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Max-flow min-cut theorems on an infinite network

Maretsugu YAMASAKI| (BRAZEEEE L & % §)

Introduction

fDuality'relafions between the max-flow p(dblems and the
min-cut problems seem to be one of the most importént results in
the theory of networks. On a finite network, the celebrated
max-flow min-cut theorem due to Ford and Fulkerson [2] has been the
unique result for this direction before the work of Strang [6].
On an infinite network, there are several kinds of flows and cuts
and several méx—flow min-cut theorems have been obtained by
Nakamura and Yamasaki [3] and Yamasaki [71. In this paper, we
shall study a duality relation between a max-flow problem for an
important class of flows and a maximization problem on a class of
min-cut problems. We use the notion of extremal width of the
network which was introduced by Duffin [11]. For a set of
exceptjonél’cuts in the sense of extremal width, we can find a
so-called penalty function by the same method as in Ohtsuka [5].
Our main theorem is proved by using the penalty method in the
theory of mathematical programming.

More precisely, let X and Y be countable sets of nodes and
arcs respectively and K be the node-arc incidence function.  We
assume that the{graphvaﬁ {X, Y, K} is connected and locally finite
and has no‘self:ioob. * For a strictly positive function r on Y, we

¢all the pair N = {G, r} an ‘infinite network. Denote by L(X) and
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L(Y) the sets of all real functions on X and Y respectiveiy, by
+

L (Y) the set of all nonnegative functions on Y and by;LO(Y) the
set of w E LC(Y) such that the support {y € Y: w(y) # 0} is a finite
set. Let p be a number such that p > 1 and Hp(w) be the energy of
w € L(Y) of order p, i.e..,

H, (W) = 2 ravd) lwend |P.

vEY
The set Lp(Y: r) of all w € L(Y) with finite energy of order p is a
1/p

reflexive Banach space with the norm [Hp(w)]
For notation and terminology., we mainly follow [3]1 and [4].
Let A and B be mutually disjoint nonempty finite subsets of X.
We say that w € L(Y) is a flow from A to B if the following
conditions are fulfillqd:

(1.1 K({x., y)w(y)_= 0 for all x € X - A - B,

2yGY

(1.2) Kix, y)w(y) Kix, vIw(y).

- z,xeA 2ye-\( E szB zytEY

“Condition (1.1) implies that the Kirchhoff's first law is
valid at each nodes in X - A - B. Denote by F(A, B) the set of
all flows from A to B. The strength I(w) of w € F(A, B) is
defined by the common value in (1.2).

Let Fp(A, B) be the closure of FO(A' B = F(A, BY N LO(Y) Tﬁ
the Banach space Lp(Y; r).

First we state the max-flow problem in a general form.

Given a capacity function W € LY (Y) and a nonempty subset F of
flows, the max-flow problem felated to W and F is formulated as
follows: 7
(MF) Find M(W: F) = sup{l(w): w € F and [w(v)] < W(y) on YI.

To state min-cut problems, we recall some notation. For

mutually disjoint subsets X] and X2 of X, denote by X1 0 X2 the set
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of all arcs which connects directly X1 and X2. We say that a
subset Q of Y is a cut (or cut-set) if Q = X' 9 (X - X') for some
nonempty set X'. Note that the pair {X', X - X'} is uniquely
determined by Q.

We say that Q is a cut between A and B if there exists a

subset X' of X such that @ = X' 8 (X - X"), X' 2 A and X - X' D B.

For simplicity, we put X' = Q(A) and X - X' = Q(B). Denote by
QA B the set of all cuts between A and B and by Q;fé the set of all
Q € QA B such that Q is a.finite subset of Y.

Given W € L+(Y) and a subset C of cuts., the min-cut problem
related to W and C is formulated as follows:
e Find M0 € = inf(3 ¢o WO: @ € Ch.
Here we use the convention that the infimum on the empty set is
equal to =,
The aim of this paper is . to obtain duality relations between

problems (MF) and (M*C)%for several choices of F, C and W.

§ 1. Known results

The characteristic function U € L(Y) of Q € QAyB is defined
by uQ(x) = 1 on Q(CA) and uQ(x) = 0 on Q(B). Let us define a
quantity J(w: Q) for a cut Q G‘QA,B and w € L(Y) by

Jlw: Q) = EyEY w(y)zxex K{x., y)uQ(x)‘
if the sum is well-defined. Notice that J(w: Q) is well-defined
if @ is a finfte cut or if w € LO(Y).

We\proved incI7]

Lemma 1.1. Let w € F(A,.B) and Q € QA,B' Then the equality
L{w) = - J(w: Q) holds if any one of the following conditions is
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fulfilled:
(.1 w € FO(A, B) and Q € Q, ..
(1.2) we€F (A, B and @ € Q'T)
‘ P A/B
Corollary. The following inequalities hold®
) X .
(1.3 MW: F (A, B)) <MW Q) B
(1.4) M(W: F (A, B)) £ ¥ ow; o(f)).
P AIB

‘ The'followihg’max~flow min-cut theorem was proved in [7] by

using the standérd labelling method.
‘W - - = o wXow
Theorem 1.1. M(W; FO(A' BY)Y = M (W; QA,B)'
~ S P : X, .. A (f)
Corollary. M7 (W; QA,B) < M(W; Fp(A{YB)) < M (W, QA,B)'

The inequalities in the above cSrdllary'can be replaced by

equalities if W satisfies the following condition

(@) - 'M*(W; QF o) = 0 for every nonempty finite set F of X.

We proved in [4]

"Theorem 1.2. If W satisfies condition (®), then
. R T DA (f)
MW; FCA, B)) = M (W; QA,B) = M (W, QA,B)'

§ 2. Extremal value up(A)

For later use, we introduce an extremal value up(A)’as a séale
of exceptional sets of cuts.

For a set A of cufs, we define the value'up(A) of A (of order
p) as the inverse of the value of the following convex programming
problem:
(cP) Minimize Hp(W)

subject to W € L+(Y) and zyEQ W(y) 2 1 for all Q € A.
"Denoting by E(A) the set of feasible solutions of (CP), we have

up(A)" = inf{H_D: W€ B,

-4 -
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By the standard method as in [Bl. we have

Lemma 2.1. | f A1 c Az,'then up(A]) > up(Az).

Lemma 2.2. 2::1 “p(An)rl > up(U:=] An)_].

We say that a set A of cuts is exceptional (with respect to
up) i f up(A) = @ By the above lemmas, we see that any subset of
an exceptional set is exCeptionéI and that the countable union of
exceptional sets is also exceptional.

By the same reasoning as in [3]1, we can prove

Lemma 2.3. A set A of cuts is exceptional if and only if
there exists a penalty function W for A, i.e., W is a nonnegative

function on Y such that Hp(W) <® and 2 . W(y) = @ for all Q € A.

vEQ
Corollary. Let A be an exceptional set of cuts. I f
zyGY r(y) < ®, then A does not contain a finite cut.
Lemma 2.4. Let A be a set of cuts such that eVerQ Q€A is
an infinite subset of Y. I f zyéY r(y) <, then A is an

exceptional set.

Lemma 2.5. Let A be a set of cuts and assume that a sequence
{Wn} of nonnegative functions converges to 0 in Lp(Y: r), i.e..,
Hp(Wn) 2 0 as n 2 o Then there exist a subsequence {n} and an
exceptional subset A' of A such that |lmn4w zyEQ Wn =0 for every Q
€A -A

§ 3.  'Main ke;ults

Denote\by Q;m; ge the totality of exceptional subsets of QA B

and consider the following maximin problem:

i #ow - L Ay (=)
(MM)  Find M (W: Q) o) = supiM (W: @, o - A): A€ QA,B}.

Note that M*(W; QA B~ A) is the value of a min-cut problem (M*C)
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with € = QA,B - A.

We shall prove the following duality theorem:

Theorem 3.1. If W € L+(Y) and Hp(W) < ®, then the following
equality holds: M(W: F (A, B)) = MPw: a, ).

P AIB

Proof. Let w be a feasible solution for our max-flow
problem, i.e., w € F_(A, B) and lwy)| € Wey) on Y.  Then there
exists a sequence {wn} in FO(A, B) such that Hp(w - wn) 2+ 0 as n =
© hy our definition. For any Q € Q » we have |l(w ) = - J(w ; Q)

A,B n n

by Lemma 1.1, so that

||(wn)| < zyGY |wn(v)||zxex K(x., y)uQ(x)l = EVGQ lwn(v)l.
Put W () =-lw (v) - winl. Then H (W) 2 0 as n 3 o, On

n n ; P n
account of Lemma 2.5, we can find a subsequence {n} (without
changing notation) and an exceptional subset A0,°f QA B such that

W (y) » 0 as n =2 @ for every Q € Q - A Note that | (w )
n A 0 n

ZVGQ +B

2 |(w) as n =2 @ . .From the relation
2 eq vyl -2 o lwandl €3 0w (),
it follows that

Lol < timsup L 2 eqlw, DT €2 0 vl <2 0wy

for .every Q € QA,B - AO' ahd hence
S I _ ¥ .

| (w) < M (W; QA,B AO) < M7 (W QA,B)'
Therefore M(W: Fp(A, B)) £ M#(W: QA B). To prove the converse
inequality, let t be any number such that t < M#(W: QA B)" There
. . X . _ :
is an exceptional subset A] of QA.B such that M (W. QA,B A1) > t.
By Lemma 2.3, we can find a penalty function W' for A], i.e., W' €
L+(Y) such that H (W') < = and 2> W'(y) = o for all Q € A, . For

P vEQ : - 1
any 8 > 0, we see easily that
X . X A
MW+ BW QA,B) =2 M (W; QA,B AI) > t,

L -
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which is the so-called penalty method. "By the elementary max-flow

min-cut theorem (cf. Theorem 1.1), we have

MW + BW': FO(A' B)) M*(W‘+ EW': Q )

A,B" -
Since M(W + gW': FO(A' BY) > t, there exists We € FO(A’ B) such
that l(wa) > t and |w8(y)| < W(y) + 8W'(y) on Y. Noting that

Hy(wg) < 2°TH (W) + BPH (W1 and taking & = 1/n for n= 1,2, e
we can find a wéakly convergent subsequence of {WB}' Denote it by
{wn} and let w be the limit. Since Fp(A, B) is convex and
strongly closed., it is weakly closed. Therefore w € Fp(A, B) .
Since wn(y) 2 w(y) as n 2 @ for each vy € Y, we have

Jw(y)] € W(y) on Y and 1(w) 2= t,

so that M(W: Fp(A, BY) 2 t. Thus-M#(W; QA,B) < MW: Fp(A, B)).
This completes the proof.

We have

Theorem 3.2. Under the same assumption as in Theorem 3.1,

both probfems (MFp(A, b)) and (MM) have optimal solutions.

By Theorem 3.1 and Lemma 2.4, we obtain a max~flow min-cut

theorem:
Theorem 3.3. Assume that Zyey r(y) < o, If W € L+(Y) and
H (W) < ®, then M(W; F (A, B)) = M*aw: ")) hoids.
p T A.B
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