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A NOTE ON ADJOINT SEMIGROUPS ASSOCIATED WITH
SOME LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

Toshiki Naito (The University of Electro-Communications)
W% BT (BAK)

Set E =R" or &,

CY = {¢:(-»,0] = E : ¢ is continuous and

a_ (¢) = 1im eY9¢(9) exists},
Y Gr—co

where ¢y € R, and set

I¢IY = sup{eyelw(e)l: - < § <0} ¢ € Cv‘

Then CY is a Banach space with respect to the norm I'ly, and

it is isomorphic to the Banach space C = C([-1,0],E): an
isometric isomorphism 1? from CY onto C 1is given by

eys/l+s¢(s/1+s) -1 <s <0

t s) =
( r¢)( ) |
a s = -1.
¢¢) |
The t-segment Xy of a function x:(-«,t] - E 1is a
function, on (-«,0] into E, defined by xt(e)‘= x(t+0) 6 < 0.
Consider a linear functional differential equation with the

phase space C?:



(1) » x = L(x

where L is‘a continuous linear operator on CY into E. It

is well known [3,4] that this equation has a unique solution x(¢)

satisfying the initial condition Xg = @ for any ¢ in Cy,
and that the one parameter family of operators T(t), t = 0,

is a strongly continuous semigroup of bounded linear operators
on C?. This semigroup is called the solution semigroup of
Equation (1). We consider the representation of the adjoint
semigroup of T(t).

For linear functional differential equations with finite
delays on the phase space C, it is shown [2] that C 1is
sun-reflexive with respect to the solution Semigroups, On the
other hand, for the case ¥y = 0, the space C is not

0

00
sun-reflexive with respect to T(t), [5]. The space C

0
defined below is isomorphic to the space E x BU, where BU 1is

the space of bounded, uniformly continuous functions on (-«,0]

into E with the supremum norm; CO is imbedded onto the

'subspace {(aO(w),m): ¢ € CO} c E x BU. Diekmann and Greiner

suggested that, for any ¥, the space C? vwould not be
sun-reflexive with respect to T(t) from the imformation about

the spectrum of the resolvent (I - A)—l, where A 1is the
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. o . .
infinitesimal generator of T(t). What is CYe ? This note is

an unaccomplised approach to this question.

Before proceeding, we give the definition of
sun-reflexivity. For a moment, denote by T(t) a strongly
continuous semigroup of bounded linear operators on a Banach
space X. Then the -adjoins semigroup T*(t) is not necessarily
a strongly continuous on x*. The maximal closed subspace of X*
on which T*(t) becomes a strongly contious semigroup is the
one defined by

o o]
X = {XG € X*: 1im IT*(t)X0 -x | = 0}.

t=0+

It is known that this space coincides with the closure of the
Q(A*), the domain of the adjoint bperator of the infinitesimal
generator A of T(t). Denote by T(t) the restriction of
T*(t) on XO. Repeating the above process for Te(t), we have a
strongly continuous semigroup Toe(t) which is the restriction

of Te*(t) on the space x%° - {Xoe e x°%: 1lim ITO*(t)Xao - Xeol

t-0+
= 0}. The original space X 1is isomorphically imbedded to a

subspace of Xee, and Tee(t) is an extension of T(t). If X
' o0 :

is isomorphic to the whole space X , we say that X is

sun-reflexive with respect to the semigroup T(t). This occurs

if and only if the resolvent (AI- A)—1

is weakly compact for
any X 1in the resolvent set p(A), see [8B]. Refer the book [1]
for the theory of adjoint semegroups. The space Xoo depends

on T(t); we may obtain anothér space as X@e from a different
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semigroup. But for the solution semigroup of Equation (1), the
spaces Cye, C?ee are independent Qf the choice of the linear
operator L. This fact holds for solution semigroups of linear
functional differential equations with infinite delays on the
very general phase space, [5].

Now we return to the solution semigroup T(t) of Equation

(l); It is easy to show the following result, cf [5].

Theorem 1. A function ¢ in CY is in 2(A) if and only
if it is continuously differentiable, ¢ is in CY and @(0) =

L(¢); and Ag¢ = ¢ for ¢ in 9(A).

To obtain the information about the space Cyee, we take L

= 0 in Equation (1); that is, we consider the equation
(2) X = 0.

Denote by S(t) the solution semigroup of this equation, and
by B its infinitesimal generator. As claimed in the above,

P2(A) and 9(B) have the same closure in Cy*, which we denote

by CYQ. Since the case that vy = 0 1is already treated in [5],

we assume that ¥ # 0 hereafter.
If ¢ 1is in Cy, the function u defined by u(8) =

e—yew(e) for 8 in (-«,0] 1is in CO' Set j?(w) = u. Then

jy is an isometric isomofphism between CY and CO. We

characterize 2(B) by the condition on u.



Theorem 2. Assume that ¥ # 0. Then ¢ in CY is in

2(B) if and only if u = jy(w) is represented as

1 0
(3) u(8) = = v(0) - I v(s) ds for 8 in  (-«,0]
14 9

and for some function v in CO such that

0
(4) lim v(8) = 0 and lim f v(s) ds converges.
G- r-+-o Yr

Proof. A function ¢ in CY is continuously
differentiable if and only is u is so, and @(8) = e_Yg{—vu(G)

+ u(8)}. Thus ay(é) exists if and 1lnly if 1lim {-yu(8) + u(@)}

G-

exists; and @(0) = 0 if and only if ;yu(O) + u(0) = 0. Set

v(8) = u(@). Then the last condition is equivalent that u is
represented as in the above form (3). The condition that u is
in C0 is equivalent that v has the second dondition in (4).
If u(@) and -yu(@) + u(@) converge as 6 » -o, then u(f) -

0 as @ - -«o., Thus we have the fifst dondition for v in (4).

If n 1is a function of bounded variation on [-1,0] and ¢

is continuous on [-1,0], we can write

0 0
[ anme) = tn-1+) - n-Dle(-1) + 1im [ da(t)e(t),
'—1 ‘ r=-1+ “r

where np(-1+) = 1lim n(t). Since ty ° CO - C 1is an
t=-1+
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* * * . . .
0 ; C = CO is also an isomorphism. Hence,

from Riesz's representation theorem, for any u*  in CO* there

*
exist a vector a in E , and a E*-valued function f, of

isomorphism, t

bounded variation on (-«,0], such that

O .
<u”,u> = au(-=) +‘I df(8)u(s) for u in CO’

0 0
where u(-«) = 1im u(8) and f = 1im f . Of course, the
fo- - r+-« “r

* -, .
norm of u 1is given by

*

lu*1 = lal + Var(f, (-»,0]) = lal + 1im Var(f,[r,01).

ro-o

If f 1is normalized in the sense that f(Oi =0 and f 1is
left continuous on (-«,0), the pair (a,f) 1is uniquely
determined by u*. Denote by NBV the class of those
normalized functions. ,We may identify”the space CO* with E*
X NBV, and regard the isomorphism jy* as the one from E* X

NBV to CY*: <j7*(a,f),¢> = <(a,f),u>, where u = jy(w). Namely

the space E* X NBV 1is the coordinate space of CY*'

Theorem 3. Assume that y # 0. Then an element (a,f)
in E* x NBV is a coordinate of an element of 92(B) if and only
if a 1is arbitrary, f(8) 1is absolutely continuous_on (-=,0),
and the equivalence class of f(8) in Ll((—w,O),E*) contains

a function which is in NBV and converges to 0 as 06 = -«
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For such a (a,f) the coordinate (b,g) of B*(jy*(a,f)) is

given by

(5) b = -ya

(6) g(8) =
-y[f(8) - f£(0-)] - f(8) -for @ < O,

where we read that f stands for the function in NBV mentioned
in the above.
Proof. Consider the condition

. * . . * *®, ., *® - % *
(7) Jy (a,f) 1is in 2(B°) and B (JY (a,f)) Jy (b,g),

for (a,f) and (b,g) in E® x NBV. By the definition of B",

this means that, for every ¢ in 9(B), <jy*(a,f),Bm>
<jy*(b,g),¢>, or <(a,f),-yu+ u> = <(b,g),u>, where u = jy(¢);
The condition f, g € NBV implies that f(0) = g(0) = 0; and
the condition ¢ € 9(B) implies that u(-») = 0. From

integration by parts we then have that

0 -
<(a,f),-yust> = -[a-f(-=)Jpu(-=) + [ [¥£(6)d0+df(0)1i(0)

0 ,
<(b,g),u> = [b-g(-®)]u(~w) e]' dg(8)1(8).

Since u 1is represented as in (3), it holds that
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0
u(-e) = %v(O) - f v(8)de.

Hence we can write

0 1
f [4£(6)+¥F(0)d01v(8) = —c{v(0) - f

-0 -

0 0
v(8)de} - f dg(8)v(8),

where
c = y(f(-») - a) + g(-«) - b.

Furthermore, if we define a function h 1in NBV by

h(8)

|0
[==)
A
(=)

we have that

0 | |
I [dh(8)+cde-dg(8)]v(8).

—

(8) fo

-

[df(8)+yf(6)]1d8]v(8)

Consequently Condition (7) is equivalent that Relation (8) holds

for every v in C having Property (4). Since every function

0
with compact support has this property for v, it follows that

df(9)+ yf(8) = dh(8)+cdf-dg(8), or



0 0
(9) f(ag) - yfef(s) ds = h(8) + cO + Ieg(s) ds for 9 < 0.

Notice that the functions in both sides are normalized.
Suppose that Equation (9) holds for f and g in NBV.
Then f is locally absolutely continuous on (-«,0), which

implies that

" ,
Var(f,[s,t]) = I |f(8)] de for - < s <t < 0.
s

Since f 1is of bounded wvariation on (-«,0]}, it follows that
If(8)l is integrable on (-«,0): that is, f is absolutely
continuous on (-«,0). Furthermore, from Equation (9) we have

that
(10) £(8) + y£(8) = ¢ - g(8) a.e. in (-=,0).

Since f(0-) = h(0-) = % from Equation (9), we obtain Relation

(6); and the solution f of Equation (10) is

(11) f(9) = % + I e—Y(e_s)g(s) ds for @ < 0.

Suppose that ¥ > 0. Sincce f(-«) exists, we have that

1lim eye[f(e) - ¢/v] = 0, which implies that

9—)-0)



16v

0
I eysg(s) ds = 0.

—

Hence f. is rewritten as

fe)

£(8)

—0 -0

from which it follows that

_ g("”)

-w) = &
(12) f(-=) y v

Suppose 7Y < 0. Writing the integral in (11) as

IZ e_?(g_s)g(s) ds = [ fz + I; ]e_Y(a_s)g(s) ds

we have directly Relation (12), or

c = vf(-=) + g(-=).

0 0
_J' e ¥(8-8) gy g5 = % _J' e¥le(t+0) dat,

8 <N <O,

This relation and the definition of ¢ imply Relation (5);

Equation (10) then becomes

t(8) = -¥[£(8) - £(-=)] + g(8) - g(-=) a.e. in

(-=,0).

This means that the equivalence class of f in L1((-»,0),E%)

contain a function which is in NBV and converges to

- 10 -
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-» -o, Notice that such a function is unique for the equivalence
class of f \since it is left continuous on (-«,0).

Conversely, suppose f has this property, and let k(8) be
the function, in NBV n Ll((-=,0),E*), such that #(8) = k()
a.e. in (-»,0) and that k(-=) = 0. Define g(8) by g(0) =
0 and g(8) = -y[f(8) - f(0-)] - k(6) for @8 < 0. Then g is
in NBV and f(8) = -y[f(8) - £(0-)] - g(8) a.e. in (-=,0),

which implies that
0 0
(13)  £(8) - £(0-) = -yf £(s) ds + y0f(0-) - f g(s) ds
0 o 0

for @ < 0. Since g(-») = -p[f(-=) - £(0-)] - k(-=) = -y[f(-=)
- £f(0-)], we have that Yf£(0-) = yf(~-») + g(-«). If a and b
in E" satisfy Relation (5), it then follows that yf(0-) =
Y[f(-«) - a] + g(-») - b. Therefore relation (13) becomes

Relation (9), as required.

Theorem 3 says that jy*(a,f) is in Q(B*) if and only if

f 1is represented as
0

(14) £(6) = d + I k(s) ds for @ < 0,
0

and for some d in E* and for some k in NBV n
Ll((—m,O);E*) with k(-«) = 0. In this case the CY* norm of

jy*(a,f) is given by

_ll_
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: 0
Jy a1 = lal + Var(f,(-=,0)) = lal + Idl + f Ik(s)| ds.

Thus we have the following result, which is also valid in the

case that y = 0, [5].
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»Corollary4 4.

c?° ~ E* x E* x LY ((-=,0),E").
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