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Some algorithm of step-size control for explicit
pseudo Runge-Kutta Method

Eabker) FEIE=s

(Masaharu Nakashima ) (Kagoshima Univ)

Abstract. We derive some special algorithm of pseudo
Runge-Kutta method which is useful in the step-size control. The

new method is designed to be able to change the step-size without

81

new functions evaluations, and this formulas can also provide dens

output.

1. Introduction. This paper deals with the numerical method
of the initial value problem;

(1.1) {y’ = f(x,y) .
y(x) =y, - |
In earlier papers [151 [EG] . the author has presented some

pseudo Runge-Kutta (abbr, pseudo R-K) method, which is defined by

(1.2) V™ VTt Vadn ¥ h (X X0, Y Ypsh)

n-i
B (X X Y1 ¥ 30D = hé&”cko .
k= fbﬁbrﬁvp’ k, = (X, ¥m ) s -
kd=flxmijL%J-mj%bf%1+hégpgﬁﬂ,
a. = b +:z=§>{u.,(04a&4_1),

where Yo is an approximation to the true solution y(xrg of (1.1)
at the point x = Xy * nh. On using the numerical methods, it is
required convenient procedures for estimating local truncation
error, which is also important from the point of view of
step-size control policy. We may provide some formulas for

estimating the local truncation error of (1.2). However, We

should restrict here our attention to develop some specific
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method of (1.2) which is ready to compute the local truncation
error estimate. So the aim of this paper is to present some kind .

of pseudo R-K method (1.2) which is useful in step-size control.

2. Specific Integration formulas. The new algorithm
parallel to (1.2) is defined as follow, setting x“ih'by Yoreh
in (1.2), we have
(2.1) ¥ =V, VAR S ST SR A |
where the function §(xn_‘,xw¥n__‘,y,n_) is the same as that in (1.2).
The proposed method (2.1) requires that the constants ViV s W

2

aL ’bL and qki(i=2,3...,r;j=0,1,2,...,i~1) are chosen so that the
expansion for right hand of the function (2.1) is equivalent

to a Taylor expansion y(x, +@h) up to p-th powers of h and

n
moreover the coefficients aL’bL and bki(i=2,3,..r;j=0,1,..,i—l)
are independent of the factor g-. Thus the new algorithm is

designed to compute the value xﬁmﬁgt the desired point x = xTL+ ¢—h
without computing the new functions kL(i=0,1,..,r) to coincide the
out point. We shall see that what can be achieved in (2.1)
with r=2,3, and we get the following results.

(I) Order 4 (r = 2). On two stage, as we [i7l‘know ,it is not
possible for the method (2.2) to get ordre 5 with two stage. So
we see whether it is possible to get order 4 with r = 2. The method
with r = 2 have order 4 if

3, r il 0§3 :
(2.2) (-1)— + Z (ap ) w. = — (r=2,j=1,2,3,4)
i Leo C

and i 3+ ‘
(2.3) &, = (-1) {b, + jo } (J=2,3),

with au= ~1 and a'; 0, which lead to the following solution:
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2 3
(2.4) b, = -(3a; + 2a;), b, = a, + ai
> 2= f 3
w, = (o+17 7/ 2a,(2a, +1)(a, +1), w, = (3a> +4a )w - (o2 +o¥),
Vr - U_D. - zalwl + 2w0 , Va..= 1 - Vl . \I\Il = g~ - (-"'V| -+ WO + W;Z_)s

(II) Order 4 (r = 3). We check whether it is possible for the
method (2.1) with r = 3 to have fifth order. We see that the

method (2.1) will have fifth order if ,in addition to (2.2)

with (r=33p=19'-95)s
v 3 5
(2.5) - s W, o+ 7 _d.w. = I,
5 RS S 5
3 Jti ;;ljﬂ
(2.6) a. = (-1) b’; : '\] E:oa«Q— b(»\ (i=2,3,j=2,3),
. _ —! 3 .
with dL = bL + 4 Ezéaﬁbbg
if we define, v,
2L
1 3 3a, 3&30; W,
— — > e —
D| = 1 -4 4a, 4a30; ) V = w, ,
3 B
-1 5 5ad 5a30: Wy
1 5 d, dzo© -1

then the equations (2.2) with r = 3 and (2.5) can be expressed as
DV =0,
and
2 2.
det(D,) = aja,(a;+1)(az+1)o~ (o+1) [aj_ast(Sa_3+3)<:1-l -~ (5a,+3)d,

1_ _ _ a _ . _ a2
+ {(Sa2 a,-2)dg (533 ay 2)d;3m+vﬁ(4a3+2)d1 (4%L+2)qékr;]
= 0,
which leads to

(2.7) d, = 0.
The solution of (2.6) and (2.7) implies a,= 0. However, the
equation (2.2) has no solution for the value a, = 0.
(ITI) Order 5 (r = 4). Treating r=4 similary, we now consider
the solutions of fifth érder,conditions only the cases w, = 0.
We see that the method (2.1) will have fifth order if, in

addition to (2.2) with (r = 4,j=1,2,3,4,5),
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A"

¢
(2.8) — —+w+3 dw = ‘o
5 ° = vt 5
j J+ [ S )
2.9) a = (-1) b. + j 2 a, b i=2,3,4,j=2,3).
29) a = (e Z ey (28

Solving fifth order conditions listed above we have
(2.10) Wy = (R,SlelR;)/(Q,S;_~Q15,), Wy = (Q|RJfS,R,)/(Q\Sl—Q139,

4%
03'(0—+1)l-z2a.(2a- +1)(a. +1)w.
W - =3 [ I” [ b ,

> 2a_(2a, +1)(a, +1) 4
W= qa'+o§-£(3al+2a-)w- V. = o+ 2w, -~ 22_a-w.
o m e e 9 =2 v’
o o
V3'=1—V',W!=€‘+VI~WO*'%‘_=)‘:"L’
_ 2 : 3 — A 3
b, = “(?aa +2a3), b= al + as
ol a -
bC = 6 %%éaj +%f)bEi - 3aL - ZaL,
L 2 a2 3 .
b = - 2a« +3a.)b.. + a. + a_, i=3.,4),
Lo :éi J d) Ll L O ( )
with :
Q&ﬂ_= ZaE(aL +l)(al—ac )% 1Oa1aG + S(al +a, ) o+ 3:} (i=3.,4),
S = ?aL(ZaL +1)(a; +1)a, (a,+1)+2(2a,+1) {
“ > 2 T .
;E;?aJ(ZaJ+3qj+1)ij - al (ab +1)&§(1—3,4), N
2 .
R, =¥ (e+1) {a, (5a,+3) -20‘(2al+1)}, R, =a (o+1) a,(a +1).

Thus, concerning the attainable order of the method (2.1) with
2-,3- and 4 stage, we have the following Theorem.
Theorem. The attainable order is 4 ,4-and 5 for the

algorithm (2.2) of 2-,3- and 4 stage respectively.

3. Step-size control. We now turn to the problem of
automatic step control. The useful ideas of deriving step-size
control method havs been proposed by many people. The most
commonly used meithod for the step-size control policy arises £ om
contrclling the bound for the local truncation error. The local

truncation error at the point (xn:yn) for (2.1) is defined by,
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P+ -
- 1) \nis
(3-1) Y en— WX +ah) = (ch) ;\7;,Tf’+'j Doyyy + 0N,

where»u(x) is the solution of the initial value problem:

u!' = f(x,u), u(xy ) = yp
%Hj is the truncatin error coefficients and %*U is the elementary
differential operator which is the functions of f(x,y) and |
(xnjy“). In order to obtain aﬁ estimate of the local truncation
error, we use the prOcedure’suggested by Shampine and Gordon
22 . Subtracting y,,,(4) and yM+(5) which are the numerical
solutions of order 4 and 5 respectively, we obtain,

TE = Yo%) - ¥ 4(5)

T+

- o(r®),
which is an estimate of the local truncation error of %u1(4)' and
it is the error which we will control. Thus the formulas are
developed on the assumption that the integration is advanced
with the approximation ymﬂ(4)’ we, however, may expect to get
better numerical results if we continue the integration with
higher order result xtH(S). This is called the local exterpolation
method which is the most popular code. tody. For this reason, we
use the code.

We now outline a simple version of the overall procedure,
denoting the ldcal accuracy and minimum'step—size by E/and'E’
respectively, which are pre-assigned toerance, the way is as follow:

1 If TE ) ?5 set.g= 0.6 and recompute the numerical solution at
the point x = x, +oh. -

~v .
2 If h { h, accpet the sclution, setting Xmﬂ =y (5)

n+)
X =x£¢h,h=¢k1wd c =1
3 If TE { E, accpet the solution, setting Yoy = yﬂr(S),
%niﬁ ana-h and h =ogh. Moreqver,
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~
(1) If TE> E/2, we set g¢-= 1.
(2) if TE <E/2, we set ov= 1.2.
Let us consider briefly the above process. The difficulty in
the process is that, when the step-size is changed, we have to
comput the weights w, (i=0,1,..,r) , v, and v, for the given ¢,

however we usually take the factor ¢ in the form o = 21, where the

number I is finite integer, then the weights wt(i=0,l,..,r), v,
and v, can be given previously. It means that, on changing

the step-size and recomputing y&H ,our's method (2.1) requires

and

only the linear conbimation of W, ; K (i=0,1,..,r), v,

yl'without new function evaluations kL’ Wy (i=0,1,..r), v. and v, -

\

4., Determination of free parameters. The most important task to
which free parameters can be applied is the reduction of the
the local truncation error and the providing for the available
step-size control.

The parameters involved in the formula (2.10) are a_ sag s8g

b...b and b

ELETRLE us » W€ set the constant b3 to satisfy the

>

following fifth order condition:

a.
w _ _ 3
(3.1) a.3 = b¥ 4£§;§Qb31,

which leads to the following solution,

(3.2) 5; (ag + 1 fl

bal— 4ai + 6a;+ 2a, ,

and the other parameters aj,a5 .a, !bﬁaand bﬁsare chosen so that
thé method (2.1) with (2.10),(3.2) and o = 1 have the minimum
error bound and the effective step police. In:order to get the
appropriate ;tep—control it is necessary that the bound for the

truncation error decreases as the parameter approch to zero.

6



Denoting the local truncation error of (2.1) by T(g¢ ,p), where
p is the order.

If we take

(3.3) a, = 0.1, ag =0.9, a$ = 0.4, b$l= -0.2, b73= 0.055,

then, we find that the bohnd for the local truncation error
T(1,5) of (2.10) and (3.2) is
; 5 &
| T(1,5)] 4 0.800 M L n°.
With those values, the bound T(1,4) for the fourth order
method with (2.9) is
' ¢ &
|T(1,4) 4 4.502 M L h,
the constants L and M listed above satisfy

it s
o f(x.,y) L

oxt oyd M

lf(x,y)\S:M ’ R

[LIAN

From (2.9),(2.13),(3.2)and (3.3) we obtain the following

formulae:
£3,-4) ag bL, b"d
Vo, W
~
v, W
1 | _ _4 11 121
10 125 1000 1000
9 13689 _ 88749 100719 9747
10 | 4000 88000 ~ 8000 880
4 |__1757 747 13667 1 11
10 |~ 10000 20000 20000 ~— 5 200
V\ v, w, W/ w,
NOYOW, W W, S, W,
where
(3.5) v, == (1 - 60~ 59)/2, v, =1 -v,
> 2=
W, = o (17 - 78% - 1150 )/132,
3
w = g (12 - 41¢- - 1180° - 655)/12,
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% o
125¢~(o+ 1) / 33,

w =
p=
and , . .
h 3
(3.6) ¥, = 02(47142 - 202272 © - 96250 + 1325200 )/107269,
~ >, 2 3
W = o (6794073 - 27944497a- - 95535500> + 253650209 )
¢ 67257663 -
W, =T (11585052 - 35383731 = 64000538¢~+ 244903250~ + 41522080
~ 11585052 e
~ 2 . 2 3
W, = 0-(67618125 + 79138250 o= - 445778750 - 560980009 )
21239262 ) |
2 : . 3
W, = 0 (-3735375 + 5163250 O + 21532625 s< 4+ 126340000 )
110057994 , g
~ 2 > 3.
W = 0°(928125 + 1086250 o~ ~ 611875 0~ ~ 7700000~ )
s 3861684 ' %
-1 - ¥ (

here we note that (3.5) and (3.6) are the fourth- and fifth order
method respectively.

We have discussed the policy for changing the step-size. How
such a change can be effected in practice is important. That
is, when the step-size is changed from h to h =o-h, how does

the accuracy of this result at the point x = x, +¢h compared to ‘ ”

n

that at the point X = X, + h . In general it would be unable

n

to‘get out the answer, we may say, however ,that the comparison

of truncation error bound provides some detail and reliable

conclusions. Thus the raﬁio T(q-,p )/T(1,p) measures the accuracy

of the result at x = x, +oh compared to that at x = x,+ h. J
Figure(1l) and Figure (é) show the magnitute of the ratio of

the truncation errors of (3.5) and.(é.S) for O<e" &1 respectively.

5. Numerical Examples. The described method is programmed | U
in FORTRAN and run on the Personai Computer pc-9801(NEC). The
computations are done in duble precision. The three.test
problems considered are the following:

-z, Y(O) = 2

(1) {y' : , L i
' —3y - Z, Z(O) = 2, . 'R

z

W
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-y + 95z, y(0)
-y ”7952a Z(Q)

4 .

Z'

I n

o

The true solutions to the problems (1) and (2) are

exp(x)+ exp(-3x)

y(x) =
z(x) = exp(-3x) - exp(x),
y(x) = (95exp(-2x) - 48exp(-96x))/47
{z(x) = (48exp(-96x) - exp(-2x))/47,
respectively.

The wvalue y, necessary for the evaluation, When we use the
method (2.1), is computed by Nystrom's sixth order method. The
results obtained in computations are given in TABLE 1 to TABLE 11.

Here A-B(5)4 denotes the imbeding formula of the methods
(2.4),(2.10) with (3.2) and (3.3), F-L(5)4 is the formula due
to Felberg 5(4), the formula A-B(5) and F;L(S) are the (2.10) with
(3.2),(3.3) and‘Felberg fifth order methods respectively. £ and h
represent the local accuracy and the minimum step-size
requirement respectively, we define the average of the absolute
value of the error in each component: by

ERR(XN.S)=( ?f_‘lError(yzO) l /NS),

where NS is the number of integration step and Yz, is the numerical
solution in each componet. The results of the computation show
that our's scheme is efficient than the R-K process and is

quite efficients in the step-size control.
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" TABLE 1

Results for the Problem 1 with the constant step-size h =

Absolute Error.

X Me thod y(x) -y,
0.5 F-L(5) 9.9338D-8 1
A-B(5) 6.2380D-7 1.
1.5 F-L(5) 2.8047D-7 2.
A-B(5) 1.5453D-7 = 2.
4.0 F-L(5) 8.7906D-6 8.
A-B(5) 2.0081D-6 2.
ERR(4) F-L(5) 1.7174D-6 1.
A-B(5) 5.4575D-7 7.

.6528D-7

8427D-6

4094D-7
1950D~7

7905D-6
0076D-6

7108D-6
9672D-7

z(xn) - Zn

Results using the step-size control with

Absolute error.

~/ ~
E =1,0D-4 and h =

X Function Me thod y(xn) - ¥n
evaluations

0.15 3 e6 F-L(5)4 1.1695D-7
394 A-B(5)4 1.0885D-8
1.2 13- 6 F-L(5)4 7.1545D-7
21. 4 A-B(5)4 2.3307D-7
4.5 31°*' 6 F-L(5)4 6.1881D-5
56 4 A-B(5)4 1.7661D-5
ERR(4.5) F—L(5)4 4.1769D-5
A-B(5)4 2.6376D-6

Z(va) - zZn

= o

(NG AN

.2516D-7
.2561D-8

.3099D-6
.7725D-7

.1877D-5
.7659D-5

.1769D-5
.6948D-6

_14__
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TABLE 2

Results for the Problem 3 with the constant step-size h 1/2 .

Absolute Error.

X Method Y(xnd - ¥y z(xy) -z

0.25 F-L(5) 2.5609D-8 2.8564D-10
A-B(5) 3.2005D-7 3.2004D-7
0.5 F-L(5) 3.1046D-8 3.2680D-10
A-B(5) 3.1449D-10 3.0808D-10
1.0 F-L(5) 2.2636D-8 2.3828D-10
A-B(5) 4.7762D-12 5.0558D-14
ERR(1.) F-L(5) 4.2013D-6 4.2014D-6
A-B(5) 9.8820D-6 9.8801D-6

. o ~ ' ~ 9
Results using the step-size control with E =1,0D-4 and h = 1/2.

Absolute error.

X Function Me thod yvix,) - ¥y z(x., ) - z
evaluations .__EL___jL b ﬂ,

0.019 9+ 6 F-L(5)4 5.5687D-6 5.1354D-6-

’ 4 4 A-B(5)4 7.9060D-7 7.9060D-7

0.48 28+ b6 F-L(5)4 2.6617D-5 6.2768D-5

68+ 4 A-B(5)4 8.5731D-7 8.5732D-7

0.89 42+ 6 F-L(5)4 1.0919D-5 1.0901D-5

74 « 4 A-B(5)4 2.3345D-6 - 2.3342D-6

ERR(0.89 ) F-L(5)4 3;8565D—5 3.7960D-5

A-B(5)4 1.6726D-6 1.6726D-6




