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§.0 Introduction
In this paper, we construct a family E(s) of Fuchsian
differential equations, depending on two dimensional pafameter S,
defined on the complex projective plane M=(IIP2 with regular
singularities along

2-4xy} =0

H: xXyz(x-y)(y-z)(z-x){(x+y-2)
where [X,y,z] is a system of homogeneous coordinates on M.

We call this arrangement H, of six lines and one conic, the
P2(F2)—arrangement, because the set of lines in the projective plane
PZ(FZ),over the finite field F2=(0.l},consists of seven lines
corresponding to the seven components of H.  The arrangement H-
relates the Weyl group W(F4) of -type F4 as follows. The 24 mirrors
of the reflections in the Coxgter group F4 defines a hyperplane
arrangement in ct. Passing to CPS; this arrangement defines a plane
| arrangement in CP3, which is called the w(F4)-arrangement. The
restriction H of the W(F4)-arrangement to any projective plane N in
the arrangement consists of thirteen lines in CP2 which can be given

by the equation
H: XYZ(X2-Y2) (Y2-22) (Z2-X2) (X+Y+Z) (=X+Y+2) (X-Y+Z) (X+Y-Z)=0,

where [X,Y,Z] is a.system of homogeneous coordinates on N. The
arrangement H is the image of H under -the map n:N —M given by

n:[X,Y,ZIl—[x,y,z1=[X2,Y2,2%].

The map n is the quotient map by the group K(= 22+22) generated by
X,Y,.21—™1[-X,Y,Z] and I[X,Y,2]—IX,-Y,Z]. (see figure 1)

The two subarrangements
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H': xXyz(x-y)(y-z)(z-x)=0
and

H": xyz{(x+y-z)2—4xy}=0

of the arrangement H are well-known as the singular loci of the
Appell’'s hypergeometric differential equations F1 and F4.
respectively.(see figure 2). Our equation interpolates the equation
F1 and the modified equation'Fa (see § 2) of F4. More precisely,
for some special values of the parameter s, our equation E(s) turns
out to be the equation F1 and for some other special values of s, it
turns out to be the equation Fa. Moreover, the principal parts of
the equation E(s), after some normalization, are linear combinations
of those of the equations Fl and Fa. We must say that it is a
surprising result if we recall the non—linearlity of the
integrability condition (see'§.1). This mysterious phenomenon is
also reported in ([Yos.2].

For'sbme special values.of the parameter s, the equation E(s)
happens to give the uniformizing equations (see § 3) of the
hyperbolic orbifolds found by Hunt and Hofer ((Hunl,[H6fl), where a
hyperbolic orbifoild is an orbifold whose universal uniformization is

the complex unit ball B2=((zl.22)e€2l Izll2+lzzl2<1}.
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8§1. The main theorem

We consider a system in the form

97w - 2 5K w 0 .. =
(E) X A - z}(:lPiJ(X) xk+ Plj(x)w i,Jj=1,2
defined on M=CP2, where w is the unknown and x=(x1,x2) is a system of

inhomogeneous coordinates on M.

Definition: A system (E) is said to be in normal form if

. 2 5 - o
(N) ZJ=1P1J(x) = 0 for i=1,2

Definition: The system (E) is said to be completely integrable

if (E) has three linearly independent solutions.

Any completely integrable system in the form (E) can be
transformed into the uniquely determined system in - * normal form by
replacing the unknown w by its product with a non-zero function of Xx.
The consequent system is called the normal form of (E) (([Yos.11),

It is known [Yos.31 that the equation (E) in normél form is
completely integrable if and only if the coefficients (Pfj} satisfy
the following equations.

K _ ok - a
P () = P00 1,d=1,2, k=0,1,2,

aP{l(x) anlcx) , )
P o0 = - Sl T 2¢P} (x1)%- 2p

2 2
22(X)P11(X)‘
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2 1
9P, (X) 3P, , {(x)
0 _ 9P 11 1 2 . ol 2 -
PIZ(X) = 8*1 + 8x2 + P22(x)P11(x) Pll(x)P22(x).
. 8P§2(x) 9P}, (x) ) A |
PY,(x) = - R + 2(P2,0003%- 2P OPL (),
8% () 9%P% (0 | 8P 0 ,  9P5,(x)
(IC), i -2 - + 6P, (%) - 3P% (x)
1 8x18x2 axg 11 8x2 11 8x2
3P (x) a2 (x)  82%P%. (x)
-3P§2(x)—§%l——— + 3P}l(x) aiz %2
2 ' 1 ex1
) anI(x) | epfl(x)
-2P11(x)—5§T—— - Py, (x) o 0,
8%p2_(x)  8%pl (x) aP2. (x) ap! (x)
(IC)yi= -2 2§x - 2% + GP%Z(X) aiz 3P£2(x) eil
X29%Xy x] 1 1
ap! _(x) ap! (x)  8%pl (x)
~3P] | (X)—g22— + 3P3, (X)—ai— - —11
xl 2 8x2
. apfltx) ) 8Pé2(x)
-2P22(X)—8—)-<—2'—‘— - Pll(x)—a-;(-z——— = 0.

Lemma 1 ([Yos.31)xLet Q?d(ﬁ) (i,j,k=1,2) be the coeffigients of the
normal form of the transformed system of (E) by the codrdinate change

£E=£(x). Then we have
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2 X
K - 9%k kK _ 1.,k 3 k 8 9t
QiJ(E) § 3x 3% 3. -~ 3% %t 6J———8x’)109(det(8x))
1=1 i°%5 951 J i
2 9t 98¢ _ 9x
£ 3 P (x) B 23 K
P4 Sxi GxJ agr

P,q,Tr
= 1

where 6? is the Kroneker symbol.

K
iJ
invariant under the transform x — £&.

If Q¥J(X)=P (x) (i,J,k=1,2), then the system (E) is said to be

Definition: A projective solution of a completely integrable
~system (E) is the pair z=(zl.zz) of ratios z1=.wi/w0(i=1,2) of three

linearly independent solutions wo, wl-and w2 of (E).

Definition: A ProJective solution of (E) is said to be
ramifying at O = (0,0) along T .= 0 with ezponent o if there exists a
projective solution z=(zl.22) which has the following expression :

I - : _ L=l
ZI(X)"XIVI' zz(x)—vz, det(dz/3ax)= x1 u

for some aeC, where vl.v2 and u are holomorphic at O , not divisible

by Xy

Lemma 2 ([Yos.21):If a projective solution of (E) in normal form

k

iy of

is ramifing along x,= O with exponent «, then the coefficients P

1
(E) have the following properties:

2 2 1 o1 1 -1
(R) P22(x). lell(x), X P22(x) and PII(X) 3%

1 1

are holomorphic.
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Definition: A system (E) in the normal form is said to have
ramnifing singularities along x1= 0 with exponent o if the condition

(R} holds.

. To state the theorm we prepare some notations. Let [X,y,z] be a
system of homogeneous coordinates on M related to (xl.xz) by X1= g
and x2=‘§. Let H; (i=1,...,7) denote the following curves:

H,:{x=0}, H

1 5 {y=0}, HS:{z=0}, Hy:{x=y}, Hg:i{y=z}, Hg:i{z=x},
Hyt {(xty-z)%-dxy = 03,

so we have H = Uz=lH1’ Let G be the transformation group on M

generated by [x,y,zl—([z,X,y] and [x.y,zle»[y.x,z]. Note that G is

isomorphic to the symmetric group in three letters.

_THEOREM: For given complex numbers si¢l(i=l,:...7). there is a
completely integrable differential equation E(s), in normal form,
with ramifying singularities along Hi with exponent si if and only if

51552253’ 5,455g%5¢ and 651-354-2s7+2=0.
(In particular E(s) is G-invariant.) The four coefficients of the
system (E(s)) are explicitly given as follows.

‘ 4 _ 7
Sl .S (xl'zxzfy) AS x2

1 - .

P;. (x,,Xx — -~ +
1177172 x1 .2(x1 1)(x1 x2)

’

2_
| (xl+x2—l) 4x1x2

4 ' S
-3S x2(x2—1) 4S5 x2(x2 1)

+ [}
2X, (X, ~-1)(x,-X,) _172_
171 1 72 xl((x1+x2 1) 4x1x2}

2 -
Pll(xl‘x2)'
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Pl o(x.,x,)= P2, (X,,X,) PZ_ (X, X,)= Pl (x,.,%x,)
22 (X1 +X)= Py (Xp,%)), 22 (X1 1X3)= Py (X50X 0,

where Sl= (s,-1).

i

Remark: Other coefficients P1§ of (E) are uniquely determined
by the equalities (N) and by the assumption that (E) is completely
integrable. Therefore, in the sequel, in order to describe the
system (E) in normal form we give only the four coefficients Pil.

2 2 1
Pll’ P22 and P22 of (E).

§.2 Relation between E(s? and Appell’s hypergeometric
differential equations
Appell's hypergeometric equation Fx(é.b,b',c) Is a differential
equation with regular singularities on uiflni, while it is

nonsingular along H7. The normal form bf Fl(a.b.b‘.c) is given by

1 ' e
Pll(avb)b .C,lexz)

1 xz(xz-l) ' ‘ v , . ) 9.
=3 ——?T_——— {(c~-b )x2+ (2b—c)x1+ (b -(a+b+1)x1x2+ (a-b+1 xl)
2 ’ (x2(x2—1))2
Pll(a’b’b ,c.xl,xz) = 3 b

1
P2 (a,b,b’,ci1 X, ,X,) = Pl (a,b’,b,CiX,,X,)
22(8:0,D7,Cixy X, p1¢@b’,Dbicixy .
Pl (a.b,b’,CixX,,X.) = P2 (a,b’,b,CiXqX,)
22 * Ay "1’2 11 ’ "’2’1

where f1=x1x2(xl—l)(x2-1)(x1-x2).
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Proposition 1: The equation E(s) with s7=1 coincides with the
normal form of Appell's F1 which is G-~invariant. Precise
correspondence between E(s)=E(sl,52,s3) and Fl(a,b,b’,c) is given by

= 1 Lo oy 2 Lis oy o L -
E(sl.s4.l)- Fl(-§+esT+sz—+). 2(54 1), 2(54 1), 2(251+s4 33)

"‘S\"Sﬂ-"“
This identity is valid for all 5(» S

4 € C.

Appell's hypergeometric equation F(a,b,c,c’) is a differential
equation with four linearly independent solutions and has regular
singularities on UileiU H,, while it is nonsinéular along U1§4Hi
The solution space of F4(a,b,c,c’) has three dimensional invariant
subspace if b=ctc’+1 [Katl. The éorresponding equation is
called the modified F4 and denoted by Fa(a,b.c,c'). The four
coefficients of the normal form of Fa (a,b,c,c’) are given by

P}l(a.b.c;c’:xl.xz)

- 11 442 - o
‘- 3 f4{c(x2 1)"+(a-(b+c+2cC l))x1

+(a+5b-c-2c’+l)x1x2+(a~(b+2c’-1))xf )

2
2

f4{(a-b-c +;)x1+(a+b—cb+1)(1-x2)}

2 .. -
Pll(a,b.c,c .xl,x2)—
P2 (a,b,c,Cc’iX,,X,) = Pl (a,b,C’,CiX,rX,)

229 'R R2 11 i (b R |
P1 (a,b,Cc,C’iX,,X,) = P2 (a,b,c’,CiX4sX,)

22 e R0 22 11797 R0

. _142_
where f4—x1x2((xl+x2 1) 4x1x2}.

Proposition 2: The equation E(s) with 5451 coinsides with the

-l -
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normal form of Appell's modified F4 which is G-invariant. Precise

correspondence between E(s) and F&(a.b.c.,c') is give by

oy
E(sl.l.ssl- 5 )"FZ('351+1’251*1"51+1'“51+1)'

§.3 Uniformizing equations of some hyperbolic orbifolds

We briefly recall the definitions of orbifolds and their
uniformizations. Let X be a complex manifold, S be a hypersurface of
X, 8= UJ.SJ be its decomposition into irreducible components, and let
bJ be either infinity or an integef called the weight attached to the
corresponding SJ. The triple (X,S,b) is called an orbifold if for
every point in X - U{Sjl bJ= =} there is an open nelghborhood U and
a covering manifold which ramifies along U n S with the given. indices
b. It is called uniformizable if there is a global coverihg manifold
(called a uniformization) of X with the given ramification datum
(S,b). If X is uniformizable, there exists an uniformization X,
which is simply connected, called the universal uniformization. Let X
be an orbifold and X be its uﬁiversal uniformization. The multivalued
inverse map X —X of the projection X —X is called the developing
map. ‘

If the ﬁniversal uniformization of an orbifold (X,S,b) is
isomorphic to the complex ball (we call such an orbifold hyperbolic), -
there exists a unique FuchSian differential equation in'normal form
- such that its projective solution gives the developing map. The
equation is called the uniformizing differential equation Qf the
orbifold (X,S,b). For moredetail see (Yos.21.

- In his theses [Hunl, B.Hunt studied N-dimensional hyperbolic

R
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orbifolds. He discovered a 3-dimensional hyperbolic orbifold,
attached to the W(F4)-arrangement. Restricting to a plane in the
W(F4)-arrangement. we have a 2-dimensional hyperbolic orbifold,
attached to a line arrangement in cp? - the P2(F2)-arran9ement - .
Furthermore, HOofer(HOf] showed that there are only four hyperbolic
orbifolds over this arrangement. These orbifolds are-given as follows.
Consider the arrangement H in N. Define the weight function b on N as

follows (see figure 3.

case €U D Hp. Ui=4ﬁi’ ﬁ7,~ P, q, r)
1 ( =, 2, 4, -4, 2, 2
2 ( s, 2, 2, -4, 6, 3)
3 ( -6, 6, 2, 4, 2, 1)
4 « -3, 3, -, ©, 1, 1)

Colollary: Uniformizing differential equations of the above
orbifolds dure obtained by pulling back the equation E(s) under the map

n, where the values of the parameter s are given as follows.

~—t

case ( 5(» s

3]
~3

-

12
1

3 (-"1"5) Y )
1

4 ("é" ’ 0)

Remark: In ** case 57=1, the equation E(s) reduces to Appell’s
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F,» which is studied by Terada [Ter]l and Deligne-Mostow [D-M].

83. Proof of the results
Let the projective planes M, N, arrangements H, H, the group K

and the projection n:N —M be as above. The arrangement H in N

consists of thirteen lines:

~

o ve S ocevens T crrens T ocrv2ov2ony B sqy2_72-
Hy=(x=0}, Hy=(y=0), Hy=(z=03, H =(x"-Y%=0), Hg=(Y-z%=0),

ﬁ6=<22-x2=0}. ﬁ7=((x+Y+zi(-X+Y+Z)(x-Y+ZJ(x+Y-Z)=o}.
Note that m(H,)=H,(i=1,--+,7) and n(H)=H.
We cnsthct a K-invariant differential equation (E) defined on
N with ramifying singularities along ﬁi,wlth exponent ti(i=l,-",7).

We follow the method established in [Yos.3].

Lemma 3([Yos.31): If the equation (E) has ramifying

singularities along the line at infinitely, then the total degree of

k

the rational function Pij

(X) is negative for i,Jj,k=1,2.

By Lemma 3, we can put

51 2 32 _ y2,42 1,2
Py, = Xo(X5-DA/F, Pf; = X5(X3-1)“B/F,

] = XXy
52 2 Sl 2,02 .12
Pop = X KG-DIC/F, By = X{(X]-DPD/F,
where
A=S a(i,J)x}xJ, B=3 b(i,j)x}xj,
i+j<8 “ - {+3<5
c=3 c(i.J)XiXJ. D=3 dti.J)x}xJ.
i1+J<8 i+j<5
-and
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- _ 2 2_ ' _ _
F= X Xp (X{=1) (X5=1) (XT=X5) (X #Xp#+ 1) (=X X+ 1) (X =X+ 1) (X +X,-1).

2 2

172

The assumption that the system (E) is K-invariant says that
ati,Jj)=c(i,j)=0 unless i=j=0 mod 2,
b(i,J)=0 unless i+1=j=0 mod 2,

d(i,J)=0 unless i=j+1=0 mod 2.

Applying Lemma 2, along every component of H, we obtain finitely

many linear equations with unknowns ati,J),-<+, d(i,Jj). By solving

these, all the coefficients a(i,j),---,d(i,J) are expressed in terms

of ti(1=l,"‘7)=

: 2. .2 2,2
ACX|,Xy)= Tl (xl 1)(x xz){(xl+x2 1)2-4x3x2)
—T4x2(x2 2x2+1>{(x2+x2 1)2-4x2x2y -8T x3x 2(x ~1) (X
1 2 1%2 1 X2
o 2,92 112 4v2¢2y - a17x (x2-1) (x2-x2)
B(X,,X) =3 ((x¥+x5-1)%-4x3x3)y - 877X, (XF-1) (X2-X3),
C(X) 1 Xy )=-AK, X ) s D(X,,X,)=-B(X,,X,).
where T1= %(ti-l): Moreover these liner equations requile that t{s
satisfy Tl=12=13, 14275215, 31l-3r4-217= 0.

Now we study the integrability condition. The integrability

condition of E(t) is given by

(10, = -64T7(3T!-31%-217)x2x3 (x2-1)2(x2-1)3(x? x )2IF2,
1 1 X2 (X 2 X1
(1C) = -6417 (37! -3T1% 2T7)x? g 1)3(x2—1)2(xf x% 2,p2,

Since the parameter has the relation such that,S’I"’l 4 7

(IC)1=(IC)2=O.

2_y2
1~X3)

-3T *-2T =0, we have

?
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Finally, we project E(t) by the quotient map m:M — M/K =~ N,

2 42

where n is given by (Xl,Xz) e (xl.x2)=(X1.X2). By Lemma 1,

coefficients P?J of the normal form of n(E(t)) are given as follows.

1 . 1 sl 2 _ 1 I 2
Pll(X) = 5 + X Pll(X)’ P22(x) = > + 5% P22(X).
6x1 1 6x2 2
X X
2 _ T2 2 1 oMol
P{{(X) = —5 ﬁll(X), Pyo(X) = —5 ﬁ22<x1.
2x1 2x2

~.Since n is pranching along only the three lines U?=1Hi with indices
two, there are the relations among the exponents such that t1=2sl,
t4=s4, and £7=s7. Thus we obtain the differential equations which we
want. Easy caluculations show the remaining claims of the theorem.

Propositions | and 2 are proved by straightfoward computation,
so we omit the detail. If s7=1. the equations (IC)1=(IC)2=0 are

satisfied. This proves the last statement of Proposition 1.

§5. Linear structure of the set of the solutions of the
non=l inear differential equation {(IC)

The integrability condition

IC : (ICJ1 = (IC)2 =0
of the system (E) with the condition (N} is a system of,nonlinear
. . kK y_(pol __p2 2 1
differential equations with unknowns {Plj}'(Pll" P12' Pll’ P22.

P§2=—P§2}. There is a one-to-one correspondence between the set of

solutions of IC ~and the set of completely integrable systems (E)
in normal form. We have a great interest in rational solutions of IC

of which corresponding systems (E) have transcendental solutions. The



8%

method used in section 4 is a practical‘one to find such solutions.

Since the system IC is by no means linear, we can not expect
that linear combinations {th]i(J + tfoj} (tl,tze C) of two solutions
{R¥J} and {Q¥J} of IC are also solutions of IC: ihdeed, it is not
true in general. But sometimes miracles occur. Propositions 1 and-2
say that the coefflcients {P¥J} of the principal parts of our system
E(s) are linear combinations of the cogfficients of the principal
parts of the normal form of Appell’'s Fl(with a special parameter)
and those of the system,Fa(yith a special parameter). In [Yos.2], it
is shown that linear combinations {th}f‘j + t2Q¥j} of two solutions
(R ;) and {af,} of IC: ‘

R}l(x,y) 3/x + 81x2y3(2-x3-y3)/u,

(R}: RZ, (x,y) = 81xy(1+x®-y8-x3y3) 1,

2 _ ol Ly oy = p2 |
R5,(x,¥) = Ry (¥v,x), Ry, (y,x) = Ry (v,XJ),

Q}I(x,y) = 3x2(y3-1) (1+x3-2y3)/2h,
(Q): Qflcx,y) = - 9xy(y3-1)2%/2n,
2 IR 1 .2 |
where
WwE T 2%+ ely + 1) o= (xS 4 yS s 13 - 27553
a,b—O : . v . . B "
h = (x3-1)(y3-1) (x3-y¥)

are solutions of IC.

These two examples suggest the existence of some linear

structure of the set of solutions of IC, which is as yet veiled in

—n —



g€

mystery.

We conclude this paper by giving a useful systém to test whether
t Rk ‘ k

1Ry + tZQiJ (tl, t2 € €C) are solutions of IC.

k

Proposition 3. Let (R} and {ij} be solutions of IC. Then

(1) For all teC, {tRfj} are . .2 solutions of IC if and only if

(R?i} satisfy the following conditions:

azR‘ 9%R2. 9%R?
2 + 11 + 22 _
ax 8x 2 S
I ] .8x2 ax1
, a2 R , % R22 , X Rll o
ax ax 3 9 TV
2771 ‘xl x2
(2) {Rk + Qij} is *a> solution of IC if and only if

( {R}fJ , {QIJ} ) satisfy the following equations:

1 1

8Q R
1 89y 11
64R + Qb —LLy
1173x, * 173,
2 2 2 2
a2 22, 2%y 2 %Ry 2 Ry 8%, . gl X 22}
11 8x2 11 8x2 22 8x2 22 8x2 11 le 11 ax1
1 1 2
aQ 8R 2Q2 R .
2 99y, 22 11 11
-2{Ry, %, * Q11 axl} {Rzz %, ¥ Q22 3%, 3=0,
2
2Q aR?
2 99, 22
6{R3, ax; ¥ Q22 5%, %,
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1 1
OR22 , 2 9, 2 Ry
22 8x2 22 8x2

1 T 1
8Q R . 8q
ol 290 1 ORyy 1 89n
3{Ry, ax, * Q5 3%, R

1
- gl
11 axl 11 axl

}

1 1
aQ 8R
y-(R2,—22 , @2 22,9,

1173x. * A 5%,

2 2
aqQ 3R
_o¢gl 11 11
: 2

1
___+Q —
22 8x2 22 8x2
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