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NOTES ON NONSMOOTH OPTIMIZATION

Masao FUKUSHIMA (Kyoto University)
mERE (FHEKE)

1. Introduction

Nonsmooth Optimization (NSO) or Nondifferentiable Optimization
(NDO) deals with optimization problems whose objective and constraint
functions are not necessarily differentiable.  The nonsmooth functions
which are encountered in practice are often defined as the max function

f(x) =max { F(x,y) [ y€Y }, | (1.1)

where F 1is assumed to bé smooth with respect to x. Some eXamb]es of

nonsmooth functions are as follows.

Example 1. Multifacility location problem: Francis and White (1974).

Let m facilities be situated at points 81y 8ps.sey 3, ON A

plane. ~ Suppose that n new facilities should be located and that cost
should be imposed on transportation of goods between the new facilities
and the existing facilities and between the new facilities themselves.
Then the problem of efficiently locating the new facilities may be

formulated as

o m n n=1 n
minimize 121 321 fji(ij—aiﬂ) + 'z1k=§;1gjk(”xj—xk”)’ (1.2)

J:
where Xy, Xpyeeus X, are the locations of the new facilities to be
found, the functions ‘fji and gjk are nondecreasing, and .|

is a

norm in R2. "~ Since ‘”‘ll has discontinous first derivatives at the

origin, the objective function of problem (1.2) is usually nonsmooth.

Example 2. Exact penalty function: Fletcher (1981).
Consider the nonlinear programming problem
minimize  f(x) Do » (1.3)

0, 1.=1,2'-.-|m'

]

~subject to "c;(x)
| cy(x)

0, i=m'+1,...,m,

A
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where f and cy are.assumedAto be smooth. Then it is we11. known
that, under some regularity conditions, a solution of problem (1.3) may
be obtained by solving the unconstrained problem

minimize  F.(x), (1.4)

where F. 1is defined by
F (x) = f(x) + r[ %LI (x)] 7 (0,c;(x))]
x) = f(x) +r ci(x)]| + max(0, c;(x
‘r RS ‘1=mz+1 !

and r 1is a sufficiently large positive constant. The function F. is

~ clearly nonsmooth.

Example 3. Decomposition of large problems: Fukushima (1987).
Consider the nonlinear programming problem |
minimize F(x) + <q,y> (1.5)
subject to Ax + By < b,
ci(x) =0, i=1,2,...,m,
where F and cy are smooth, A, B, q and b are matrices or vectors
of appropriate dimension, and- <<¢,»> denotes the inner product. Then,
as in Benders' decomposition method, we may rewrite (1.5) as
minimize F(x) + f(x) ’ (1.6)
subject to ci(x) =0, i=1,2y¢..,m,
where f s given by
f(x) =miﬁ{<q,y>|3y’_s_b~Ax} ,
= max { <Ax=b,w> | BTw = —q, w2 0}, (1.7)
(The Tast equality follows from the duality theory in Tlinear program-

ming.) The function f is a (polyhedral) convex function which is

generally nonsmooth.

Example 4. Multicommodity flow problem: Fukushima (1984).
The equilibrium traffic assignment problem and the optimal routing
| problem in a packet switched communication network can be formulated as
a convex cost multicommodity. flow problem. = Consider a directed network

with the sét N of nodes and the set A of arcs. Let K denote\ﬁhe



set of commodities to be transported through the network. ~Assume that
each commodity k€K has a single origin-destination (0OD) pairf(sk,tk)
and let P, be the set of paths between the OD pair ~(sk,tk). Then the

minimum cost multicommodity flow problem may be stated as

minimize ) fo( ) (1.8)

SapYp)
a€A keK peP) ap’p

subject to ) Yp = Do Viek,
PePy |

where fa is the cost function for arc a, Xy s the total flow on

arc a, y, is the flow (of commodity k) along path p, D, is the
given nonnegative flow requirement for commodity k, and éap are
elements of the arc-path incidence matrix associated with the given

network. If we assume that the functions f_ are convex, then the dua]

a
of problem (1.8) may be given as
- .
minimize L f.(u.) + ! Dyhy,(u), 1.9)
apiatia) * 8 Diilu)s (

where f:, the conjugate function of f,, is defined by

¥*

fa(ua) = sup {xyuy - fa(xa)l Xy € R}, o (1.10)
and hy s defined by

hk(u) = - min{ aéAuaéaPI pe Pk}' (1-11)

Note that both f§ and hy, are convex. In particular, since f: 1§ a
function of a single variable, it is often possible to obtain an explic-
it representation of fz from (1.10). Moreover, (1.11) indicates that,
for each k, hk(u) can be calculated by finding a shortest path between

the 0D pair (sk,tk) in the network with arc lengths given by wu,, a€A:

2. A]gofithms _

The key tool of dealing with nonsmooth functions is the nétion of
subgradient (Rockafellar, 1970). Let f be a convex function on R".
Then, a vector ¢ is called a subgradient of f at x if

f(x') - f(x) 2 <g,x"'-x> for all «x'. (2.1)
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The set of subgradients of f at x is denoted by :Bf(x). The notion
of subgradient has been generalized to various classes of nonconvex
functions. (See, e.g., Clarke (1983).)

Roughly sbeaking. we may classify two different types of nonsmooth
functions, depending upon the information available. Womersley and
Fletcher (1986) use the terminology, "composite nonsmooth prob]ems" and
"basic_nonsmooth problems". For the former, there is sufficient infor-
mation available at each x to calculate the set Sf(x)_ of subgra-
dients completely, while for the latter, the set of subgradients must be
approximéted using information evaluated at various point around  x.
When the nonsmooth function is defined as a max function of the form
(1.1), the former correspond to the case where the set Y is finite and
all component functions F(?.y) are easily enumerated, and the Tlatter
corréspond to the case where the number of e]emehts in Y dis either
infinite or too many to enumerate individually. Examples 1 and 2 in the
previous section belong to the class of composite nonsmooth problems,

- and Examples 3 and 4 typify the basic nonsmooth problems.

2.1. Algorithms for Composite Nonsmooth Problems
Typical composite nonsmooth problems are represented as
minimize  o(x) & F(x) + h(c(x)). (2.2)
where F: R">R and «c¢: R">R"™ are smooth and h: RM+R is a
polyhedral convex function. Fletcher (1981) presents an algorithm which
constructs a quadratic approximation of problem (2.2) at each trial
point and uses a trust region technique to guarantee the validity of the
quadtaric model as a good approximation to the original prob]em. Speci-
fically, the algorithm of Fletcher (1981) solves at each iteration the
following subprobiém: o
minimize  qK(d) + h(2X(d)) | o (2.3)
subject to |]d|L§‘ ak | |

where



qk(d) = F(xK) + vF(xK)Td + JdTukd,
gk(d) = e(xk) + ve(xK)Td,
'|=

k k

Aj are estimates of the optimal Lagrange multiplers, and A" 1is the
radius of the trust region. Note that problem (2.3) can be transformed
into a quadratic programming problem. ‘ »

Let dX be a so]utﬁon of (2.3). If dk gives a sufficient reduc-
tion in the objective function ¢ of the original problem (2.2), then
the next iterate xK*1 s chosen to be xK+dk, Otherwise, the radius
of the trust region has to be controlled to enforce the reduction of the
function ¢. .F1etcherv(1981) shows. that, under suitable conditions,
such a step restriction strategy generates a sequence whose accumulation
point satisfies the optimality conditions for (2.2). |

Concerning the rate of cdnvergence, it is known that the trust
region algorithm of FTetéher (1981) suffersifrom'the so called Mafatos
effect which may hinder superlinear convergence. To overcome fhis
difficulty, Fletcher (1982) proposes to solve another subproblem of the
following fdrm. after the subproblem (2.3) is solved:

minimize qk(d) + h(Ek+Vc(xk)Td) (2.4)
subject to ”d[Lé ak,
where ¢k = c(xk+dk)—Vc(kk)Tdk and d¥ is the solution of (2.3) .
Fletcher (1981) establishes a superlinear convergence result for this
modified algorithm.
| More fecent]y, Yamakawa, Fukushima and Ibaraki (1989) have proposed
another remedy of overcoming the Maratos effect, using the idea given by
Fukushima (1986b) for the SQP methods in nonlinear programming. Spe-
cifically, this a]gorfthm solves, instead of (2.4), the following sub-
prob1emﬁ |
minimize  ak(d) + h(Ek(d) (2.5)
subject to  ||d|s Ak o -

where
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ak(d) = F(x) + (P*)Td + JdTukq,
ﬁ?(d) ci(xk) + (a%)Td.

m
pk = vF(xk) - T akek,

-ET

i

i
a% Vci(xk) + r3, i=1,2,...,m,

r% = ;Vzci(xk)dk.
Note that the calculation of the above vectors requires no extra work of
evaluating the second derivatives, because they have already been used
to evaluate the matrix WK in subproblem (2.3). In Yamakawa, FukUsHima
and Ibaraki (1989), it is shown that the Maratos effect can be avoided
by using the solutions of subproblems (2.5) and very promising numerical

results are reported for some ill-conditioned test problems.

2.2 Algorithms for Basic Nonsmooth Problems

For a function involved in basic nonsmooth problems, it is usually
assumed that only one subgradient is available at each point. Early
numerical methods that éan dea} with nonsmooth fuhctions are subgradient
methods and cutting pjane methods. In particular, thé subgradient
method is one of the antecedents of the ellipsoid method for Tinear
programming. The subgrédient method and the ellipsoid method are fully
described by Shor (1985) and Bland, Goldfarb and Todd (1981), respec-
tively. The cutting plane method, which was 1ndependent1y developed by .
Cheney and Goldstein and Kelley about thirty years ago, has played an
important role in nonsmooth optimization. The cutting p]qne method may
be viewed as a predecessor of various descent methods developed by a
number of authors‘inlﬁding Lemarechal, Wolfe, Mifflin, Fukushima, Kiwiel
and Auslender (see, e.g., kKiwie] (1985) and the references .therein.)
The primitive cutting plane method has the-drawback of accumulating
cutting planes infinitely. An attempt to overcbme this difficulty s
proposed by. Fukushima (1983) for nonsmooth convex programs and this 1dea’
has been extended further to variational inequalities by Fukushima

(1986a).



In the rest of this section, we briefly describe a class of descent
methods which may be considered a modification of the proximal method
studied by Rockafellar (1976).

First let ué consider the uﬁconstrained problem

minimize f(x), (2.6)
where f is a convex function. Given the current iterate x, the
proximal method (approximately) solves the subproblem

minimize %Hp”z + f(x+p), (2.7)
where )\ is a positive parameter. Once the solution p of (2.7) is
obtained, the next iterate x, is then determined by x, = x + p.

Fukushima (1984a) observes that if p solves (2.7), then the
vector g = %ﬁ is the minimum norm element of Bef(x), the set of €-
subgradients of f at x, defined by

3€f(x) = {g | f(x")-f(x) 2 <g,x"-x> - &, Yx'}, (2.8)
where € > 0. Thus p 1is a descent direction of f at x, and the
next iterate x, may be determined as

X, = x +ap, (2.9)
where the step-size a > 0 1is chosen in such a Way that a sufficient
reduction in the objective value is obtained. Another important fact is
that solving (2.7) only approximately suffices to guarantee convergence
of the whole algorithm. To solve (2.7), Fukushima (1984a) uses a cut-
ting plane technique in which cutting planes are generated only for the
convex term f(x+p) and hence search direction p is obtained by
solving a sequence of problems of the form

minimize %‘“p”2 + f(p), (2.10)
where f is a polyhedral (outer) approximation of f. Note that (2.10)
can easily be transformed into a quadratic programming problem. Recent-
1y, Auslender (1987) extended this idea to get a more general method.

The proximal method has been generalized to the nonconvex problem

. minimize F(x) +bf(x). o . ' (2.11)

where F s smooth but not necessarily convex, and f 1is convex but
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not necessarily smooth. Fukushima and Mine (1981) propose to determine
a search direction at x by solving the "convex" subproblem
minimize %Hp”2 + <VF(x),p> + f(x+p), (2.12)

where A is a positive parameter. It can be shown that the solution of
(2.12) s a descent direction of the objective function of (2.11), so
that the next iterate may be found by line search. The algorithm pre-
sented by Fukushima and Mine (1981) is conceptual in the sense that it
requires the exact solution of (2.12) which is usually dimpractical.
Recently Kiwiel (1986) has improved it to obtain an .1mp1ementab1e
algorithm.

The proximal method can further be extended to a class of con-
strained nonsmooth nonconvex optimization problems (Fukushima, 1987).
Let us consider the problem

minimize F(x) + f(x) (2.13)
subject to c¢;(x) =0, i=1,2,...,m,
where F and f are the same as in (2.11), and c; are assumed to be
smooth. We note here that the algorithm to be described can deal with
smooth inequality constraints by slight modification. Given the current
iterate x, the direction finding subproblem can be defiend by
minimize %<Bp.p> + <VF(x),p> + f(x+p) (2.14)
subject to c(x) + A(x)p = 0,
where B is symmetric and positive definite, c¢(x) = (c1(x),...,cm(x))T
and A(x) = Vc(x)T. Note that the matrix Al wused in (2.7) and (2.12)
has been replaced by a more general matrix B in (2.14). Problem
(2.14) is a linearly constrained "convex" programming problem. Again we
can apply the cutting plane technique to find an approximate solution of
(2.14). That is, we solve a sequence of problems of the form
minimize %<Bp,p> + <VF(x),p> + %(p) (2.15)
subject to c(x) + A(x)p = 0,
where - f 1is a polyhedral (6uter) approximation of f, defined by~ the

cutting planes generated so far. Problem (2,15) can be transformed into



a convex quadratic programming problem. Once an approximate solution of
(2.14) satisfying some criteria is found, then the next iterate x; s
determined by line serach using the exact penalty function
Fa(x) = F(x) + f(x) + rialci(x)l. (2.16)

The penalty parameter r > 0 must be large enough to guarantee global
convergence to a solution of (2.13), but we do not know a priori how
large it should be. Therefore we have to adjust r to a suitable value
automatically in the course of solving QP subproblems (2.15). This can
be done using 1nformation,on the optimal Lagraﬁge multipliers of QP
subproblems (2.15). We can show that, under some standard assumptions,
the pena]ty parameter remains constant after a finite number of itera-
tions and, moreover, an approximate optimal solution of any desirable
accuracy can be obtained for the original problem (2.13) after finitely
many steps.

To summarize, the proximal method can be extended in conjunction
with descent methods to solve various nonsmooth optimization problems.
In particular, the method presented by Fukushima (1987) may be viewed as
a natural generalization of the globally convergent successive quadratic

programming (SQP) methods for smooth nonlinear programming problems.
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