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SIEGEL MODULAR FORMS AND QUATERNION ALGEBRAS

(On a construction of H. Yoshida)

by

Siegfried Bocherer and Rainer Schulze-Pillot

In two interesting papers [Y’l, Y’2] H. Yoshida constructed a
lifting from pairs of automorphic forms on a quaternion algebra
to Siegel modular forms of degree two. However the non - vanish-
ing of his construction was proved only in a weak form (Yo,
Theorem 6.7 ] .

In this paper we describe two approaches to Conjecture 7.6 of

[Y1] (= Conjecture B of [Y2] ).

Our first appoach was arithmetical in nature : We express ( a
certain average of) the Fourier coefficients.of our Siegel modu-
lar form in terms of the Fourier coefficients of two modular
forms of weight é;. In this way we do not get a definite result
concerning the non - vanishing, but we get some insight into the
arithmeétic of our Siegel modular forms.

The second approach uses properties of automorphic L - functions
and leads to a full proof of Yoshida's conjecture for weight 2.
We shall describe - without any technical details - both
. approaches and some applications. This exposition does not re-
flect the chronological order of our research, e.g. the "first"
approach appears in the last chapter !

For details we refer to [Bb-—Sp 2]; some Qf our results were

announced in [B&- Sp 1].
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Chapter I : Yoshida's 1ift and some problems related to it

Let Nﬁ=q1... qt be a square-ffée number (fixed throughout) énd
let D be the quaternion algebra over @ ramified in S Ays ooes
qt. We denote by R some maximal order of D and by I&) its lo-
calization. For the adelization D; of Dy we have a double co-

set decomposition H
x *
Dy, = Uy &
i=1 —_—
%
where H is the class number of D, K 1is defined as ’ I R
P,
and we assume that the ¥y have reduced norm 1,
We define 4-dimensional lattices Lij in the @- vector space D
——— -1 .

b L,. := z {1l R .7 3 th . . dt -
v 1] D m™ yl(lg p) yJ HE sse LlJ correspon 0 inte
gral quadratic forms' Qij which we identify with half-integral
positive definite symmetric matrices of size 4 with

det(ZQij) = N?. We consider theta series of type

0 27ri trace( xt Q, ;X Z)
eij (z) = e J
X e 2z(4’“)

with Z ¢ }%1( = Siegel's upper half space of degree n).

We shall denote by en the € - vector space generated'by all

the 9;3; this is known to be a subspace of J&n, by which we
mean the space of all Siegel modular forms of degree n and
weight 2 with respect to D?(N). By egusp and JMéLSp we mean
the corresponding subspaces of cusp forms.

Now let J4 be the the space of right K-invariant automorphic
forms fof D, that is the space of ali functions ¥ : D;—~4>¢
satisfying T(ygk) = f(g) for all XEngeDX, ke K.
Yoshida's construction can now be described easily (we do it

for degree n instead of degree 2)
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For any n>1 we define

n n
Ak —— > O M
Yn: H
o —y L N
= i7]
i,j=1
X ®
Here e. denotes the order of R. = L.. .
i i ii

The main problem is to study the (non-) vanishing properties of

those mappings Y". Yoshida mentions two obstructions to non-
vanishing

1. Obstruction : If fand " are eigenforms which are not

proportional to each other, then Yl(f,#ﬁ = 0.
To describe the second obstruction,we recall that each g|N gives
rise to an involution on-ﬁr. For any map ¢ : fql,... ,qtamaiii}
let &f' be the corresponding eigenspace for fhese involutions.¥

[ = s
2. Obstruction : For ¥c o , e 4 with ¢ # & we have

Yn(f,ﬂf) =0 for all n.
Roughly speaking Yoshida's conjecture says that these two ob-
structions are thevbnly obstructions to non—vanishing.We shall
see below that this is almost true, we shall however discover

a third (more subtle) obstruction.

For later purposes it is helpful to divide the vanishing problem
into three different préblems.
Q@ "Stable non-vanishing" : Is there agzvn_; 1 with

Y0, 4) 40 2 |

.
hY

(B} Which is the smallest n with Y (4,¥%) % 0 ?
Q?} Let n_ be the smallest n with Yn(¥,Af) + 0; can we des-
cribe Y'Y ,V) for n:>n0; by some kind of (Klingen type)

n
Eisenstein series attached to Y O(f,f?) ?
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Concerning B’ and .C) we should mention here (and we shall use

this tacitly in the sequel) that F. o" is a cusp form iff

C¥F = 0, where cb is the Siegel d)— operator; so we do not haVe

to care about '"'several cusps'.

There are some more problems related to the Yoshida - 1ift :

D,  "scalar product férmulas”

E) Relations to modular forms of weight '%

.F) Yoshida has shown that Y2(1 , V) satisfies the MaaB - rela-
tions. We may ask more generally whether the Fourier co-
efficients of Yn(%ﬂ”f) have some special properties.

In chapter II we shall describe our proof of Yoshida's conjecture.

~

Chapters III and IV will deal with E) and (F) (respectively).

Chapter II : Non-vanishing properties of Y" and applications

(The method of L-functions)

To prove the conjecture of Yoshida, we make extensive use of
properties of automorphic (standard-) L - functions. This should
not be surprising because the relevance of these L-functions
for problems related to theta series is now well known (e.g.
(85,71, [Bs,1, [GPJ, [We ] ). Our proof of Yoshida's conjec-
ture has essentially three ingredients

-— Solution of problem A ("stable non-vanishing")

3

- A characterizatibn of 6
: cusp

inside ©%® in terms of
automorphic L - functions

-— A theorem of A, Ogg

The first ingredient is the easiest one
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c >
Proposition : For 0# ¥¢ A, 04 Yc 4~ we have

YNP,¥) = 0 for all n === Y'(/,y) =0

The first equivalence follows from a result of Kitaoka [Kit}
on the linear independance of theta series. To prove the second
assertion, one has to understand precisely under which conditi-

ons two lattices Lij and Li'j' are isometric.

Let %GE be the "N-integral'" Heckealgebra (spanned by double
-1
cosets FE(N)(M %A FS(N) with M integral, det(M) coprime to
0O M
N). It is known that\ﬂtn has a basis consisting of eigenforms

of IQE; to such an eigenform F we attach the standard L-function

T 1 n 1
DN(F,S) = l

(1- o, 0 %) (1 -] p™®)

1-p°° I
p/N i=1
where the olj, are the Satake - parameters of F.
Our second ingredient is the crucial

3 )
Theorem : Let O #Fe 8° be an eigenform of %ﬁN with(psF=O;then

3 . N
Fe 8 ugp < Zicll D (F,s) > ¢t

Indication of proof:

" =>": We use an integral representation for DN(F,s) wﬁich
involves a (pullback of a) degree 6 Eisenstein series. Then
the claim follows from the results of Feit [Fe:] on the poles
of such Eisenstein series and by a careful analysis of the
Ypad primes" (for this analysis we need that F is in e® ).

"=": Let us assume that F is not a cusp form. The case
¢2IF # O reduces everything to elliptic cusp forms - this

is easy. So we suppose that ¢IF is cuspidal; for all Ge GZusp

5
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which are eigenfunctions of ;%ﬁ we can prove an identity (ana-

: *
logous to the one in [B&,] for level 1) )

.z G’eij"} . N,
—— @2, = ¢ Res(D (G,s) G (*)
Lo i - s=1

i,J
This shows that DN(F‘,S) has a pole in s=1 and therefore
N N N N
D (F,s) = § (s-1) { (s+1) D (F ,s)

cannot be of order > t in s=z1 (Here SN(S) denotes the N-restri-

cted Riemann zeta function).

Now let 0= Pédﬁi C)#Hﬁ?véc be eigenfunctions of the Hecke alge-
bra. To make the theorem above applicable to our problem, we
should first determine the standard L - function of F := Ya(f,#)
in terms of data attached to {, Y ; by the results obtained so
far it is clear that F is non-zero !
Let %:,:? be elliptic modular forms of weight two corresponding
(via Eichler-Shimizu-Jacquet-Langlands) to ¥ ,Y¥ and let a(p),b(p)
be their eigenvalues for the usual Hecke operator T(p), p fN.
We define «(p), ¥(p), B(p), B(p) by
<(p) + +(p) = alp), «(p) (p)

B(p) + B(p) = b(p) B(p)-B(p)

Il
kol

It
o]

By some local computations we get

p(r,5) = M) Ms-1) TNese1) LY (€7, ¥ se1)
with Lﬁym(‘{;ﬁ,’i’w ,8) =

™

1

Lo . L . R e
x; (1-4(p)B(pP)p %) (1-4(p)B(p)p ™) (1=l (p)B(p)p ®) (1« (p)B(P)p ")
PiN
*) We shall use the symbol ”c”-several times in the sequel to

to indicate constants # 0; of course these constants do not
coincide in general. ¢ , » 1s the Petersson scalar product.



If  is not cuspidal - this means that { is just a constant -

we have

N " 41, N i N “t N

Lsym(const;%,s) =L (" ,s) L(% ,8=-1)
where LN(¢}S)’is just the ordinary L - series, defined by

~ ) 1
LN(z*!‘,S) = { ! SN e s .
1-B 1-8
p)(N( (plp ")( (p)p 7)

If we summarize all these informations, we see that we have

indeed obtained a third obstruction for non-vanishing, now in

terms of an analytic coﬁdition on an automorphic L - function
For ', Y as above - but not both constant - we have
v3({,t) cuspidal iff YZ(f,4) = 0 iff Lgym(%*,f?,z) =0.
Surprisingly the latter condition is possible only in very few
cases :
a) If ¥ and ﬁ“ are proportional to each other we may apply
a classical result of Rankin, which says that 'Lgym(fi,gﬂs)
has a first order pole in s;2 with residue beeing essential-
ly equall to the Petersson scalar product <¥,~¥>.
b) If f and 4/ are both non-constant and not proportional to
eaech other, we can apply a theorem of Ogg [O:], which

N

says that Ll;lym('f,??,z) £ 0 — in other words YZ2(<,') # O.

c) It remains the case where precisely one of the automorphic
forms - let us say { - is constant. Since LNQNf,2) is
different from zero (convergent Euler product !) we get

Y3 (4 ) cuspidal iff LN(F,1) = o
Since the case f, N both constant is somewhat trivial (it just
produces a Siegel Eisenstein series) we omit it from the

formulation of the
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Final result : If 0 a3, 0%~ are eigenfunctions in @48

1)

2)

with Y not constant, then
a) Y3(¢,%)
b) Y2(€,%)

¢) Yr(C,h)

0

-

0 iff. f = const and LNbﬁ}l) =0

O unless ¥ and 4 are proportional

Complementary remarks

Linear independence of theta series. According to a conjecture

of Andrianov | An | and Yoshida [Y2] on the linear indepen-

dence of theta series we should have 6° ={Qﬁ Our results
. cusp

show that (via the map Y4+ aYs(l,#ﬁ ) ezusp is isomorphic

to de := linear span of those eigenforms ¥ in “Ab;sp with

N4,1) = o,
Where :;'\' iS the ConStant map :\v : ‘ ql, o0 !qtf‘ e 3’1} .

1 O

In general, #+ {O} , as the example N =g =389 shows

(see [sP], [Gr] and |Ha'| ). Anyway, the space . ° desc -

cribes precisely up to which amount the conjecture of

Andrianov-Yoshida is (not) truel!

: I )
Scalar products. Take f, W¢ 4 with (3#'Y20€,A?) cuspidal.

Then we know two representations of Yz(f,'¥‘) as linear

combinétions of theta séries - one involving the values of
“and "V ,_thé other one involving the scalar products

< F ,O;j’;( ¢, "V eigenforms, see (*)).‘Actuélly these repre-

sentations are the same

Theorem: If‘ia, ¥ and F are as above then

a) ~F,0°.% = c Res DN(F,-S) H‘(yi)’\Y(yj) + *F(yj)"%’(yi)} |

+ s=1
’ . N £ £y . oo
b) MF,F . = c¢ 22% D (F,s) {¢ €y -{ ¥~
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where { , | is the canonical scalar product on 4.
We have similar formulas also for the degree 1 and degree 3
cusp forms produced by Yoshida - 1lifts. We sketch a proof of the

theorem above : We ccnsider the degree 3 cusp form

c Res DN(F,S) YB({,AJ) - :EZ:

s=1 —
1,3

ZF,02 .5 ©6°

€, €. ij ij

1
All we have to show is that this function is identically zero !
But this follows from the fact that this function is again an

eigenform of 183 with the same eigenvalues as those of the

non-cusp form Ya({,ﬂ’);by the results abcve, it must be zero.

3) Eisenstein series of Kiingen type. From general properties

of pullbacks of Eisenstein series (see [B5,] or [Ga]),

combined with a version of Siegel's theorem, we see that

2 .
for Fe Aicusp indeed
1 2 n
E e e. <F.9815> 8
— i°j
1,3

is essentially (a residue of) an Eisenstein series of Klingen
type attached to F. From this (and the scalar product formu-
las above) we can get a solution of Problem (:) ; Similar

arguments also work for the degree 1 and degree 3 cusp forms,

4) In a letter [Y13] Yoshida kindly informed us that he has
also made some progress towards his conjectures [Yl,Yé].His
methods are different from ours. In particular - using rgsults
of Waldspurger - he has also obtained our result on Y2(1 V)

and an ﬁnconditional,proof of Theorem6.7 of [ya].
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Chapter III : Modular forms of weight —g—

In this chapter we restrict ourselves to t=1, so N=qg is a

&
prime; we write Jii instead of A . The basic facts which we

need in this chapter can be found in [Gr |, [Ko ], [Kr],
To each maximal order Ri =Lii of D we attach a ternary lattice

RC

i {erRi+ZZ ] trace(x):—O}

and a ternary theta series

, g ‘
”‘?‘i("&) _ Z¢~s o2mi norm(x) .

o
X & Ri
Following [Ko 1 we define a space M of those modular forms g

2

N 2 iDL _
glw=)=+___ e with a(D)=0 wunless -D=0,1 mod 4

D .0

of weight 3 with respect to ro(4q) which satisfy in addition

Even more important for us is the subspace M - M of those

forms g whose Fourier coefficients a(D) vanish unless (:P-\) £1.

Via the Shimura - correspondénce M is isomorphic to fv"l
cusp “cusp

and M  corresponds to those forms f in M with f}(q 01>=-f

(see [Ko ]).

Now we define two mappings, both Hecke-equivariant'

jrxi* i > M
Wiy \ P(y ) &

=
S
oy

g | G ’ —— ) ‘(g Wlth }g(yl) _ .:: g , ,,. _\:’) .

These mappings are adjoint to each other with respect to the
Petersson scalar products on ‘5‘5{ and M (we may extend the

scalar product from Mcusp to M ).

/0
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Clearly W(P) can also be obtained in the following way : From
[Y2, Thm 4.3 ] we know that Y2(J.;€) is in the MaaB space; so
lek JY2(1,f) be the corresponding Jacobi form of index 1; a

theorem of Kramer [Kr] asserts that the modular form of weight

% which corresponds to JYZ(I;P) is just W(#), so we get a

commutative diagram

2 .
Y2 (1, ) J
A > o° : > Jacobi theta series of index 1

\\\\N\\\\\N

—
——

.\\\

Combining this with the results obtained in chapter I1 we get

Proposition: Let O # J4cusp be an eigenform, then

wiP) £0 iff LUP,1) £ 0
. + “f—o&'
(Actually we only proved this for fe ', but for Te both
~ .
W({) and Lq(?,l) are automatically equal to zero).
To proceed further, we need an analogue of (*) for our ternary
theta series
Theorem: Let O# geM be an eigenform of all Hecke opera=

cusp

tors, then

<g, >
Z _—-é—*—i——».}'l = cL(g,l) g ,

i
in particular, g is a linear combination of the 49; iff L(g,1)
is different from zero. _

Here we mean by‘ L(g,s) the Dirichlet series‘ZE:'x(m)xﬁ—s where

A(m) is the eigenvalue of g for the Hecke operator T(m®).

Thié theorem, combined with the fact that dimM = T = typé num-

ber of D, gives a new proof of a result of Gross [ Gr] which
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says that we have T linear independant theta series 4ﬁi iff

there is no gEZMCUSp with L{g,1) = O.

Again we can obtain scalar product formulas

Proposition: Let O# oy be an eigenform,

icusp

&) oLlF,1) Ply,) = S ule),
b) c .90 ,1){ -F,t’;‘f = < WiE), W)=
Corollary:
a) For -i as above Ww(e) = e, T
b) For g. M , g eigenform WwW(g) =cL(g,1) g

It is reasonable now to introduce a modified Yoshida - 1lift by

(M_ o M_ . e et e i e

5\ . 1 . Ny » {;‘1 ., . n
’(g’h) | S N > e. 6 % g, i R h N ‘;J. » Glj

,\-Y n

From the above it is clear that

¥(g,n) = Y (W(g), W(n) )

W), W) ) = o 130%,1) LA, 1) YN, F).

So there is not much difference between looking at " or étv

as long as we are only interested in thoése Le &tusp with

Lq(i‘,l) 40 . The striking point about Y is that we have a

beautiful kernel function to describe it

Theorem : .
N, R “ n
A ("*»ai-az) = :Z____._x e.en'— Ji(i") n""j("») eij (Z)
i,j °

is a kernel function for ?n.

/ Z

n
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Chapter IV : The Fourier coefficients

In this chapter N=qg is again a prime.

The most ambitious programme would of course be to look for
explicit formulas for the Fourier coefficients of Y™ (¥,4) in
terms of some data attached to '~ and /v,

Our results are more modest; we consider the case n=2 and com;
pute a certain mean value of Fourier coefficients : For Yz(f,%O

271i trace(TZ)

with Fourier expansion-ng a(T) e we study (for

T

any discriminant -D< 0 ) the weighted average
alT)
8p T i a(T) ?
o ST
where T runs over all S1,(Z) -classes of binary integral qua-
dratic forms with disc(T) = -D and ¢ (T) = # proper automor =
phisms of T (=1 in general).

In analogy to the results in [Bbsj we may expect here also some

relations to modular forms of weight gﬂ Indeed, put
g = W) = 2 p(D)eTET
D >0

50

N

Then we get (at least for fundamental discriminants -D. 0)
a very simple identity

|20 = §p oD e()]

where Yy, =2 if gl D and yb = 1 otherwise.

We may reformulate this result as an identity for Dirichlet
series (now for general discriminants) as follows

Recall that for any degree 2 Siegel modular form

> 2w i tr(TZ)

F(z) = 7 .a(T)e ~ we have the Koecher - MaaB - Dirich-
T

/3
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let series % (s) = 23 D~® and for modular forms g, heM
F D D

as above we define a (modified) Rankin - Konvolution

‘R(g,h,s) := Z ¢ b(D) (D) DS,
D

Theorem : For any F = Yz(f s W), g=W(¢), h=W(#) we have

Tp(s) = 3(2s-1) R (g,n,s).

Remarks.

1) If Lq(f,l) = 0, then g = 0. ( and the same forAP); in other
words, the formula‘above together with the results of the
preceeding chapters prove the existence of many degree 2

Siegel modular forms with Koecher-MaaB series vanishing: iden-

tically.

2) Our first attempt to prove the non-vanishing of Y2C€,W)
was by means of the theorem above (if W() #£0, W) #0).
However it seems to be a very difficult problem to get a
reasonable criterion for the (non-) vanishing of the Rankin-
convolution attached to two modular forms of half-integral
weight. We can however prove directly (i.e. by the theorem
above, not using the results of chapter iI) a version of
Theorem 6.7 of [Y2]:

Corollary. For P, Awith W(f)# O we have

Y2 (¢ ,£°) £0 for all S e Aut(C).

The assertion of the theorem above will easily follow from a

purely arithmetical statement on representation numbers (repre-

sentations of binary quadratic forms by quaternary forms).

74
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Let us start with a numerical example :

We take q= 11 - this also occurs in [He, p.900, Beispiel 2 |,
(Y1, Example 1] and [Gr, §13]. We have 3 inequivalent inte-
gral quaternary quadratic forms of determinant “’116 q?

2

2 2 2
Qll e x1+x1x2+3x2 + x3+x3x4+3‘x4
2. 2 2 2
ng o~ 2 (xl + X5+ Xg 4+ x4) + 2x1x3 + X Xy + X5Xg - 2x2x4
2 2 2 2 ]
Q22 R 4 (x2 + Xg + x4) + X Xg+ 4){2}(3 + 3X,X, + 7)(8)(4

The ternary forms corresponding to Qll and Q22 are

~ 12x® + 44xy + 44y® + 112°
~  3%x® + 2xy + 15y? + 44yz + 44z2°

The adjoint forms of R(lj and Rg are equivalent to

Rl ~ X% +xy+3y° +2°

s )

5 ~ x4 Xy + y2 + Xz + 4z°

For two positive definite quadratic forms S and T we denote
by A(S,T) the number of integral representations of T by S.
We claim that there should be some relation between A(R(i),D)
and A(R?,D) on ohe hand and A(Qij’ T) with T binary of dis-

crimi_nant -D on the other hand.

D (A(R],D) : A(R,D)  A(R{,D)? 3A<R§,D>A<Rg,n> . A(Rg,D)?
3 O 2 0 0 4
4 2 -0 . 4 o) ‘ 0
11 2 | 0 4 § 0 | 0
15 4 6 16 | 24 36
31 8 6 64 % 48 . 36
/ | | {

)



The quadratic form ax’+bxy+y?® will be denoted by J|a,b,c].

1
p o1 AQT AT ARy, T)
i - o(T) ¢ (T) ! “(T)
SR " S SO S,
| .
3 ‘ f1,1,1} +  © | 0 4
4 ' [1,0,1] 4 0 | 0
11 [1,1,8] e 0 ; 0
15 ¢ [1,1,4] 16 0 5 0
15 | [2,1,2] 0 24 36
- .
31 ¢ |1,1,8] 32 0 36
31 1[2,+1,4] 16 j 24 0

Everything in these tables becomes very smooth if we look

at the weighted average

ey A(Q, .,T)
(D) := 2» -c%%) ’
-

where T runs over all (properly) inequivalent integral binary

A,
1J

quadratic forms of discriminant -D; in fact we have (not only
for the numerical example above but for arbitrary primes q)
the following

Theorem : A. (D) = }S*DoA(R(i),D)-A(Rg,D)

for 1:<i,j+H and -D a fundamental discriminant - and

a similar statement for non-fundamental discriminants.

Remark. We can reformulate the statement above as follows;

It is elementary that (for -D fundamental)
ARG,

_1 i
2 < N e(T) .
! T.}.. .

A(Rci),D) =

4
S

Therefore the theorem above can be written in a more symmetric

/£



way as
5.”‘7 A(Qi‘j,T) 1 e " - A(ﬁi’T) . T—j“w A(ﬁj,T)
— - = C » Sl e ’ (**x)
— (1) 4 ¢D = (r) o -(T) ¢
SLT§ zT,,I - T .

One might try to make this statement stronger by putting in eve-
. Y, ety |
rywhere a character of the class group of (49(1 -D° ). In our

example the cases D=3, 4, 11 are of course trivial.

~

D T A(R;,T) . A(R,,T)
15 [1,1,4] 8 12
15 [2,1,2] 0 0
31 |1,1,8] | 0 12
31 [2,+1,4] 8 ' 0

The example D =15 shows that we have been too optimistic :

? .
+24 £ 2(8+0)(1220)

For a correct strengthening of (***) we refer to [Bb—Sp 2].

Some applications.

1) In [BGB:I we conjectured (for Siegel modular forms of de -
gree 2 and level 1) that the square Qf the average ap
should be related to a special value of thé twisted spinor -
L - function. The result of this chapter shows that Y? (:f ,¥4)
satisfies that conjecture. |

2) We méy obtain a new proof of Waldspurger's formulas for the
square of the Fourier coefficients of modular forms of half -
integral weight (in the case of weight é?) as follows :
For €¢ A , o an eigenform,and a fundamental discriminant

-D, we can compute the average a for Yz(ﬁ’,{) in two ways:

/7
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First of all, acéording to the formulas above,
aD’= XD b(D)?,
with b(D) = D - th Fourier coefficient of g := W(<4).
Secondly, by interpretating Y ({,{) as a kind of Eisenstein
series attached to Y1(47;€), we may get (by some analytic¢ con-

siderations) a formula of type
1
a, = A(f) D° L(g,1) L(g,D,1)
where A(f) is some (explicitely known) constant depending
on ¥ and L(g,D,s) denotes the twist of L(g,s) by the quadra-
tic character (:2) . Combining these two formulas we get that

1/2 L(g,D,1); unfortunately this

b(D)? is proportional to ¥p D
proof does not give any information for those { with W(¥) =0
(i.e. for those { with Lq(€,1):=0)..For details we refer to

a paper in preparation.

Final remarks.

In some sense the results presented here are not complete.
—— We should consider Eichler orders instead of maximal orders; -

this will indeed be done in [Bo-Sp2].

—-— We should include the case of theta series with harmonic co-

efficients as in |Y1,Y2 | and in [Tal].

-—- The results of chapters III and IV should be extended to
arbitrary quaternion algebras (not just those ramified only

in q, * ).

Our results on these more general problems are not complete

at present, but we are working on them. We hope to treat them

s
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in future papers.
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