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Numerical Simulation of Collision of Liquid Droplets

BKKAK-I & K8 ( paisuke Takahashi )

HA-IT BHE $BR ( Hideo Takami )

ABSTRACT
A new finite-difference method to compute the motion of
fluid with free surfaces is propsed. ,This method 1is an

improvement on the marker and cell method and by applying this
one can recognize the configuration of fluid region including
free surfaces with fewer memories by the rearrangement of
markers. For three-dimensional calculation of  the effect of
surface tension, a statistical method is'introduced; it can save
the computational time much without loss of accuracy.

The computatinal results are shown for the case of splashing
of a droplet, of collision of a droplet with avrigid wall and of
collision of two droplets in axisymmetric, two-dimensional and
three-dimensional situations. ' ‘



I. INTRODUCTION

o In recent years, there has been increasing interest in the
analysis of the motion of the fluid with free surfaces. = In
particular, there are many intereéting phenomena as for the
action of small drops such as an‘ink'jet'or a milk crown.

The MAC (marker and cell) methgdl) and the time-dependent

grid generation methodz) are known as numerical methods
simulating the fluid motion with free surfaces. The latter has

an advantage that it is easy to determine the configuration of

the free surface with high accuracy. However, it is difficult to-

apply this method in order to calculate great deformation,
merging or splitting of the fluid because it is necessary to
reform a grid éystem.

In general, the MAC method has a defect that it spends a lot
of memories and much computational time to treat the free
surface. Moreover, in a small scale motion, the surface tension
plays an important role in a surface deformation. Therefore, few
calculations were performed in the case of the 1argé deformation
or in a three-dimensional case. '

We calculate the pressure at the surface by the curvature
determined by the array of markers which approximaté the
configuration of the free surface and use fewér markers in the
surface cell and rearrange them at each time step.

We can save memories and computational time with the
above-mentioned tratement of the surface. Consequently, we can
perform three-dimensional calculations more ‘easily. In this
paper, several motions of droplets are calculated in two-
dimensional, axisymmetrical and three-dimensional cases by using
the MAC method improved by us.

II. BASIC EQUATIONS AND NUMERICAL SCHEME OF SOLUTION

The governing equations which describe the motion of the
fluid are the equation of continuity and the Navier-Stokes



2274

equation. In the Cartesian coordinates, they are written as
follows: i
Veu = 0, _ . (Y
%% + (ueV)u = ~-Vp + v, (2)

where u is the velocity vector, p is the pressure and V is the
kinematic viscosity. By taking the divergence of the Navier-
Stokes equation, we get the Poisson equation'for the pressure:

tp = -32 - V-((u:Vu), (3)

D = Veu. ' (4)
These equations are applied only in the fluid region.
In the finite-difference calculation, basic equations are

approximated as follows:
n ;

S S (CIRLEOR (5)
uttlo un +,At(-(un-v)tn - " o+ vAun+1), ‘ (6)

where At 1is the interval of time differencing and the index n
denotes the number of the time step. The first term of the right
hand side of eq.(5) is put in order to set D7*l= 0.

For space differencing, all derivatives are approximated in-
the form of the central differencing.

On the free surface, there are surface boundary conditions

and they are as follows:

..n, = 0, | - (7)
Glj \-j au aui
Gij = -p' Gij + \’)(——J-axi + EX—E)’ : (8)
1 1 '
p' =p + (g + %), (9)
TR," R

where Y is surface tension and R1 and R2 are the principal radii
of curvature of the free surface which are positive when the
center of curvature exists inside the fluid region and negative
when it is outside the fluid region. As it is difficult to apply
all conditions above in the finite-differenée calculation, we
only take account of a surface tension effect, the second term of
the righthand side of eq.(9). The surface pressure is equal to

y(l/R1+1/R2) and the velocity is extrapolated from the velocity
inside the fluid region.
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III. ALGORITHM OF CALCULATION

Using the basic equations, we simulate the fluid motion with
the following algorithm (for simplicity, the situation is assumed
to be two—dimensionai). For example, the fluid region, the
vacuum region and the wall are arranged as in Fig.l.a. The
circular fluid region has the downward velocity by the gravity
effect. We first make the regular mesh to the whole region
(Fig.1.b). A unit of mesh 1is called ‘'cell". The physical
quantity of each <cell 1is represented in 1its center. ’To
approximate the fluid region, markers are placed as in Fig.l.c
and they are assumed to move with the velocity of the fluid. It
is important to place markers finely enough on the surface
because the configuration of the surface 1is essential to
determine the motion of the fluid. Then each cell is classified
into empty(E), full(F), surface(S) and wall(W) cell. The rule of
classification is as follows:

1) a cell in the wall region is W-cell.

2) a cell in which no marker exists is E-cell.

3) a cell in which some markers exist and which is adjacent

to E-cell is S-cell. |
~4) the rest cell is F-cell.
5) Some of S-cells not adjacent to F-cell are renamed as
E-cell. , ,
The example of classification is shown in Fig.l.d. This
classification roughly shows the configuration of the fluid
region and each kind of cells are treated differently in the
computation. The basic equations (5) and (6) are applied to
F-cells and the boundary conditions are to S-cells. The slip
conditions of walls are applied to W-cells adjacent to F-cells.
No equations and no conditions are applied to E-cell because no
fluid exists in it. ;

Finally, the procedure of computation is as follows: ;

0) At nth time step, markers are‘placed as they approximate
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the configuration of the fluid1region and the values of
velocity are given to F-cells.

1) The principal radii of curvature are calculated from the

| positions of markers belohgihg to S-cells and the value Qf
pressure of S-cells is calculated. The values of Velocity
are extrapolated from those of near-by F-cells.

2) Using eq.(5), the values of pressure of’F—cells at nth time

 step are calculated by an iterative method.

3) Using eq.(6), the values of velocity of F-cells at (n+l)st
time step are calculated by an iterative method.

4) Markers are moved with these velocity by a time interval
At. ’ ,

5) The configuration of the fluid region at (n+l)st time step
is determined by the positions of markers and every cell is
classified newly.

6) Return to the step 1). o

After the calculation of 1large time steps using above
procedure repeatedly, large deformation, merging or splitting of
the fluid region may occur and the distribution of markers may
become unbalanced. Then the configuration of fluid region can-
not be recognized exactly. It is necessary to rearrange markers
on the basis of the positions of markers at thebprevious time
step. As for S-cells, the markers are rearraﬁged at every time
step and the number of markers in each S-cell 1is always
controlled. As for F;celis, the markers are necessary only when
the configuration of the fluid region at the next time step is
calculated and markers at the previous time step in F-cells need
not be memorized.

The Way of calculation of curvature from the poéitions of
markers in S-cells 1is as follows. In two-dimensional or
axisymmetrical cases, the curvature is easily calculated with the
positions of threé markers; one marker is selected from the
S-cell in question and two markers are selected from adjacent
S-cells. Ink three-dimensional case, the recognition of the
curved free surface is very difficult and 1large amount of
computation may be necessary. We avoid this problem by use of a
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statistical method; four markers in the S-cell in question and
adjacent ©S-cells determine a sphere uniquely which have those
markers on its surface. The éveragé of a reciprocal of the
radius of spheres determined from all combinations of four
markers is taken as an approximate value of the curvature. Such
treatment leads to saving of the computational time.

IV. EXAMPLES OF CALCULATIONS

1. Splashing of a droplet

This example shows an axisymmetrical splashing of a droplet
running into a pool of the same kind of fluid and a comparison
with the experimental results of Macklin and Hobbss).

A‘droplet with 2.3mm diameter impacts a pool of 4mm depth at
a velocity of 320cm/s. When a droplet strikes at the 1liquid
surface of the pool, the surface caves in by the impact.
Successively, the fluid near the cave concentrates and a liquid
projection springs up consequently.

This calculation was already performed by Amsden and
Harlow?) but their calculation did not take account of the
surface tension effect. ‘ "

Numerical results are shown in Fig.2. In this figure,
velocity vectors and pressure contours are plotted on
respectively the 1left and right hand side of the symmetry axis.

Also Fig.3 shows the dependence of the maximum height of the

liquid region on the symmetry axis on time. The maximum
projection height of experiment is about 10mm and calculational
result is higher than experimental one. It is suspected that

this difference is caused by the difference of the boundary
condition of the pool. |

Conditions used in this calculation are shown in Table 1.

2. Axisymmetrical collision of two droplets

s
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In this example, a collision of two droplets is examined by
changing the diameters and velocities of droplets.

Two droplets moving with the same speed 1in opposite
directions collide coaxially. The calculations are performed by
using cylindrical coordinates and the gravity effect is
neglected.

Fig.4, Fig.5 and Fig.6 show the numerical results: surface
configuration, velocity vector and pressure contours. In Fig.4,
diameters of the two droplets are both 2.0mm and initial
velocities in z-direction are iSOCm/s respectively. In Fig.5,
diameters of the droplets are 3.0mm and 1.5mm and initial
velocities are iSOcm/s. In Fig.6, diameters are 3.0mm and 1.5mm
and initial velocities are +100cm/s.

In the case of Fig.4, two droplets merge into one body and
expand in r-direction after the collision. Then velocity
component in z-~direction increases by the effect of surface
tension. So the configuration of merged droplets which expanded
restores. | ,

Fig.5 shows that merged droplets first expand and then
contract as in the former case. In the case of higher velocities"
(Fig.6), deformation in r-direction is greater than Fig.5, but
the configuration is restored as above.

Conditions uSed.in these calculations are shown in Table 2.

3. Collision of a droplet with a rigid wall ¢

This example shows a collision of a droplet with a rigid
wall. Calculations were performed for an axisymmetrical case and
a two-dimensional case.

(1) axisymmetrical case

Calcu%ations are performed for two values of surface
tension, 75dyn/cm and 15dyn/cm, in- the cylindrical coordinates
and the numerical results are shown in Fig.7 and Fig.8
respectively. Gravity is neglected, diameter of the droplet is
2.2mm and initial velocity is 50cm/s in both figures. In the



case of Fig.7, the colliding droplet expands in r-direction.
Then the droplet forms in a ring shape with a hole at the center
by the effect of surface tension. |

On the other hand, in the case of lower surface tension
(Fig.8), the colliding droplet expands only so that the ring
formation does not occur.

Condiﬁions used in these calculations are shown in Table 3.

(2) two-dimensional case

These calculations are two-dimensional analyses of
collisions with various collision angles.

Fig.9 and Fig.10 show the computatinal results with
collision angle of 90° and 45°. Conditions in these calculations
are shown in Table 4.

4, Three-dimensional collision of droplets
Fig.11 and Fig.l1l2 show how two identical fluid spheres
collide and merge with each other. All figures are drawn as a

wire frame by removing hidden surfaces.
Fig.1l1l shows a head-on collision. After the collision, an
asymmetrical frill appears and expands. It is suspected that
this expansion 1is wunstable and numerical error causes this
instability. In the case of Fig.12, the direction of velocity
vector is not parallel to the line which passes through centers
of the spheres and merged spheres rotate around each other after
collision. The effect of surface tension round off the
projecting parts of the fluid occurred after the collision.
Conditions used in this calculation are shown in Table 5.

V. CONCLUSION

The improvement and the extension of MAC method was tried
and axisymmetrical, two-dimensional and three-dimensional cases
of fluid motions with free surfaces were calculated numerically.
For this type of calculation, saving memories and computational
time is an important problem. This problem is solved by putting

markers only in surface cells sparsely and rearranging them at
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each time step. In addition, a'statistical method is used in
order to calculate the effect of surface tension in the
three-dimensional case. It saves computational time much and
even the three-dimensional calculation becomes easier. Numerical
results proposed in this paper are reasonable and they accord
with actual observations well.
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FIG.1:Conceptional figures of MAC method.
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Table 1:Splashing of a droplet.

Fig.2 -
kinematic viscosity O.Olcm2/s
surface tension , 75dyn/cm
diameter of a droplet 0.23cm
velocity of a droplet -320cm/s
gravity --1OOOcm/s2
depth of a pool 0.4cm
diameter of a pool 3.0cm
mesh size 100x100
mesh interval(Ar) 0.015cm
mesh interval(Az) 0.01lcm
time interval(At) ax10”%s

Table 2:Axisymmetrical collision of two droplets.

Fig.4 Fig.5 Fig.6
kinematic viscosity O.Olcm2/s O.Olcm2/s O;Olcmz/s
surface tension 75dyn/cm 75dyn/cm 75dyn/cm
diameter of droplets 0.2cm,0.2cm 0.3cm,0.15cm 0.3cm,0.15¢cm
velocity of droplets iSOcm/s +50cm/s +100cm/s
mesh size 130(z)x80(r)  130(z)x80(r)  130(z)x80(r)
mesh interval(Ar) 0.005¢cm 0.005cm ' 0.005cm
mesh interval(Az) 0.005cm 0.005cm 0.005cm
time interval(At) 1x107%s 1x10%s 5x107 s
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Table 3:Axisymmetrical conllision of a droplet with a rigid wall.

Fig.7 Fig.8
kinematic viscdsity O;Olcmz/s 0.0lcmg/s
surface tension - 75dyn/cm 15dyn/cm
diameter of a droplet 0.22cm - 0.22cm
velocity of a droplet -50cm/s -50cm/s
mesh size 100x100 100x100
mesh interval(Ar) d.OOScm 0.005cm
mesh interval(Az) 0.005cm 0.005cm
time interval(At) 1x10~°%s 1x10"%s

Table 4:Two-dimensional collision of a droplet with a rigid wall.

Fig.9 Fig.10
kinematic viscosity 0.0lcmz/s 0.0lcme/s
surface tension 75dyn/cm 75dyn/cm
collision angle 90° 45°
diameter of a droplet 0.22cm 0.22cm
velocity of a droplet -50cm/s -50cm/s
mesh size 100x100 100x100
mesh interval(ax) 0.005cm 0.005cm
mesh interval (Ay) 0.005cm 0.005cm
time interval(At) 1x107%s 1x10"%s
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Table 5:Three-dimensional collision of two droplets.

Fig.11 Fig.12
kinematic viscosity 0.0lbmz/s O.Olcm2/s
surface tension 75dyn/cm 75dyn/cm
diameter of droplets 2cm, 2cm 2cm, 2cm
velocity of droplets +500cm/s iSOOcm/s

initial position of

centers of droplets(cm)

mesh
mesh
mesh
mesh

time

size

interval (Ax)
interval (Ay)
interval (Az)
interval (At)

(2.5,2.5,1.25)
(2.5,2.5,3.75)
40(x)x40(y)x50(z)
0.125cm

0.125cm

O.1lcm

2x10™ °s

(2.0,2.5,1.25)
(3.0,2.5,3.75)
40(x)x40(y)x50(z)
0.125cm

0.125cm

O.1lcm

2x10™ 25
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