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On Higher Differentiability and Partial Regularity

of the Minimizers in the Calculus of Variations
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Keio University

1.Introduction

In this paper we shall treat with the following problem in the calculus of variations : Let
n and N be positive integers and suppose that & C R" is a bounded domain with the C? -class
boundary. Then we consider the functional,

(1.1) I['v = Z Z / (x v) Do Dpvidz forv : @+ RN,

a,8=11%,j=1
where Dav":/g;’—;(azl,---,n,izl, N)anda (a,8=1,--'n,4,j=1,---,N)
are continuously differentiable functions in 2 x RN satlsfymg the following : There exist positive
numbers Aand A (0 < A< AL +oo) such that a;' (a B=1,---,n,4,5=1,---,N) satisfy for
V(z,v) € Qx RN

N n
12) AP <Y N aff(z,0)i ¢ < AP for Y(z,v)€ R Nand¥( e RV,

4,j=1 a,f=1

(1.3) alf = afy.

In addition , since the coefficients a;' # belong to C'(Q x RV ; R) , for positive numbers K; and
K, there exists a positive number L(I( 1, K2) such that

a,B
(1.4) maz maz |a; Az, z)| + maz maz |—21-(z,2)|
1<4,i<N ||<Ky 1<i,j<N |z|<Ky
1<a,8<n |z|<K2 1La,f<n |z|< K2

+ mazr maz |a”k(z 2)] < L(K4y, Ks)
1S°‘yﬂ$‘n ]2]5}{2
a,p
where uk( y2) = L (a: z)




and
0a5f
Oe
This implies the existence of at least a minimizer of the functional I in the Sobolev space H?(22; RV)]
and T is lower semicontinuous with respect to the weak topology of H12(Q; R") (see [Mo]) under

an appropriate boundary condition .

(z, z)denotes the derivative in a direction of a vector ein R™ .-

First , we show that the first-derivatives of minimizers satisfies a modulus of uniform continuity
in the norm L2 (Q;RYN).

Secondly , we mention a convergence theorem and a partial regularity result of the weak
differentials of minimizers. However , we remark that the former theorem was proved in [Gm] ,

[HKL] and [Mm] .

We use the summation convention that Latin indices run from 7 to N and Greek indices run
from 1 to n.
We conclude this introduction by recalling other notational conventions :

(1.5) Bp(zo) = {z € RN . |z —zo| < R}.

For a set A C RV , we denote by mesA and |A| the n—dimensional Lebesgue measure of A .
For v € LY(Br(zo); RN) , we define
1

1.6 u = =
( ) zo,R lBR(EO)I Ba(mo)

u(z)de .

For a sufficiently small number d , we define an open set
(1.7) Qi =0 - {z€Q: dist(2,00) < d},

where dist(z,0() means the Euclidean metric between z and 9Q .
For a set A in R™ , H(¥)(A) denotes the k— dimensional Hausdorff measure of A ( for the
definition , see [Gm] ) . = '

e;(i = 1,--+, n) means the unit vector in RV parallel to the z;— axis. We deﬁﬁe a translate
operator A,, (m=1,2,---,n) by
(1.8) (Anf)(2) = f(z+ hew) — f(z) for  fe LP(Q;RM).

2. Main Result

Under the above preparations , we.can describe

THEOREM 1. Let u be a minimizer of the functional I in H'?(Q; RN) and let us suppose that u
is a bounded , namely there exists some positive constant M such that ess.sup|u| < M. Then , for
any fixed domain € compactly contained in Q , there exists positive number a = o (n,N, A,
A,M,L)(0 < a<1)andC = C(n,N, X, A,Q, Q, M, L) such that for h > 0 with h <
dist(Q;09) u satisfies

‘/_ |Am(Vu(z)|?dz < C-h* for  Ym(m=1,2,---,n)
O
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THEOREM 2. Suppose that {u;};>1 is a sequence of minimizers of I in the space HV2(Q; RN)
such that {u;}i>1 converges strongly to a function ug in L% (9; RN). Then the function ug be-

longs to H,lof(ﬂ RN) and moreover a suitable subsequence of {u;};>1 converges strongly to ug in

HY (Q; RY).

loc

THEOREM 3. Let u be a minimizer of the functional I in HY?(Q; RN) Then , for a singular set
defined by ' '

— LR .1 —
(2.1) S ={ze®: ?lim |(Du)egl} U {z € Qs lim [(Duls,gl = +00}
the following
(2.2) H®($) =0

holds for any positive number 3 satisfying n — 2a < 8 < n.

Remark. In the following proof , the letter C; (¢ = 1,---,14) means a various constant
depending onlyon n, N, A, A, Q,Q, M and L.

o~

Proor oF THEOREM 1

First , a minimizer u is a weak solution of the Fuler-Lagrange equations of the functional I ,
u satisfies

2 / B (u(z), 2) Do’ () Do (z) da

(2.3) + / £, (u(z), 2) Dot (z) Dot (2)¢*(z) dz = 0
for  Vé(z) € HY (Q; RV).

Next, let § be a positive number satisfying 6§ < 2dist(Q2, 8Q). For each number h (0 < h <
) , the parallel transition along with z,,— axis (m = 1,---,n) leads to

2 / (u(a: + hem),z + ﬂem)Daui(m + hen)Dpd?(z)dz

(2.4) + / a;y P (u(z + hem), € + hen ) Dot (z + hen ) Dpu? (z + hey ) (z)dz = 0

for  V(z) € &oo (%; RN).

Then we have

2 / a2P(u(2), 2) Dam'(2) Dpd!(z) do
Q
= 2/[az3p(m,u(m)) - a;’:f(u(:v-}- hem),z + hen )| Dau'(z + hem)Dﬁd)j(a:) dz
- / 0282 + hem, w( + hep)) Dot (& + hem) Dot (o + he )9 (z)da
@5+ [ e u@)Dai (@)D )e¥ ()
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after subtracting (2.4) from (2.3) .
We now substitute A,,u(z)¢%(z) into ¢(z) in (2.5) , where {(z) € C°'°°(95; R) is defined by

1 B Q45

(26) | C(m)={0 o0 with  |D((@)] < 2.

N

Then we have

2 /ﬂ a%P (u(2), ©) Da At (2)) Da( Amt (2)) ¢¥(z)dz
+4 / (0(2),2)Dal At (D3 A () (2) o

/ [ag”) Pz, u(z)) — a;) (u(a: + hem),w + hen)|Doul(z + henm)
[Dp(Amw (2))(X(2) + 2Amw (2)D3((2)((2) 1da
- /Q a;; (& + hem,u(z + hen)) Dot (z + hem)Dpu?(z + henm ) Anu* ()P (z)de
(2.7)
+ / a;’ k(m u(m))Dau’(w)DpuJ(m)Amuk(m)(2(w)dw
Q

Here, we estimate the left-hand side of (2.7) , which we call (L) , from below . First , by using
(1.2) , we have

(2) 222 [ ID(Anu(@)P(e)dz
Q
(2.8) — 4nNA [ ID(Anu(e))C(@)] Ans()lID((@)Ida

Second , applying the Schwarz inequality to the second term of (2.8) with ¢ = EFLAAW{ , we
have

(2.9) | (1) 221 [ |An(Due)PE @)ie
— 2enNA / |Am(Du(2))*¢* (z)da
- 22 [ @A

>\ /n lAm(Du(w))l2C2(w)dw

n 2
lolon [ IPE@llanute)tds.

On the other hand , we perform the estimates of the right-hand side of (2.7) , which we call
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(=

(R).

(R) = - 2/ / ” — (g 4 then , w(z) + tAnu(z))dt Doul(z + hen,)
[Dﬁ(A v (2))¢3(2) + 24mu! (2)Dp((2)((2)]dz
- /Q iy k(:c + hem, u(z + hew)) Dot (2 + hen)Dpul (z + hey ) Apu®(2)¢2(2)dz

(2.10) + /ﬂ 42,2, u(2)) Dot () D (2) At () (x)da

By using (1.4) and the boundedness of u , and applying the Schwarz inequality to (2.10) , we
have

(B) <C1 [ (b + [Anu(z)) ((a)de.
(2.11) +C'1 /(h + | 4nu(@)| + [Anu(@) ) [Du(z + hew)[* + |Du(2)* ((2)* dz.
Thus , by comblnlng (2.9) with (2.11) , we have the following :

| 14n(Du@)Pds < €2 [ |Anulo)ds
Q44

Q35

+C2/Q (h + }-Amu(m)l)dm
(2.12) +C /9 (h + |Amu@)[|Du(z)Pdz + |Du(z + he)ldz

Here , it is a well-known fact that a minimizer u satisfies @ so-called Caccioppoli inequality
(see [Gm]) : There exists a positive constant C' , depending only on n, N, A, A, M such that

(2.13) /B |Du(z)|?dz < Rgz_/ lu(z) — ug|*dz

holds for any ball Bsg CC Q with 0 < VR < &. A direct application of the above inequality
to Gering inequality due to F.W.Gering [Ge] (see also [Gm]) leads to the following: There exists
a positive number p(p > 2) , which can be supposed to satisfy p < 4 and C depending only on
n, N, \, A, @, M such that Du(z) belongs to L,oc(ﬂ s R™) and moreover

(2.14) | <IQI / IDu(w)l”dz) < (‘ i / |Du(z)|2dx)

holds for VQ ccQ.
Thus , we apply Hélder inequality to the second term of the nght -hand side of (2.12) and we
have

| 1anDue)ide < €0 [ [h+ |Anu(e)] + |Anu(a)Plde
Q45 : ’

Q25

p=2

(2.15)» — [ /Q . IDmu(m)I”dx]% [ /Q ) lAmu(z)IFEidw] ’
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In addition , by using (2.13),(2.14) and the boundedness of u , we have

[ 1an@u@)Pde < Ca [ [+ [Anu@)] + | Anu(@)lds
Q45 Q2s

(2.16) +Cs [ /Q ) |Amu(w)|i‘5d:c} i

Since 2 < p < 4 implies s23 > 2 it follows from the boundedness of u(z) that

/ |Am(Du(z))Pdz < Cs /Q (b + |Amu(@)| + |Amu(e)?)de

Qas

tz-
) 4
(2.17) + Ce [ / |Amu(:c)]2da:] .
Qa5
Also , from Newton-Leibnitz formula and a Caccioppoli inequality , we obtain

(2.18) / |Amu(z)|?dz < Cqh® / |Du(z)|?dz < Cgh?.
Qs ‘

Q25

Consequently , from (2.17) and (2.18) , we deduce
(2.19) | / |Am(Du(e))2de < Cs 3?2
Qa5

1 Also , for any fixed unit vector e one can easily prove

(2.20) / |A(Du(z))|?dz < Csh7P~2)
Q45

Proor oF THEOREM 2

From (2.19) , we obtain an equi-continuity of a sequence of minimizers in H 110’3(9; RM).

Also , it follows from (2.14) that a sequence of minimizers satisfies a uniform boundedness in
H 11 o’z(Q ; RN) . Thus we obtain the assertion of this theorem from Rellich - Kondrachev theorem ,

(see [Ad]) .

ProoF oF THEOREM 3

The proof of this Theorem is based on estimate (2.20) and the following lemma due to [Gi]
(see also [Gm]) .

1The estimate (2.19) and (2.20) play an important role in the proofs of the Theorem 2 and Theorem 3
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LEMMA 3.1.

Let v be a function in L}

loc

(R2) and B be any number satisfyingn — 2a < 8 < n . Set

(2.21) Eg={zeQ: limsupp"ﬁ/ ( )|v(y)|dy >0}.
(2

p—+0
Thenl , we have
(2.22) HP(Eg) = 0.
First, to apply Lemma 3.1 to the proof of Theorem 3 we construct a support function defined

as follows : For py = 6(3)** (k = 1,2, ) with § = dist(Q, 9Q) and a sequence {ex}x»1 of
unit vectors in R™ we define

(223)  o(s) = 5| Duly + prer) — Du(@)?  with e = 32~ (n-p)).

When we set
. .
(2.24) $(y) = >_vi(y),
. Jj=1

one easily finds that the function ¢,(y) is a non-decreasing function for £ and the following

| #xtiray = E:: | eitwray

ko k
(2.25) = " /Q |Duy + prex) — Du(y)lPdy < Cs 3 p2~("=P)=*
j=1 j=1

K . koo
<Gy 5%(2a—(n—ﬁ))(%)é{h—(n—ﬂ)} = Cys¥Ga~(=0) § g-$2a-(=M)} <y < co.

follows from (2.20) and assumption of 2a — (n—f) = 8 — (n—2a) > 0.
Thus {#x}r>1 is a sequence of measurable functions and moreover , putting ¢(y) =
klim ¢x(y), we obtain from Beppo-Levi Theorem )
—00

(2:26) [ ¢ty = fim [ g0}y < Cuo.

Consequently , ¢oo(y) is an integrable function on § and

(2.27) l <pk(‘y) < ¢oo(y)  forany k andalmostall y € Q.
To complete the proof of theorem , it is sufficient to show

(2.28) S C Eg ,namely, if zo ¢ Eg, then zo ¢ §.
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Now we fix zg ¢ Ep , Then we show that the function

1

2.29 ri— (DW)g,r = ——0
( ) ( )1’0, lB.,-((I)o)l Br(-’ﬂo)

(Du)(y)dy

is a continuous and bounded function in the open interval (0,6) with § = dist(zo,09).
At first , we shall estimate |(Du)go,r, — (D%)zo,Riy.| (1 = 1,2, ---). Also, by integrating
the following (2.30) over Bg,(20) Ri = $(3)2 (i =1,,--+),

l(Du)z'o,R.' - (Du)-’b‘o.RiH'
(2.30) < |(Dw)zo,r; — (Du)(@)| + |(DU)zq,Riy — (Du)(z)] .

we obtain
IBR.‘l * IDuxo,Ri - Duaﬁo,Ri+1|

(2.31) < / |Dugy r, — Du(z)|dz +/ |Dgy,riy, — Du(z)|dz.
Brg; ) Bg;

Next, dividing (2.31) by |Bg,| and by using Holder inequality , we have

(2.32)
lDumei - Du-‘b‘o,Riﬂl
1 1
< — - - - ’
< (B, |Peon = Dul@lde + 1 /. 1Pz, ~ Dulz)lde
< 2 [ Du(y)dy — Du(z)|ds + — - Du(y)dy — Du()|d
< - 2
Brl Jo,, Bl Jis, Brl Jow, Bros] U,
1
< dz/ Duy—DuzIdy+——— d:l:/ Du(y Du(z)|dy
|BR|2/BE 108 = Dutody + i e [ 1Duw) -~ DuCaldy
142"
< I———BR—P,—/B dmL |Du(y) — Du(z)|dy.
i R; R;
1427 1
< W[ i da:/B dy]? [ / d:c/ |Du(y) — Du(w)|2dy]
§ R; R; |
1+27
< ol [ ds [ 1Duw) - Du(a:)[zdy] .
Rl' Blli BE,‘ ’ ) l

Here, we extend Du(z) to be zero outside Bp, and successively rewrite it to be Du(z) for. conve-
nience. Then we continue the estimates of (2.32) as follows : From the change of variables,

8
4||
8

<
il
@
i
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we obtain

(E:T) / / (D“)(y) - (DU)(:v)lzdy]l/ztagz 33
= (llngr)[/B ,dz/;; (x)[(Du)(y) — (Du)(x)lzdy]llz
_(1+2m 2n)

IBR I /B /B |(Du)(Z + §) — (Du)(Z)>dy]*/?.

By using Fubini Theorem and successwely the mean value theorem , there exists a vector §; - € R"
with 0 < |77] < 2R; such that

(2.34) (239) = (5 / (Du)(& +77) - (Du)(®)*da].

From (2.32) and (2.34) , we obtain

- RO 1 (w45 - (uEP, ]}
(235)  [(DWay r, = (DWay ] < 012[ /. ) e .

Next we shall show that {Dug, .} (r > 0)is a Cauchy filter . Let r and R (r < R) be
positive numbers sufficiently small and then we can take positive integer j and ¢ (¢ < j) such that
Rjp1 <7t < Rj and Riy1 < R < R; . We estimate | Dug,, — Dug, r| by dividing it into the
following three terms :

IDu17017' - ‘D‘uxOvRI .
(2'36) < |D'"'a-‘o,f - Duwoﬁjl + |Du-‘to,Rj - Duxo,Ral + IDuﬂvo,R - Du-’b‘o,Ra‘

Thus , by the same way as above , for 0 < r < R < § , the following holds :

(2.37)  |(Dw)ggr — (Dt)go.r| < CIZZR‘” T

[ (DuGs D - @wer,?
Brg,

We obtain from 8 — (n —2a) 20,

g — ($\G-9%
R
: 1_(2)2

By noting

Dw)E+5E) - (Du)(@)?

FEa < ¢°o(w) ae Z€Qandk=1,2,--

we can continue to estimate (2.37) as follows :

I(Du)z'o»"' - (Du)a"OfR[
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(2.38) < CuR?

1
3
e.ss..supR;ﬁ / ¢°°(y)dy] .
k>0 BRI:

Also , from (2.28) , there exists a constant K such that

(2.39) " |(DWegr — (Du)go,rl < CuK3 R

ﬁ—!n—-2a !
2

This shows that {(Du)z,,»}r>0 is @ Cauchy filter . Thus, Rlin_;_zo(Du)xo,R surely exists. Also ; from
(2.39), we obtain '

(2.40) (Dw)syr — (DU)sy | < CraK¥R=5L,
Then

. E-—gn—2a!
(2:41) Jim [(Dw)eo,rl < [(Du)aosal + Cruk? (6/)— 7 .

Consequently , Rli"_:o(D")xo,R exists and is finite. This shows zo ¢ S )
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