n > 5,
(otg5=1)

As is readily seen from the above statements, for each p, p blocks
have been constructed by (E) rows. When n > apr’ the rows with

# show that the quantity Aprn has the smallest tolerance from |

T in each block. Therefore, they correspond to the best quantity

P2n

Apfn for estimating the local truncation errors in each block.

Thus the proof is completed.

5. Estimation of the global truncation error

Let us put
(5.1) &y = ﬁy(xm,ym) (m=0,1,...,N),
and by éprv we denote the solution of the following equation:

- 13 -
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(5.2) eprv - epr,v—l 23 O Pj v J pr v-] - Aprn’
.3 é =0 =0,1,...,p-1).
(5.3) Cpru (u p-1)

We also put

o>
|

(5.4) G =

prm prm em (m=0,1,...,N).

Since

A _ 2 ~
gmem gmem = gmGprm + O(em ) (m=0,1,...,N),

from (3.15), (5.2) and the assumption (3.6), GprV satisfies

the following relation:

(5.5)  Cppy = Gppr,y-1 * B ZJ 0 p38v-3%r,v-3 * *prn’
(5.6) G . =0tY (azprl; u=0,1,...,p-1),
where

_oor-1,, p+r+l 2p+1
(5.7) — Zi=00(ep,v+i+5 ) + O(h ) + 0(h ),

where § 1is 0 or 1 depending on the form of Aprn (cf. Theorem

4.1).

Let Ll’ L2 and K > 0 be constants such that

- 14 -
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0
A
-
b
=y
~
S
A
o
N

and e = 6 hPK, |6 | <1,
m m m
where &m is a value between Y “and y(Xm). Then we see that
p
lg,] <L, + hKL,

m

Furthermore, 1let B, L, Z, b, L* be constants such that

_ sp-1 P -
B = Zj=0lbpjl, L, + hKL, = L,
G < Z =0,1,...,p-1),
| prul < (n p-1)
*__: _ —l
lepol < b, L = (1 - hb) "LB.

About the global truncation error, we have the following

THEOREM 5.1. If 0 < h < b 1, then it holds that

-1 n
(5.8) 6, 1 < (1 -hb)"(Z + F_ lx

A

prkI)*exp[(xV - a)L'].

Till now, we considered the initial value problem (2.1) for a
single equation. But here we consider (2.1) for a system of
equations. Then we have the following

ALGORITHM 5.1. Starting from

5.9 3
(5.9) ¢ pru

1}
o

(n=0,1,...,p-1),

- 15 -



and solving the system of linear equations

- > VA = A : p-1 5 A _
(5.10) (I» hbpogv)eprv epr,v—l +h zj=1bpjgv—jepr,v—j Aprn’
we can obtain the‘estimate ’ éprv of the global truncation error
e, provided that 1 > |hbpolnévu, where |-l is a suitable norm

and I 1is the unit matrix.

As 1s readily seen from Theorem 3.1, the first term of the right
hand side in (5.7) is not small in early steps and affects on Gprv

in the later ones.
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Table 2.1

The coeficients

k ..
P1)

b 1 2 3 4 5
kle 5/12 -1/24
kypy | -1/12 -1/24
:k31j 3/8 - 29/180 3/40
. k32j -1/24 -17/360 -7/?40
k4lj 251/720 95/288 6313/30240 265/2688
k42j -19/720 -13/288 ~1247/30240 -71/2688
k51j 95/288' 14531/30240 .-7157/17280° 476981/1814400 139867/1036800
k52j -3/160 -641/15120 -175/3456 -38237/907200° -28303/1036800



