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SEQUENTIAL ESTIMATION IN A GROWTH CURVE MODEL

Tatsuya Kubokawa (AMuidE =)
University of Tsukuba

Abstract. For a coefficient matrix in the growth curve model, the
paper gives a two-stage estimation procedure such that its risk
function relative to arbitrary quadratic loss is bounded above by
a preassigned constant, and the asymptotic efficiency is dis-
cussed. Also for powers of the generalized variance, a procedure
with a bounded risk is developed and some domination results are
shown.
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1. INTRODUCTION

Let XysXgseoo be a sequence of mutually independent random
vectors, Xy having p-variate normal distribution Np(B&ai,E) where
B (pxq) is a known matrix of rank q, a; (rx1) is a known vector
and £ (gxr), & (pxp) are unknown matriées. Denote Xn=(x1,x2;...,
xn), An=(a1,a2,...,an) and w=(£,Z). Then the random matrix Xn

(pxn) has Np n(B&An;z,ln), which is called a growth curve model by

Potthoff and Roy (1964) and practical meaning and applications can
be seen in their paper. If we put q=p and B=I, we get an ordinary
multivariate regression model.

Here we consider two problems for estimation of the coeffi-

cient matrix £ and powers of the generaliZed variance Izla. a0
which are described below.

Problem (1). Given preassigned number £>0, we want to con-
struct estimator d1=d1(s) of £ such that

Rl(w,dl) = Ew[tr Q(dl-g)(dl-g)'] S £ for all w, (consistency)

where Q (pxp) is a positive definite matrix.
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Problem (2). For given £>0, we want to find estimator

d2=d2(£) of powers of the generalized variance 121% such that

R,(w,d,) = Ew[(dz-lﬁla)zl <= for all w (consistency).

Throughout the paper, let m, be the smallest integer n (2r)

such that the rank of An is r. In the case where £ is known, we

shall find a procedure satisfying the requirement of Problem (1).

For integer ano. MLE of & is given by
1 . 1 '} ] - 1
XnAn(AnAn) ,

éo(n) - B’z By Ip'z”

and from Muirhead (1982) and Sugiura and Kubokawa (1988),
- (1.1) Rl(w,Eo(n))=E[trQ(£0(n)—£)(So(n)-ﬁ)']

=E[{vec(£,(n)-£)}" (I18Q)vec(Ey(n)-£)]

=tr(I8Q)Cov(vec éo(n))

=tr(IeQ){(AnAﬁ)‘le(B'z“lsyfl}

- ] "1 ] "1 "'1

—tr(AnAn) trQ(B't "B) —,
where the notation vec &£ denotes qrxl vector (E’,...,E;)’ for &=
(al,...,ir) and A8B stands for kronecker product defined by (aijB)
for A=(aij)' Hence we get that Rl(w,Eo(n*))és, all w for integer

n" defined by
n" = smallest integer n (zmo) such that

(1.2) [tr(A A) > trq(B'z 1B) 1/,

Since £ is unknown, however, there does not exist any fixed sample
size such that Problem (1) holds. So, it is desired to obtain an
estimation procedure resolving Problem (1). Recently Kubokawa
(1988¢e) treated a similar problem with respect to the covariance
criterion. For our purpose, arguments used there are heavily
exploited.
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In Section 2, based on the idea of Stein (1945), we construct
a two-stage estimation rule for Problem (1), which is a multi-
variate extension of Rao (1973). Also the efficiency is
discussed. A two-stage procedure proposed by Takada (1988b) in

the ordinary multivariate case [p=q,r=1,B=I,a.=1] is consistent,

i
but it is not asymptotically efficient. The procedure given in
Section 2 just possesses both properties. Section 3 shows that
the two-stage estimator in Section 2 is improved on by combined
estimators when an additional sample is taken. Two-stage proce-
dures resolving Problem (2) are developed in Section 4.

2. TWO-STAGE ESTIMATION PROCEDURES FOR &

2.1 A consistent two-stage procedure. For preassigned number £>0,
we propose the following two-stage sampling rule.

(i) Start with m observations x 1 XgseresX for m;max(mo. pP-

1 m

q+r+3), each X4 having Np(BEai,z).

(1i) Define the stopping number by
N = smallest integer n (2m) such that

S e | re—loy—1
(2.1) [tr(AnAn) ] 2 kmtrQ(B Sm B) /=,
where
(2.2) k  =(m-r-1)/{(m-p+q-r-1)(m-p+q-r-2)}
» - v v —1 ’ — -
and Sm—Xm(I—Am(AmAm) Am)Xm with Xm—(xl,...,xm), Am~(a1,...,am)°

(iii) Take a sample of size N-m, and estimate £ by

c 0 -1 -1 ' -1 ' ' -1
(2.3) EN = (B Sm B) B Sm XNAN(ANAN) .
for XN=(Xm’xm¥1""’xN) and AN=(Am’am+1""’aN)'

Then we get

Theorem 2.1. (consistency) The estimator EN given by (2.3)

is a solution of Problem (1).
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Proof. Since XNAN=XmAm+xm+lam+1+'.°+xNaﬁ’ the independence

of XmAm and Sm gives that the conditional distribution of XNAN

NAN;Z,ANA Thereby,

given Sm has Np,r(BEA N)'

Cov(vec éN) E[Cov(vec élem)]

- * -1
= E[(ANAN) 8G(Sm,2)],

where

1 1 1

- ' -1 - vo -1 ' -1 -
G(Sm,Z)—(B Sm B) B Sm ZSm B(B Sln B)

and Cov(°ISm) designates the conditional covariance matrix given

1

S . Note that G(Sm,z) is independent of B'S& B by lemma 2.1 of

m
Sugiura and Kubokawa (1988). Then G(Sm,z) is independent of N,

which implies that

Cov(vec éN) E[(ANA&)_llaE[G(Sm,Z)]

_ m-r-1 vyv-1 ve—lny—1
= E:E:E:F:IE[(ANAN) ]8(B's "B) —,

1

since E[G(Sm.z)]={(m—r—l)/(m—p+q-r—1)}(B'z'lB)_ as shown by Rao

(1967), Williams (1967), Gleser and Olkin (1972) and Sugiura and
Kubokawa (1988). Hence from (1.1) and the definition of N given
by (2.1), we obtain that

Rl(m,éN) = tr(I8Q)Cov(vec éN)

(2.4) - ——E:E:l——E[tr(ANA'

)- 1
m-p+q-r-1 N

Litram e 1)~

1

< s(m—p+q-r-2)E[trQ(B'z’lB)'l/trQ(B's;lB)' 1.

1 -1/2

Here, trQ(B'Sng)_ ~trW(B's 1B) QB 'z 18) Y2 ¢or w=(B 'z 1B)1/2

1/2

(B'S;lB)_l(B'Z"lB) having wq(m—p+q-r.1)- Denote diag(g,,...

-1/2 -1/2

Uq)=H'(B'2_1B) Q(B'g’lB) H for some orthogonal matrix H.

From the Bartlett's decomposition, we have

nra—1 "1_ q
(2.5) trQ(B SIn B) = zi=1aiw"
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where Wl,...,Wq are mutually independent random variables, each
. R 2 .
being distributed as xm—p+q—r' Letting
= q =

(2.6) Ai - Ui/zj=10j, i—l,..-,q,

we can see that
ve—loy-1 ve—loy-14 q -1

(2.7) E[trQ(B'E "B) ~/trQ(B Sm B) 7] = E[(Ei=lAiW1) 1,

» -1 -1 .

(2.8) - E[W,”] = (m-p+q-r-2) =, 1i=1,...,q.

Therefore from (2.4), (2.7) and (2.8), we can get the required
conclusion if the following inequality holds:

=1
{E[Wi 1}.

a -1
(2.9) E[(Ef_ W) 71 = MaX1<isq

The case of gq=2 follows from the convexity of f(Al)=E[{A1W1+(1—

Al)WZ}-ll. When q23, by induction, we have
E[(z§=lxiwi)’1] = E[{Aéwq+(1—xq)(z§;ixiwi/£};ixj)}‘1]
s max(EOW, 11, ELCE]T O /2w T
s maxlgisq{E[ng]}.

which establishes (2.9), and the proof of Theorem 2.1 is complete.

Now we show the asymptotic efficiency of the stopping number

in the sense of Chow and Robbins (1965), that is, lim E[N]/n*=1.

£-0
The method is due to that of Mukhopadyay (1980) for the univariate

case.

Theorem 2.2. (asymptotic efficiency) Assume that n_l(AnAﬁ)e

>0 as n-, and that m=0(8-d) for 0<d<l1l. Then limEQOE[N]/n*=1.
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1

Proof. For simplicity, denote g(n)=ntr(AnAﬁ)— , which con-

verges to trQ_l as n tends to infinity. From the definitions of
n* and N given by (1.2) and (2.1) respectively,

1

*
M2 em*-1)tra 7 1B)"

-1 .-
k g(N)trQ(B'S “B)
m m n¥-1

+m0*£]_l < N/n*

< [km-ﬁ¥1g(N—1)trQ(B's&lB)'l+sm][g(nf)trQ(B'z“lB)‘l]‘¥

Note that if & tends to zero, then m~o, sm-0, n*am, N-»» a.s.,

tr(,),(B'SI;J‘B)-l/(m—p+q--r)-)1:rQ(B'i:'_lB)"1 a.s.. Hence we can get the

required conclusion if the followings hold:

(2.10)  lim_, E[g(N)trQ(B's_'B) '/(m-p+q-r)I=tre ttrqa(B's 'B) 7,

(2.11) 1lim E[N¥Ig(N-1)trQ(B's‘ls)’l/(m-p+q-r)]=tr9'1trQ(B'z'1B)'1.
£50 m

" For (2.10), it must be shown that g(N)trQ(B's];llB)‘1

/(m-p+r-r) is
bounded above by an integrable function which is independent of =.

Since liméeog(n)=tr9-1, there is some n, such that for any n>n

0 0’

g(n)<tr9_1+1. Hence for N>n g(N)<tr9_l+1. so that for any N1,

0,
g(N) < g(1)+~°-+g(no)+{tr9’1+1} = c, (say).
Then from (2.5),

g(Ntre(B's 'B) T/ (m-pra-r) s ¢ I]_ 0,W,/(m-p+q-r)

cho max (0,) sup {Tm},
15iZq m2m,,
_ed - _ q 2 _
where Tm-zi=lwi/{q(m p+q-r)}. Since iV - xq(m_p+q_r). lemma 3

of Simons (1968) implies that Tm is a reversed martingale, so that
by Doob's inequality,

e +
Elsup > (T )] s o7 {1+E[T log T 1 < =,
0 0 0
where log+u=max(1og u, 1). This inequality means that

1

g(N)trQ(B'S&lB)— /(m-p+q-r) is bounded above by the integrable

6



function independent of £. Finally, applying the dominated con-
vergence theorem, we get (2.10). Similarly, we can verify (2.11)
and Theorem 2.2 is proved.

Remark. In the ordinary multivariate case [p=q,r=1,B=I,
ai=1], Takada (1988b) proposed the stopping number

N = max{[ h (S.)1+1, m},

S ¢ EE—
€(m-p-2) "max'"m

where [u] designates the integer part of u and chmax(sm) is the

largest characteristic root of Sm' As remarked in the paper, his

two-stage procedure is consistent but is not asymptotically effi-
cient when p22. For any p, our procedure satisfies the
requirements of both consistency and asymptotic efficiency.

As a measure of stronger efficiency, Simons (1968) and Star
and Woodroofe (1968) considered an asymptotically bounded regret,

that is, 1im8»0E[N—n*]<m, and Ghosh and Mukhopadyay (1981) called

it second order efficiency. Takada (1988a) demonstrated that
Rao's two-stage method is not second order asymptotically
efficient. It is shown that the same result holds in our general
model.

1

Theorem 2.3. Assume that ntr(AnAﬁ)— =tr9—1+0(n_1), and that

d), 1im__, =%m>0 for 1/25d<1. Then lim_, E[N-n"]=w.

m=0 (= £-0

Proof. From the definitions of n” and N,

*

X3 - ve—1 -
E[N-n*] 2 2(k_E[g(N)tra(B'S_'B) 1]-n2_lg(n*-1)trQ(B 27B) ! }-m,
‘ »
(2.12) = %{kmE[trQ(B'S&lB)_l]-nE_ltrQ(B'2-1B)_l}tr9 Lom,
1 va-lpy-1,_ 0" 1 R |
+Ix B(Dtra@'s 1B 11-2—.1p . trasrz e,

-1
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where Dn=g(n)—tr9_1; Also the definition of N gives that

L g1yl v y"1y71 _ _N-1
=K, trQ(B'S “B) > [tr(Ay_;AN_;) 7] = Z(N-1)
so that ,
1 S S | 1 N-1.
(2.13) sk E[DytrQ(B's “B) ~] > Elgtn-y N Wyl

Since g(n-l)atrﬂ—l and nDn=0(1) as n2»», it can be seen that the

r.h.s. - in (2.13) is bounded below. Clearly, n*{S(h*—l)}—an*_l
trQ(B'i:"lB)-1 is bounded above, so that for some constant MO'
E[N-n"] 2 %{km(m—p+q—r)—1}1:1'52—1trQ(B'S"J‘B)—l + M,
(2.14) - P-a*2, n’ tro ltrq 'z 1B) 7t
’ £m (m-p+g-r-1) (m-p+q-r-2)
+(=m?) lo(1) + M

0"

Noting that lim8+o£m=0 and ;imsaozm2>0 by the assumptions, we can

see that the r.h.s. in the equality of (2.14) approaches infinity
as € tends to zero, which establishes Theorem 2.3.

2.2. An asymptotically consistent procedure. Instead of Problem
1, Takada (1988a) considered the relaxed problem requiring
asymptotic consistency and found a procedure with both asymptotic
consistency and an asymptotically bounded risk in the univariate

nonparametric model.

Problem (1'). (asymptotic consistency) We want to estimator
d=d(=) of £ such that

lim_ R, (w,d)/e < 1.

Of course, the two-stage procedure in Section 2.1 is
asymptotically consistent. To obtain a procedure with an
asymptotically bounded risk, we modify the stopping'number given
by (2.1) as follows:
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N = smallest integer n (2m) such that

1
(2.15) [tr(AnAn)

17 t2(m-pra) ttra(s's 'B) /s,
Then from the proof of Theorem 2.1 we can see that Rl(w,éN)/s
S (m-r-1)(m-p+q-r)/{(m-p+q-r-1) (m-p+q-r-2)}, which implies that

lim_ ,{R, (w,&)/2}S1 if mow as £20.

Theorem 2.4. (asymptotic consistency) Assume that m=0(8_d

0<d<1l, and that the stopping number N is given by (2.15). Then

),

the estimator EN is asymptotically consistent.

By the same arguments as used in the proofs of Theorems 2.2
and 2.3, we can show the following theorems.

Theorem 2.5. (asymptotic efficiency) Under the conditions of

Theorem 2.2, lim_ .E[N]/n =1.

-0

Theorem 2.6. Under the conditions of Theorem 2.3,

. »
llmséoE[N—n ] < =,

3. IMPROVING ON THE TWO-STAGE ESTIMATION PROCEDURES WHEN AN
ADDITIONAL SAMPLE IS AVAILABLE
In this section, we discuss two-sample problem. Assume that-

for the principal estimation of &£, sample xl,...,x is obtained

N
| based on the two-stage sampling rule in Section 2, each Xy having
Np(BEai,Z). We further assume that supplementary observations Y
(pxQ) are taken where Y has N, o(DEC:¥,I,) with known matrices D

(pxq, kank q), C (rxQ, rank r), unknown positive definite matrix v
| and the common coefficient matrix £. Using information of the
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additional sample, we want to construct an estimator superior to
gy defined by (2.3).

This problem of estimating the common parameters has been
studied by Graybill and Deal (1959), Brown and Cohen (1974),
Khatri and Shah (1974), Bhattacharya (1980), Sugiura and Kubokawa
(1988) and Kubokawa (1987a,b,c;1988a,b). Recently Kubokawa
(1988c) presented an improved combined procedure in the above
situation with p=q=r=1. This multivariate extension is given
here. Since MLE based on only Y is

1 1 1

£, = (D'TD)" p'T lyc'(cc')” for T=Y(I-C'(cc') tc)y',

we consider a combined estimator of éN and éY of the form

~ -

= -1, ¢
(3.1) EN(a,bN) = £N + a(1+RN) (EY—SN),
where '
(m_ +0-1T - —_— e ’ —1 ' _1 -1
R. = p+gq-r-1)(2-r-1)tr(CC') ~trQ(D'T D) b
N 1 -1°N"

(m—r-l)(9-p+q—rfl)tr(ANA&)— trQ(B'S&lB)

where a and bn are positive constants.

Theorem 3.1. Assume that

1

vy '—l—
(a) tr(AnAn) b is decreasing with 1imn9mtr(AnAn) bn—o,

n
(b) bn is nondecreasing,

(c) asz(ﬂ—p+q-r—4)bm/(m—p+q—r+2) for Q>p-q+r+4.

Then Rl(w,EN(a,bN)) =9 Rl(m,gN) for all w.

Proof. Without the loss of generality, suppose that .the
stopping number N is given by (2.1). For ¢N=a(1+RN)_1, the risk
difference 1is represented as

R(w,Ey(a,by))-R(u, &)

- E[0R{trQ(£y-8) (§y-8) " +trQ(£-€) (£-€) ' }-20\trQ(Ey-5) (£-5) ']

10



Q-r-1
Q-p+g-r-1
m-r-1
m-p+q-r-1

- E[¢§{ tr(cc')!

1

(3.2) tr(ANA&)—

m-r-1

-2¢N'm-p+q—r—1

- g—m-r-i
m-p+q-r-1

where

e

trQ(D'VY"

tr(ANAN)

tra(B' 2 1B) E[tr(agar) "1

(m-p+q-r-1)(Q-r-1)tr(cc')"
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1 1

D)

trq(B 'z 1)1y

lirqe'z71B) 1]

(1+8N)a 2

1+8NQN

- 31,
2
(1+8NQN)

1 1

trQ(D'¥ p)”

N =
and QN=RN/8N.

(1+8N)a(1+eNQN)—2

(m-r—l)(9-p+q-r-1)tr(ANAﬁ)_ltrQ(B'Z_lB)—

—2(1+eNQN)"

1,

Here by the inequality (2.5) of Kubokawa (1988c),

lSa(1+8Na)_1(aQ§2—2Q&1).

which yields that Rl(m,ﬁN(a,bN))éRl(w,ﬁN) for all w if

e | _ _ ve—1loy-1 :
(3.3)  El43g 7 ——{af 1 -1 ~1,.-1°N )
N trQ(D'T D) trQ(B'z "B)
- ) -l -1
"2 -1.,-1" 1Py} S0
trQ(D'T “D) trQ(B'% "B)
for all w. Similar to (2.7),
- _ - _ q -1
E(tra(' v 'p) " Y/trq ripy™ty BLCE L nyVy) 7
EC{tre(@ v D) /era@ 't ') 712 EL(2Y n,v,) 72
E{VEl]
(3.4) 2 min {———:E—},
' 1£igq E[Vi ]
where V1"‘°’Vq are mutually independent random variables, each Vi
2 s q -
~ xﬁ—p+q—r and nl,...,nq are parameters satisfying zi=1ni_l and
n;>0, i=1,...,q. Here the inequality in (3.4) follows from

theorem 2.2 of Bhattacharya (1984)

. Since E[V;l]/E[V;2]=g_p+q_r_

4, the inequality (3.3) holds if E[aNUm(Um—BNU)]éo fOr all w,

which is rewritten as

11
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(3.5) h(w) = Zn -m nE[U (U -8 U)I[N=n]] £ 0 for all w,
_ vemln -1 S S | -1, -2
where Um-trQ(B Sm B) , ag=trQ(B't "B) , o= =tr(A AN) (1+8Na) bN .
= ptq-T— - Ar 171
BN—(Z/a)(n p+gq-r 4)bN, and I[N=n] 1 if [tr(An 1 - 1) ] <kmUm/£

-1.-1

é[tr(AnAn) ] 7; =0 otherwise.

To prove (3.5), the arguménts used in Ghosh, Nickerson and

Sen (1987) are available. Let n, denote the smallest integer (2m)

R 1 . .
such that 8/{kmtr(AnAn) }zenc. By the condition (a), the n, is

uniquely determined. Then we write
no—l
h(w) = En manE[U (U -8 U)I[N=n]]+an E[Um(Um-Bn o)l

]
0 o [N2ngl

(3.6) +2°__ |«

n=n, n+1E[Um(Um—B

where the first term in the r.h.s. of (3.6) should be interpreted

as zero if n,=m. From the definition of N, on the set {Nzn+l},

’ —1 —1 . .
Um>£[kmtr(AnAn) ] ;Bno when n2n Since o and Bn are nonincre-

0
asing and nondecreasing in n, respectively, by the condition (b),
we get

third term in the r.h.s. of (3.8)

L]

(3.7) s zn=noan+l{E[Um(Um—Bn+lo)I[Nzn+1]]—E[Um(Um"BnU)I[N;n+1]]}

= g (B - )OE[U_ T ] |

- n=n0“n+1 n n+1 a [N2n+1]

£ 0.
Next, on the set {N=n}, Um<8n0 when nSno—l. Thus from the
monotonicity of Bn’

first two terms in the r.h.s. of (3.8)
no—l
< anoznsz[Um(Um—Bna)I[N ]]+an0E[U (U 8 U)I[Ngn ]]

1 .
O
| g « ,zn= E[U (U o U)I[N=n]]+an0E[Um(Um—BmU)I[NZHO]]

12
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(3.8) o, E[Um(Um—RmU)]

0

2,2
anooE[Um]{E[Um/U ]/E[Um/U]—Bm}.

Finally from (2.7),

2, .2 _ q 2 q
E[U/6“1/ELU /0] = EL(Z]_jAW,)“1/EL[E]_j AW, ]

(3.9) S max {E[W?]/E[Wi]}.

1£i5q
The inequality in (3.9) can be verified by the same arguments as
in the proof of theorem 2.2 of Bhattacharya (1984). Since

E[Wi]/E[Wi]=m—p+q-r+2, it can be seen that the r.h.s. in the last

equality of (3.8) is not positive by the condition (c). Hence,
together with (3.6) and (3.7), the required inequality (3.5) is
established and the proof of Theorem 3.1 is complete.

4. TWO-STAGE ESTIMATION PROCEDURES FOR POWERS OF THE GENERALIZED

VARIANCE 1E]“

4.1. A consistent two-stage procedure. NoW we look for a solution
of Problem 2. Define the statistic f (X4,...,X,) based.on data

(Xl""’xn) by

r(aa)t

fn(xl,...,xn)=Xn(I—An nfn

An)Xn

for Xn=(x1,...,xn) and An=(al,...,an), and denote

n-r

2 n-r
g, = 1 - AT, (F5+a) } /(T (

5 -+20) T (F55)),

n
where T (x)=np(p_1)/4np_ '(x-(i-1)/2). Then we consider the
P i=1

following two-stage sampling rule.

(i) Start with m observations x < Xp for mZmax(mo,r+1,

10
r+4e).
(ii) Define the stopping number by

N = smallest integer n 2 n1=max(m0,r+1,r—4a) such that

(4.1) g !

2o
>
no hm'smI i

13-
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g = = m-r_ 20pp (M-
where Sm—fm(xl,...,xm) and hm = Fp( 2 2c) /{E2 Fp( 3 )},
. o
(iii) Take a sample el 2 XpeN® and estimate |El~ by
_ o
(4.2) . 6N - cN'TNl ’
where TN=fN(xm+1""’xm+N) and
(4.3) ey = T (L) /(2°Pr_ (RoLio4))
‘ N p 2 P 2 :

Theorem 4.1. (consistency) The estimator 6N given by ﬂ4.2)
is a solution of Problem 2, that is, Rz(w,éN) £ € for all w.

Proof. We first note that the conditional distribution of‘TN

given Sm has Wp(N—r,Z). From the definition (4.1) and the fact
that E[|TN|“|sm]=|z|“2“prp((N—r)/2+a)/rp((N—r)/2), it follows that

_ 2« -1 -2« 200 _
Ry(w,6y) = ElggllZ1™™ < h "E[IS_ I “"112177 = =,

getting the desired result.

4.2. Improving on the two-stage procedure by using information in

the first stage sample. By Theorem 4.1, the estimator 6N is

certainly a solution of Problem 2. However, the estimator seems
to be unsatisfactory because only the data of the second stage are

used for estimation of IEl®. So we ask the question whether it is
possible to improve on the estimator by using the information
gathered in the first stage. For this question, based on Kubokawa
(1988d), we consider the combined estimator

* _ o

where dn is a sultable constant depending on n.

Theorem 4.2. Assume that

2 '2_
(a) (dn/gn) /gn is increasing in n with llmnew(dn/gn) /gn—w.

14



137

(b) d, and dn/g'n are nonincreasing in n,

(c) dnl/gnl = 2cm where Cn is given by (4.3) with N=m.

*
Then Rz(m,éN(dN)) s Rz(w,GN) for all w.

Proof. The risk function of ég(dN) is written by
* _ 2 200_ o o
R, (w, 6y (dy)) = Ry(w,8)+E[dyls 1°%-2d IS IE[(1£1%-6) IS 1]
and we observe that E[(IZI“—GN)ISm]=gN. so that it suffices to
show that for all w,
2 « o o
E[dNISmI {ISmI (ZEN/dN)|2| }]1 < o0,

which can be proved by the same arguments as in the proof of
Theorem 3.1 under the conditions (a),(b) and (c) of Theorem 4.2.

Letting dn=agn for positive constant a; we get a corollary by

the following lemma.

g =0.

Lemma 4.3. g, is decreasing in n with lim n

n->ow

Proof. From the definition of Fp(').

{Fp(n/2+a)}2
rp(n/2+2a)rp(n/2)

{T([n-1+1]/2+a)}?
IF((n-i+1)/2+2«)T((n-i+1)/2)’

p
T
i=1
so that it suffices to show that {[(t+e)}2/{C(t+2¢)T(t)} is

increasing in t. Since F(t)=(teYt)—lI§=l(1+t/j)_1et/3 by the

Euler's infinite product [see Abramowitz and Stegun (1964,p.76)],

(4 5) {r(t+a)l2 ) ; LEfZa)t.(j+t+2a)(j+t).
. CL(t+2x)T(t) =1 (t+a)2 (j+t+a)2

Clearly, the each component in the r.h.s. of (4.5) is increasing

in t. Also we can observe that

lim AT (t+a) }2/{T(t+20)T(1)} = 1,

15
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establishing Lemma 4.3.

» _ o .
Corollary 4.4. The estimator GN(agN)-5N+agN|sm| is better

than 6, if aSZcm.

N

4.3. Further domination by Stein’s method. On the basis of the
result of Stein (1964), inadmissibility of the best affine

.equivafiant estimator for l1£l® has been indicatedkby Shorrock and
Zidek (1976), Sinha (1976), Sinha and Ghosh (1987), Sugiura
(1988a, 1988b) and Sugiura and Konno (1987, 1988). The purpose of

this section is to show that the estimator ég(dN) given by (4.4)

is further dominated by Stein's method when o>0.

1/2 -1/2

Denote ZN=( for

xm+1*"" m+N)GN(GNGN) and nN=B£(GNGN)
). The Stein type estimator we look at is of the

GN=(a ,a

m+1’° " "' "m+N
form
L (N/2+«x)

Fp(N/2+2a)2

*e -op e O o
oy = min{GN, |TN+zNzN| } o+ lesml , >0,
Note that ZN and TN are conditionally independent given Sm’ and

that given Spe ZN has Np,r(nN;z’Ir)‘ Then we get

Theorem 4.5. The estimator dg(dN) is further dominated by

6;* whgn o>0.
Proof. Letting
_ -1,-op vy
5s—min{6N, Fp(N/2+a){rp(N/2+2a)} 2 ITN+ZNZN| },
we have

* %

*
Ry(w,8y7) = Ry(w, 6 (dy))
= Ry(w,65)~Ry(w, 6) +2E[ (6g-6)dy IS 171
2 R,(w,65)-R,(uw,8,)

16
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- _ oy 2 _ e[ % 2
= E[E“_Gs 121 IS 1-E[(sy-121%)%Is_11.
Here from the result of Sugiura (1988a),
_ o216 gL _ oy 2
E[(GS 1217) |Sm] E[(GN 1E1™) ISm] for all w,

which proves Theorem 4.5.

Remark. It is interesting if we could find an estimator

dominating 6 (d ) for «<O.
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