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Abstract

This paper describes the problem of selection of an approprigt.e branch of
multiple-valued functions. 'Real-valued arctangent function over real number filed
is considered as an example and the selection of FORTRAN functions "ATAN" and "ATANZ"
is discussed. Minute post-conditioning is- required for transferring the result of
“computer algebra to numerical computation.

The results executed by REDUCE3.3 on FACOM M780 (with a CPU of SOMIPS and memory

of 8MB), where the above algorithms are actually implemented, are shown.

1. Introduction

When scientific or technological models are represented by multiple-valued
functions, the selection of a proper branch is very important in. the interface of
algebraic computation and numerical computation. For example, trigonometric
functions have no unique inverses, but the results of ‘symbolic computation often does
not refer to computing values for the inverse functions ([Korpela77]). |

In this paper, real-valued arctangent function over real number field is
considered as an example and it is discussed how far computer algebra systems can
automatically deal with the branch sielection.

In FORTRAN[JIS82], a representative programming language for numerical

computation, two kinds of arctangent functions are implemented.
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_3(%i) ATAN(X)
This returns the "principal value”, that is,.—n/2<:arctaan<n/2.
(ii). ATAN2(Y,X)

This yields the value of ATAN(Y/X) in the interval ( -= , w ].
Programmers have to know how to use these functions properly according to>their
problems.

On the other hand, only ATAN is implemented in REDUCE3.3[Hearn87], one of the
most popular computer algebra systems. REDUCE3.3 itself has a function of numerical
evaluation, but its ATAN always returns the principal value. Hence, values which
the user does not expect may be returned: REDUCE3.3 has also FORTRAN program
generator GENTRAN[Gates87] but it always generates not ATANZ but ATAN.

In MACSYMA[Bogen84], another popular computer algebra system, both ATAN and
ATANZ? are implemented, and facilities for complex numbers represent their argument
by using ATAN2 as follows, |

‘argz-= ATAN2(y,x) where z = x + iy , xT,yekR.

However, the selection of ATAN and ATANZ in general problems is left to the users.
[Baker84] has discussed the revision of the MACSYMA simplifier to provide é complex

number environment. Fig. 1 shows how MACSYMA treats complex numbers.

(c2) z:xt+%iry:
(d2) %i y + x

(c3) cabs(z):

2 2
(d3) sqrt(y + x )
(c4) carg(z);
(d4) atan2(y. x)
(c5) p:log(z);:
(d5) log(%i y + x)
(c6) realpart(p):
2 2
~log(y + x)
(d6) - —
2
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(c7) imagpart(p);:
(d7) atan2(y, x)
(c8) rectform(p);
2 2
fog{y + x )

(d8) . ———————— + %i atan2(y, x)
: : 2

Fig. 1 Complex numbers in MACSYMA

Arctangent 1s originally an infinitely multiple-valued function and the
automatic selection of proper branch may be hardly possible. Nevertheless, this
paper considers how to help the user to select ATAN and ATANZ by analyzing the

argument of arctangent.

2. Examples
Example 1

The simplest problem may be the evaluation of y=arctan (1/x). If we apply ATAN,
the branch is divided into two parts and the value is not defined at x=0 (Fig. 2).

If we apply ATANZ2, a continuous branch is selected (Fig. 3).

Fig.2 Fig.3

Example 2

Ve consider the following definité integral

b /1.2
f -1l 4z - [arctan 1-1°
a

— B (-1<a<0 , 0<b<l) .
-X
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In this problem, ATANZ should be used in order to select a continuous branch.

Remark 1
The right-hand side of this integral is an‘intentional expression and tﬁe
integrator of REDUCE3.3 generates
—=L gz - i{ log (V1-2% - ix) - log (V1-2% + ix)} .
N1-22 2
This formula is strictly exact as a mathematical expression. However, it is not
suitable for numerical computation, because
(i) long expressions probably decreases the efficiency,
and
(i) floating-point computation does not guarantee that the imaginary part

equals O in the final result.

Remark 2
Trigonometric functions are related to one another by various formulae. In

fact, since

1-x2 T .
arctan-——i—— =3 - arcsinx
and
d . -1
———(—arcsinx) = ,
dx 1_12

the definite integral in Example 2 can be also represented as [~ arcsin x]ﬁ. In this

expression, the principal value of arcsin gives a continuous branch.

Example 3

We consider the following definite double integral ([Hosoya88] ).

1 1 '
I - f dx f dy —<
0o Jo y(x2+y2—20xy+1)3/2

* 4



33

.where ¢ is a parameter and -l1<c<l, If we put

— 7 /7.7 5
h(x,y) = c arctan Vie “/i +g 2cay+l
v 1-c? y(1-cH+c

v

then ve get

I = h(1,1) + h(0,0) - h(1,0) - h(0,1)

2 Ja71 2 >
-—£ arctan 1-c® ZarctanM — arctan Y 1-¢c“~3-2¢c )
/ (o4 C - .,
1-¢? c—c-1

Here, h(x,y) has been obtained from a formula book, not by the integrator of computer
algebra systems.
In numerical evaluapion of I, ATANZ should be used in order to select a proper

branch when we vary c¢ from -1 to 1 continuously.

Example 4

We consider the transformation of arctanﬁ}%into a logarithmic form. Some trial
of treatment by MACSYMA is shown in Fig. 4. The range of returned values is reduced
to the range of argument of complex numbers, but the logarithmic form does not suit

for numerical computation because of the reasons similar to Remark 1 of Example 2.

(c2) f1:atan((x+1)/(x-1));

x + 1
(d2) atan( -)
x -1
(c3) f2:logarc(f1):
%i (x + 1)
1 —_ —_———
x — 1
%i log(-—————————m)
%i (x + 1)
+ 1
x = 1
(d3)
2
(c4) gl:atan2(x+1,x-1);
(d4) atan2(x + 1, x — 1)

(c5) g2:logarc(gl);
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%i (x + 1)

1 —_— ————
x =1
%i log(————————)
%i (x + 1)
x — 1
(d5)
2
(c6) fi-gi;
x + 1
(dé) atan(———) — atan2(x + 1, x — 1)
. X - 1 B
(c7) §2-g2;
(d7) ‘ 0
{(c8) al:subst(0,x,f1);
%pi
(d8) -
4
(c9) a2:subst(0,x,f2);
%i + 1
%i log(—————)
1 - %i
(d9) —
2
(c10) b1:subst(0,x.,g1):
3 %pi
(d10) ) I—
4
(c11) b2:subst(0,x,92);
%i + 1
%i log(————)
1 - %i
(d11) —
2
(c12) al-bt;
(d12) - %pi
(c13) a2-b2;
(d13) 0

Fig. 4 arctani} in MACSYMA

In the above figure, formulae a2 and b2 are also reduced to %log i. If we let
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argi = § then slogi = -%, and if we let argi = ~% then j§logi = 3. They

correspond to al and b1 respectively.

3 Selection of ATAN and ATANZ2

Examples in the previous section show that the problem of numerical evaluation
of arctanp(x) takes place when p(x) = *o, However, sinée the behaviour of an
arbitrary real function p(x) can hardly be analyzed generally (cf. [Richardson68]),
we have to restrict ourselves to the case where p(x) is a rational functio;l. Then,
let p(x) be denoted by g%, where f(x),g(x) e Q[x] with- Q the field of rational
numbers, and f(x) and ¢g(x) are relatively prime.

The zeros of g(x) can be computed by Sturm’s method. The possibility that the
selected branch is discontinuous can be detected if' the usér points out the range

where x moves. When the user does not know what value x takes, we have to stop only

to send a warning message. The flow of algorithm is as follows.

Algorithm 1 : EVALATAN ([Selection of ATAN and ATANZ]

% input : arctang%% , [,9eQ[x]
% : a=minx , b = maxx ;

% output : ATAN(F(X)/G(X)) or ATAN2(F(X),G(X)) in FORTRAN language ;
Step(1) : Compute the zeros g(x) by Sturm’s method;
Step(2) : If no zeros of g(x) exist in [a,b]
then if g(x) is positive definite in [a,b]
then return: ATAN(F(X)/G(X))
else <<write "ATAN and ATANZ return different values~;
return ATAN(F(X)/G(X))>>"
else <<write "ATAN2 should be used to select a continuocus branch”;

return ATAN2(F(X) ,GX))>>;

Fig. 5 shows the result of experimental implementation in REDUCES.3.
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(@p)

IN INPROCS
P:=ATAN((X+1) = (X=1)/(X+2) =2/ (X=2)/X) ;

2
X -1
P := ATAN( )
4 3 2
X + 2sX — 4«X - 8:X

174

EVALATAN(P.3,!=INF);
THE DENOMINATOR 1S POSITIVE DEFINITE‘

X -1
ATAN( )
4 3 2
X + 2:X — 4«X - 8sX

['74

EVALATAN(P;1/2,1 ).

THE DENOMINATOR IS NEGATIVE DEFINITE

: ATAN AND ATAN2 RETURN DIFFERENT VALUES

X -1
ATAN( )
4 3 2
X 4 2:X — 4X - 8sX

(74

EVALATAN(P, ! »—INF,2)

THE DENOMINATOR TAKES ZERO AT :3 POINT(S)
: ATAN2 SHOULD BE USED TO SELECT A CONTINUOUS BRANCH

2 4 3 2
ATAN2(X = 1,X + 2+X - 4-X - 8+X)

o/

SHOWT IME ;

Time: 441 ms

END;

Fig. Selection of ATAN and ATAN2
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4. Concluding remarks

The above algorithm depénds greatly on the‘users' knowledge about the range of
x and the expected value of arctané%. However, the users themselves often do
not know them and they cannot give sufficient information to the computer algebra
system. Hence, algorithmic approach may be limited to only simple problems.
Nevertheless, it is dangerous to apply straightforwardly the output of present
computer algebra systems to numerical computation. ' Hence, .it is believed that such

post-conditioning as Algorithm 1 is important and should be implemented in computer

algebra systems, in order to improve the facilities for hybrid computation:
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