oooooooooo

0 6790 1982]1%30—218

Eigenvalue Problems for Some Qusilinear Equations

By
Mitsuharu OTANI

Department of Mathemetics, Faculty of Science, Tokai University

Let () be a bounded domaim in RN with smooth boundary 233,

and consider the following well-known Poincare's inequality

() lul . <« Clvul _ u e WP, 1< pe .
Lp Lp o

Since the injection from Wi’p(Jw into Lp(fw is compact, it is
easy to find an element u £ 0 in Wi’pcﬂﬂ which attains the best

possible constant for (P), that is to say

R(u) = sup [R(v) ; vew'P(), veo] =: R(v) = [vl /lyv]

L
Y L

LP

Then it can be shown that u must satisfy the €quation :

A u=AlulP 2y in W),
(E), { P |

u ¢ Wé’p(ﬂJ,

with ) = A

, » where Apu = div ( IVulp_zvu ).

For the case p = 2, it is well known that Al is the first
eigenvalue of -4 with zero Dirichlet boundary condition and

that its eigenfunctions form a one dimensiong%r§pbspace of Hé@t),
\NE AN
i.e., Rl is simple. As for the case p ¥ 2, this kind of

result was first obtained by f4] for the case N = 1, where it is

shown that eigenvalues form a countable set and are all simple.
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For higher dimension N =2, Sakaguchi (6] showed that the

first eigenvalue ?\1 is simple, provided that 3 L is connected.

His method of pro_of relies on a maximum principle for —Ap.
The main purpose of this note is to introduce a method based

on " variational principle " to show the following properties

without assuming that 3JL is connected.

(1) The first eigenvalue 9\1 is simple ;

(II) (E)» has a positive solution if and only if A:}\l,

( i.e., other eigenfunctions must change their sign.)

Quite recently, Anane [1] alsoy proved these results. However,
her method of proof essentiaily depends on the peculiarity of the
operator Ap and it seems that this does not work for other similar
operators. Our method of proof is »quiite different from those of
[1] and [6] and can cover other similar operators. In order to
emphasize this advantage, we here formulate our results in an
abstract form.

Let ‘A and B be ’Fréchet derivatives of functionals fl and

f2 defined on a Banach space V , ( we denote A = 'Qfl and B = 'afg).

Consider the following abstract eigenvalue problem :

(AE)A Au = A Bu

We impose the following conditions on £

(A1) (1) R(lvD) Z R(V) := £2(v)/ £7(v)  Yve v,

(ii) fl(v) =Z0 v €V and fl(v) =0 if and only if v =0,

(#) J nevV s.t. u¥ 0 and R(u)=sup{R(v);v€V,v‘;oE)o.



[
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(A2) I 451 s.t. £(tv) = i) Yvev,Uey 0, 1-1,2.

(A.3) (i) fr(uvw) + 5 uaw) < £ (u) + £5(w), Yu e,

(i) £2(uVw) + fo(upw) = fz(g) + fg(w),A Valwev,

where (uVw)(x) = max (u(x), w(x) ) and (upw)(x) =min (u(x),w(x)).
Furthermore wevassume

(AOQ) Every non-negative nontrivial solution . u of (AE)

belongs to Cl(ﬁ.) and satisfies wu(x)>» O for all xefy.
Then our first result can be stated as follows.

THEOREM I  Assume (A0)-(A3). Put A, = 1/sup{R(v); veV, vsO}.
Then we have

(1) (AE), has no nontrivial solution for Ae€ (O,ll),

(i) A, 1is simple,i.e., (AE),, has a positive solution and the

set of all, solutions of (AE);\1 is a one dimensional subrspa‘ce of V.
("positive } '

Remark 1. (i) Take V = w(l)’p(d'b) , fl(v) = Ivvlpp / p and f2(v) =

L

lvlpp/p , then (E)A can be reduced to (AE))\, and all above
L ,

conditions (AO)-(A3) and (A4),(AS),(AO)' in Theorem II are
satisfiéd.

(i) If Au= div g(x,u, u) + ao(x,u, u) and Bu= b(x,u),
then some sufficient conditions for (AO) can be given in terms
of E\’, a and b. Since these are somewhat comﬁ‘licated, but
general enough, we do not go into the details here. (See Ladyzhen-

skaya (3], Trudinger (8] and Tolksdorf (7].)
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(iii) Conditions (Al1)-(A3) are not enough to assure the simpli-

city of Al. In fact, it is easy to give a trivial counterexample

by taking - fl= f2=f for a suitable f. In this case, ?\1= 1 and

the set of all eigenvectors becomes V.

Proof of Theorem I. (i) First of all, we note that (A2) implies

o ST v = & v, Tvev, i=1,2.
Hence, if u 1is a solution of (AE),, then multiplication of (AE),
by u gives

(1) o £7(u) = A&k £5(u),i.e., R(u) = 1/x

This is a contradiction, since 1 /3 = R(u) > 1 /Al = sup R(v).

(ii) Set Jy(v) = fl(v) - ?xf2(v), then
< . . > .
(2) Jx(v)(=)0 if and only if R(v)({;)l /f/\
Therefore it follows from (iii) of (A1) that ueV s.t. us 0 and

(3)  min { J,(v) }VEV,v0} = 0= T, (u).

Hence, Fréchet derivative of J}‘lat u must vanish,i.e., u bepomes
a nontrivial solution of (AE))\1 .' . Conversely, if u is a solution

of (AE)A , then , by (1), Jkl(u) = 0. Thus we find that

1



(4)  u is a solution of (AE)y, if and only if Iy (u) = 0.
\ 1

Furthermore, by (2),(3) and (i) of (A1), Jg\i(u)=0 implies

J,(lul) =0. Hence
A :

(5) If u is a solution of (AE)A , then |u| is also a solution
1

of (AE)A1°

Then, by (AO0), |ul has no zero in.) . Consequently, every solution
u of (AE))‘lis positive or negative in (.

Let u, v be two positive solutions of (AE)A;L and put

M(t;x) =max (u(x), tv(x)) and m(t,x) =min( u(x),tv(x)).
Then, by (A3), we get
< —4 =

0 < J>‘1(M) + JAi(m) < J}\l(u) + J%L(t v) Jkl(u) +t Jp\i(v) 0,
whence follows JM(M)= J>\1(m) =0. Hence, by (4), M and m turn
out to be solutions of (AE))\1 for all tzO. For any xoe._Q,, set
to= u(xo) /v(xo) > 0. Then, for any unit vector e, we have

u(xo+he) - u(xo) < M(to,xo+he) - M(to,xo),

- < -

tov(xo+he) tov(xo) < M(to,xo+he) M(to,xo).

Dividing these inequalities by h> 0 and h< O and letting t tend

to * 0, we get

veu (XO) = vV, M(to,xo) =t, V. V(xo). Hence
V-i(x) = (Vulx,) v(x) - ulx ) Vv(x_)) /v(x)? = o.

Thus we see that u(x) /v(x) = Const. in J). (QED)
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Now we state our second result :

THEOREM II Assume (AO0)-(A3) and

(A4) et is strictly convex.

(A5) B(u) € B(v) if Ozuscv.

Furthermore, we assume

(AO) " Every positive solution u of (AE)A satisfies ueCl(Ji,)
and du/3n(x)< 0 on 3aJ.. |

Then (AE)A has a positive solution if and only if QA =)\1.

Remark 2. To assure condition (AO)', one must prove a Hopf-fype
maximum principle, and generally this is not so easy. In this
sense, this is rather restrictive. However, in most cases, Qe

can exclude this condition by applying some approximation procedure.
( Say for the case B(u) = !ulp—2u, set B.(u) = bE(x).lulp—zu

with bi(x) =1 if dis(x,3l)2¢ , bE.(X) =0 if dis(x,3N) < £

and prove the corresponding first eigenvalue >‘£1 converges to )‘l
as ¢ tends to zero. Then it suffices to repeat the éame argument

6 R _Su ".'9\0,1;‘_‘,‘ 'SM'AﬁQ £

as in the proof of Theorem II. In order to present the basic

idea of the proof, we here give a proof by assuming (AO0)'.

Proof of Theorem II. By using convex analysis, we can prove the
following lemma.
Lemma 3. Assume (i) of (A3) and (A4). Then

Au < Av implies u <v.

Suppose that (AE)>\ with A>}\l has a positive solution v,

and let u be a positive solution of (AE)AL' By virtue of (AQ)'



and the fact that tv is also a solution of (AE);\, we may assume
without loss of generality that wu<v. Then, by (A5), we get

: _ 1/(«~1)
Au = _AlBuglev = X B v) = A(”? v) with 71=(A1/A) < 1,

where we used the fact that B 1is a homogeneous operator of order

d=-1. Then it follows from Lemma 3 that u g'rlv. Now, repeat-
ing this argument n times, we deduce O Lug ’Y{IV. Then, by
letting n tend to o, we finally have u=0. This is a contra-
diction. (QED)

As is mentioned above, our abstract framework can cover

some problems more complicated than (E) For example, let

N
V = Wé’p(ﬂ) and put

/2

P
£l (u) jaﬁal(x)iul% a,(x)Iyul®) 4 ag(x) [ulP} ax /p,

£2(u)

_y b(x)ul? ax /p,
el

where a; bng(JL); al(x),_aB(x), b(x)z 0O, gz(x)gf70 a.e. x&l.

Then Au afl(u)z div ( (allul2+ azlvu]

I

a2‘\7u)

(p-2)/2
+ (allu!2+ azlvulz) a.u + a3|u|pf—2u ,

1

Bu

b Iulp—zu.

It can be shown that assertions of Theorems I and II hold good

for these operators.
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Theorems I and II have another type of application :
Theorem 4. Let beL®W), b(x)z0 a.e. x&fland 1< qep. Then
q-2 . / | \
-A_u = b(x) |ul u in o@(ﬂ) )
(6) P
ugwi’p(ﬂ) \fO} , u(x)z 0 a.e. xe QN

has a unique solution.

Proof. Existerice part is eaSy. Let V=Wi’p(ﬂ), and put

') = lgviP /o ana £3(v) = L <§b(x) vI%x)P/% . Then (aE),
L b
becomes
p-q _
(7) -A_u = lel/qu! b(x) |ul? 2u,

and all assumptions in Theorems I and II are satisfied. (f2

satisfies (i) of (A3) if and only if qu.)

Let u and v be different solutions of (6). Then u and Vv

satisfy (7) with )\ = | bl/qulq—p and A = | bl/qvlq—p respective-
. L4 L4

ly. Then Theorems I and II say that

lbl/qul = Ibl/qv! and u = tv for some t>O0,

L4 L4

whence follows u = v, (QED)
Remark 5. A same type of result as Theorem 4 is already obtained
by Diaz and Saa [2] But their result does not cover the case

where meas {xéﬂ,; b(x) =0 % > 0.
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