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§1. INTRODUCTION.
We are concerned with Mori’s Langevin equation for a
model of a quantum harmonic oscillator coupled to infi-

nitely many scalar bosons whose Hamiltonian H 1is given

formally by

} H =H, + H

o "
o = Hg * Hy
(1.1 | Hg = fega'a (0<ay)
Hy = Sp_,feybyby (0<ay <wy , ; KeN)

' Hp = 3p_(Tpa'by ¢ Tibra) (T eC.kel)

Here g and a+ (resp. bk and+bk) denote annihilation and
creation operators of a quantum harmonic oscillator (resp.
bosdn),respectively. which act in the symmetric Boson Fock
space ?S(Ceﬂz(ﬁ)) over C@ﬂz(m). Operators Hg and HB denote
a Hamiltonian of a quantum harmonic oscillator and the one

of infinitely many scalar bosons,respectively.The operator
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HI which represents the interaction between the quantum
harmonic oscillator and infinitely many scalar bosons is
said to be the coupling Hamiltonian for the rotating wave
approximation (abbr.RWA)-oscillator . We shall simply call
the operator H the Hamiltonian for the RWA-oscillator .

The behavior of the Heisenberg picture eltH/ﬁae.ItH/"’l =

89

a(t)'has been studied in H.Haken([9]),K.Lindenberg and B.J.

West([11]) . and E.Braun([4]). They considered their own
equations of Langevin type for g(t) whose form are depen-
dent on their consideration . In particular , K.Lindenberg

and B.J.West rewrite the total Hamiltonian H given by (1.1

into
g (m) (m)
f B = He o+ Hp + Hy
(m) _,, +
| B = fiteg - Aa'a
(1.2) Hy + H§“‘) - 5 _ Ko BB,
. I
B, = b, * ﬁ—-”amk
2
w il
where A = 2k=1 5
B o

By solving a simultaneous system of differential equations

for g(t) and Bk(t)

)
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Fa(t) = olH.a(t)]

(1.3)
d

2B (6) = Z[H.B(0)]

they derived an equation of Langevin type for a(t).waever.
fhe physical ﬁeaning of the quantities wo—A and A are not
clear in [11]. While,in his theory of generalizZed Brownian
motion in statistical physics.H.Mori derived the so-called
- Mori’s Langevin equation which consists of the Mori’s fre-
quency , Mori’s memory function and Mori noise ([12],[13]).
Mathematicaly, Mori’s Langevin equation can be derived if
a Mori-QOkabe (abbr. an MO)-structure is given. Here an MO-
structure consists of the triplet of a Hilbert space X, a
self-adjoint operator L- on X apd a non-zero AO in the
domain of L ([15],[16],[17])

The purpose is to show that the Hamiltonian H in (1.1)
has an MO-structure and investigate Mori’s Langevin.equa—
tion for the Heisenberg picture g(t) in detail . In order
to carry out it , we shall construct a Hilbert space XC(H)
of unbounded operators on ?S(Ceﬂz(N)) containing the anni-
hilation and creatioﬁ operators,where the inner product of
XC(H) is introduced from Bogoliubov scalar product (Kubo-
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Mori scalar product,or the canonical correlation) (see [5,
p96],[13]). Furtheremore,we shall construct a self-adjoint
operator L. (Liouville operator) on XC(H) in such a way

that the Heisenberg picture of g by the operator H coinci-

des with the time evolution of g by the operator L . Since

the triplet (XC(H).L.a) satisfies an MO-structure , we can
develop Mori’s theory of generalized Brownian motion on

XC(H). The main point is to express the Mori’s frequency ,

the complex mobility of the Mori’s memory function and the’

canonical correlation function of g(t) in terms of the
parameters in the Hamiltonian H in (1.1), by obtaining the
Bogoliubov transformation of H .Furthermore, we shall give
a physical meaning of two constants wy~A and A in (1.2) ,
and show that the canonical correlation function is almost
periodic , and does not converges as the time tends to

infinity .

§2. MO-STRUCTURES.

By an MO-structure,we mean a triplet(X,L,AO) such that X
is a Hilbert space with an innér product ( , )X’ L a self-
adjoint operator on X with domain D(L), and ona non-zero
element in D(L) , where the inner product ( , )X is linear
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in the right vector . For any MO-structure . we consider a
stationary curve A={A(t);teR} defined by
itL

(2.1) A(t) := e AO (t € R)

and the correlation function RA of A is given by
(2.2) RA(t) 1= (A(O).A(t))X .

Let XO be the closed subspace genérated by AO,and PO and
X1 the orthogonal projection operator on XO and the com-
plementary subspace of XO in X,respectively.Then we define
a linear operator L1 on the Hilbert space X

D(Ll) 1= X1 ~ D(L)
(2.3)
le = (1 - PO)Lx (x € D(Ll))

Lemma 2. 7. ([12],[15]1,[161) L1 is self-adjoint on the

1 by

Hilbert space X1

We define a real number w=@(A0) , a stationary curve IM=
{IM(t);teR} in Xy and a non-negative definite functién é
on R by |
(2.4) o= w(Ag) = (A0).LA(0))y-(A(0).A0))y .

(2.5)  I,(t) := i-e**F1.(1 - PLA, .
(2.6)  #(t) = (I,(0).Iy(t))y- (AC0).ACO))," .

Concerning the correlation function RA', we have

Theorem 2.2.([7,86.2]1,[12]1,[15].[16]1)  (a) For all teR .
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-t
IR (8) = ia-Ry (V) -jgs (t — SIRy(s)

(b) For all zeC := {zeC: Imz > O} ,

o itz _ _
jgt e "Ry (t) = R (0)-

1

iew - iz + Jdt et Z4(t)
0

Furtheremore, the equation of motion describing the time
evolution of stationary curve A={A(t);teR} is given in the
following

Theorem 2. 3.([7.86.21.[121.[151.[16]) For all teR .
d t
(2.7)  FA(t) = ie-A(t) —jgs $(t - S)IA(s) + Iy(t)

The quantities w=m(A0), é and IM are called the Mori’s
frequency, Mori’s memory function and Mori ndise , respec-
tively .

The equation (2.7) 1is said to be the Mori’s Langevin

equation associated with the MO-structure (X.L.AO)

§3.CONSTRUCTION OF A HILBERT SPACE ASSOCIATED WITH A CLASS
OF CLOSABLE OPERATORS. |
Let ¥ be a separable Hilbert space with an inner product

( , ),which is linear in thevright vector. Let H be a non-
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negative self-adjoint operator acting in § with the
following properties (H.1) and (H.2)
(H.1) There exists a cémplete orthonormal basis {¢h;neﬂ*=
{0}UN) in D(H) such that Hy -A ¢ with 0sA <A .. (neN).
(H.2) e_'z:H € jl for all ze(0,A],where >0 is the inverse
temperature and jl denotes the family of all trace
class operators on ¥ .

Let

*
(3.1) D := {3, _, a0, ineN .o eC.k=0,1,,n}

Obviously D is dense in 4 . We denote by £(D,%) the space

of bounded linear operators from D into 4 . Every element

A in £(D,%) has a unique extension to an element in {(F)

the space of bounded linear operators on ¥ . We denote the

extension of A by Aor A . |

Let $(D,H) be the sét of linear operators A acting»in F

with the following properties ($.1) - (4.3) :

($.1) D c D(A) , D)

($.2) For all xeD , Ax and A*x are in D .

($.3)  For all ze(0.4], e TA (resp.Ae ) is in £(D.§)
and (e—THA)" (resp. (Ae_TH)_ ) is in 52 ,  where &2
denotes the family'éf all Hilbert-Schmidt operators
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with'thé Hilbert—Schmidt‘norm Il "2
In this section, we Shall construct a Hilbert space XC(H)
and a Liouville operator L associated with the Hamiltonian
H and show that the triplet (XC(H).L.AO)satisfieé an MO-

structure for any non-zZero A, € D(L)

0
If two operators A and B in $(D.H) satisfy Ax=Bx for all
xeD, then we write as A~B , which gives an equivalence re-
lation in $(D,H) . We denote by [A] thg equivalence class
of Ae$(D,H) and by $(D,H)/~ the set of all the equivalence
classes .
We can introduce in $(D,H)/~ the operation of addition ,

scalar multiplication and involution * as follows :

(3.2) [A]+[B] := [A+B]

(3.3) alA] [a A] (a € C)
* *
(3.4) [A] := [A ]
We can define a correlation ; Bogoliubov scalar product

(Kubo-Mori scalar product , or the canonical correlation)

< >H on $(D,H)/~ as follows: For any [A],[B] € $(D,H)/~ ,

A s _

ng En(Ae (A-A)H ¢, *© Al B¢n)
1

(3.5) <[A];[B]>H =

tr(e—ﬁH)



(Vo)
op]

It can be easily seen to prove that < ; >H is

products on $(D,H)/~ . We denote the norm of [A] by

inner

o _ 1/2
(3.6) Il := <[Al:[Al>y
We can define an element A(t) in $(D,H) and its equiva-

lence class [A](t) by

(3.7)  A(t) := e /B 5 JItH/A gD H) L tenR) .

(3.8) [AT(t) := [A(t)] (A e $(D,H) , t € R) .
where #$>0 is a parametef denoting the Planck constant di-

vided by 2x .

Lemma 3.7. For all Ae$(D,H) , H[A]“H=“[A*]HH )

We obtain a Hilbert space XC(H) ‘as the completion of

$(D,H) /~ by the norm || "H .
Remark 3. 7. We can define an involution [A] — [A]+ on

X (H) such that [a1*=[a1" for all [Ale$(D.H)/~ .

Let

(3.9) ja := {A e $(D,H) ; AH , HA ¢ $(D,H)}

(3.10)  D(3) := {[A]l € X, () : A e )
D(3) is a dense subspace in X.(H)
We define a linear operator E:D(S) — XC(H) by
(3.11)  3[A] := [ £[H.A1 1 (IA] € D(3))

_g_
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where [H,A] := HA - AH . Then , § is a symmetric operator .
We define for each teR the operator U(t) : $(D.H)/~ —
Ko (H) by | fo
(3.12)  U(r)[A] := [A](t) kA e $(D.H))
Proposition 3.2. For any [A] € $(D,H)/~ , and t.s e R .
(a) U(t) is unitary on $(D.H)/~ .
(b) U(0)[A] = [A] . _
(c) U(t + s)[A] = U(t)U(s)[A]

(d) s—limtéoU(t)[A] = [A]

Since it follows from Proposition 3.2 that {U(t):teR} is
uniquely extended to a strongly coﬁtinuous unit#ry group
on XC(H) , we denote its exténsion by the same symbol‘.’By
Stone’s theorem , there exists a unique self-adjoint oper-
ator L on XC(H) such that
(3.13)  U(t) = e'*th

Proposition 3.3. L,D d

ﬁ%marﬁ‘Juz,,Proposition 3.3 means that the time evolu-
tion.by'Liouville operator L»coincides withkthg Heisenberg
picture on D(38) .,i.e., v
3.14)  elthay = (/B 5 IR ((a] € D3)) .

4kfibjtjaa J.4. We say that A e f(D,H) is in M(D.ﬂ)»if

_10_
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it satisfies the following condition (C.1)
(C.1) For all z.z” with 0<z’<z<A, there exist non-negative

functions fA(’::.'c’).gA(z.’z’).fA*(z.'c’) and gA*(-z:.'c’)20 such

that , for all xeD ,

’ ’

{ ue“fHAxusz(z,z')ue"(t't My "z Hxl|+gA(z.fc')ue'z qu

- * Al rer? X .7
e ZHa xl<f *(z.z") e (z-z” Yy * ~z’H, |

’

-z’H
g% (z. 7 )lle © x|

If A and B € $(D,H) are in M(D,H) , we have AB € $(D,H)
Then , for any A,B € M(D,H) , we define the prbduct of [A]
and [B] ¢ $(D.H)/~ by
(3.15) [A][B] := [AB]

This definition is independent of the choice of the repre-
sentatives of [A] and [B]
Proposrtromn F.5. Suppose that {BO.Bl,m.BN}Cj(D.H) (N ¢

*
N ) satisfy the following conditions :

* % -
BkBp ,BﬂBkeﬁ(D,H) and [Bk’Bﬂ]xskﬂx (k,9=0,1,-,N,xeD)

Then , {[BO],[Bl].m.[BN]} is linearly independent .-
Defrinition 3.6. We say that A ¢ $(D,H) is H-diagonal if
there exists o6y € R such that
(3.16) [H,A]lx = - ﬁaAAx , x e D .
Remark 3.3. 1f A is H-diagonal with [A] # 0 ,then Sp is
-11-



uniquely determined .

Lemma 3.7. For any H-diagonal Ae$(D,H), xeD,7z>0 and t eR.

(a) Ae IHx = expl[- zﬁdA]e— zH Ax ,

(b) AeitH/ﬁx itH/% Ax .

= exp[itdA]e
Proposrtion 3.8. 1f A ,Be$(D,H) are H-diagonal and &

then <[A];[B]>H=O .

Lemma 3.9. 1f Ae$(D.H) is H-diagonal,then A is in M(D.H).

*
Proposition 3.10. (a) If Ac$(D.H) is H-diagonal, then A

e$(D,H) is also H-diagonal. Moreover, if [A]#0 , then

k=
-O'A 6A .

(b) If A,Be$(D,H) are H-diagonal , then ABe$(D.H) is also

H-diagonal . Moreover, if [AB]#0, then GAB=6A+6B :
Lemma 3.77. 1f Ae$(D,H) is H-diagonal , then Aejl8 and so

[A]leD(8)

We define a subset Hf(H) of XC(H) as follows :

(3.17) ﬂf(H):={u0[AO]+u1[A1]+w+uN[AN]eXC(H):Nem*. Uy Uy

uNeC.and AO.Al.m.ANeﬁ(D.H) are H-diagonal}.

Proposrtion 3. 12. Hf(H) is a *-algebra and ﬂf(H) c D(3).

Remark 3. 4. XC(H) is a partial *-algebra with a unity
(see ,[1,Definition 2.1. and Definition 2.2.])
Lemma 3.73. For all [A]l ., [B] € Hf(H) and t € R .

_12_
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(a) LIA] and e'*T[A] e (1)

(b) L(IAI[B]) = (LIAD)[B] + [AI(L[BI) .

(¢) LIAl" = - (LIAD) .

Lemma 3. 74. Suppose that A ¢ $(D,H) is H-diagonal with

%
>0 and [A,A ]x=x for all xeD . Then ,

%
te((e A1 a%a)) .
(2) tr(e"ﬁH) B exp[ﬂﬁaA] -1
(b) NIATIE = HIAT Iy - B%EX

LE#?Ebjtj¢b 3.75. We say that the linear operator A is
in @ﬂ(H) (ne(0,8)) if A satisfies the following conditions
(Q.l) and (@.2)n : . |
€.1) (=($.1)) D) . DAY > D .
@2, e BT MR- g
Lemma 3.716. For all p e (0,8) ,
*
(a) If A is in Gﬂ(H) , then A 1is in @(ﬁ - n)(H)
(b)_@ﬁ(H).is a complex Vector,space ,
(c) $(D.H) C'@U(H) :
Lemma 3.77. For each ze(0,8) and Ae@n(H) , there exists
a Cauchy sequence{[AN];NGN*}Cj(D;H)/x such that
(a) Ay eFs .
(b) limNQmANx =-Ax. in ¥ for all x e D ,

_..13._
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(c) As a function of Ael0, 4]
zn((A_AN)ef(ﬂ‘A)Hmn_efAH(A-AN)¢n) ‘converges uniformly

to 0 as N—»@ .

For every Ae@ﬂ(H) (ne(0,8)) , we can define an element
of XC(H) [A] by

(3.18) [A] := 1imN+w[A

]
Remark 3.5. 1f we can take another convergent sequence
{[BN];NeN*}Cy(D,H)/N to the operator A in the sense of (b)
and (c) of Lemma 3.17 , we can show that limN»w[BNI = [A]
€ XC(H) . Furthermore , we can show that there exists an
injective mapping ¢ :‘@ﬂ(H)[D — XC(H) defined by
| t(A[D) := [A]
where @b(ﬂ)rn = {A[D ; A € @n(H)}
Defrnition 3.78. For each 7 € (0,A)
@v(ﬁ)/N D= L(Qﬂ(ﬁ)rn) e
Lemma 3.719. For each A € @n(H) , 7 E (O.ﬁ) and t € R .,
(a) eitH/ﬁ A ewitH/ﬁ is in Qb(H)
(by [eitH/E 4 e—itH/ﬁ] _ Wit [

+ * +
(c) [A] =TA] . and [A] e &g - |
Remark 3.6. For [A]e@n(H)/w (np£A/2), it does not always
hold that [A]® is in c, () /~ .

-14-



§4. MORI’S LANGEVIN EQUATION FOR THE RWA-OSCILLATOR
Let a complex Hilbert space QZ(N) be given by
2 o 2
@.1) 2200 ={(eikeNee 5 3 le | <e)
For each feCeﬂz(N) , we denote f by
(4.2) f = (fo.fl.fz.m)
where foeC and (fl,fz,m)eﬁz(N)
An inner product < | > of C@QZ(N) is given by
(4.3) <flg> := Ei::Ofkgk (f.geCe,Oz(N))
Let ?S(Ceﬂz(ﬂ)) be the symmetric Boson Fock space over
C$f2(N) Ji.e.,
(4.4)  F(Cog2(N)) = o°_5_(Cop’ ()"
) S n=0n

where , for all neN , Sn(Cepz(N))n is the n-fold symmetric
tenéor product of C@ﬂz(N) , SO(CeQZ(N))O = C (see,e.g.,
[20,p.53])

For any £ € Cog”(N) . we define B'(f) : §_(Cog”(N)" —

s, (Cog® ()™ by

n
(4.5)  B'(£)y := 4B S_, (fo¥)  (¥eS_(Cog” (N)™)
Let
2 o . (n) o 2 )
(4.6) ?F(CGQ (N)) := {v={¥ }n=0 € ?S(C o § (N)) : there
| exists noeN* such that, for all n?no,

(n)=0}

_15_
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- The suBspace ?F(C@ﬂz(N)) is dehse in ?S(CQQZ(N)) (see,e.g.,
[6.p.68]) . We denote the Fock vacuum QO by
(4.7) Qy = {1,0,0,-}

For each f ¢ Ceﬂz(m) , we define a linear operator A+(f)
on ‘}F(Ceﬂz(ﬂ)) by

) men

{ @A™ - BTy
(4.8)
(A+(f)qr)(0) = 0

Then , A+(f) is densely defined , and~we put

(4.9)  A(E) := AT [ Fo(cor® )
A(f) and A+(f) are called the annihilation and creation
operator, respectively (see; e.g.,[6,8.3.1]) . Operators
A+(f) and A(f) afe closable and the closure of them are be
denoted by the same notation .

Let N=dI'(I) be the second quantization of the identity I
(the number operator). It is well-known that

1/2,

(4.10) D(AT(£)), D(A(£f)) > D(N'%)

with estimates

1A (E)el < 1E1- 1 2y 12
(4.11) 1/2 (v € D(N ))
TACE)¥l < [[£ll-INT" ¥
Futhermore , A+(f) and A(f) leave ?F(Cepz(m)) invariant

which satisfy the canonical commutation relations

_16_
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[A(£).A(g)1=0,[A"(£).A" () 1=0

(4.12) { (f.geCog’ (N))

[A(£).A"(8)]=<f|g> .
on ?%(QEQZ(N)) , where [A,B] := AB - BA .

. A :
Let {ek;keN } be a complete orthonormal system Qf Ceﬂz(m)

given by
(k+1)-th
U
(4.13) ek .= (Ouol'"voiloolol“')
We put
a :=A (eo)
a :=a"(e) .
(4.14)
b, :=A (e;) ,
E N k (k € N)
b, :=A (e, )
k k

Let D(O) denote the algebraic span of a complete ortho-

normal basis of ‘}S(Ceaﬂz(]{\l)) (see [3])

*

1 N 3

n
} ..
Jno.nl. n

+.n +\n +\n *
—(a ) 0(b;)"1-(by) MQ; MeN ,njy.m ME

" 0Ty

Operators ¢ aﬁd a+ physically denote the annihilation
and creation operators of a quantum harmonic oscillatdr ,
respectively . On the other hand, the operators bk and b;
denote the annihilation and creation operators of a heat
bath . respectively .

_17_
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* ' »
" Let {mk;keN } and {Fk;keN} be sequences satisfying the

following conditions (A.1) , (A.2) and (A.3) :

0<ay; 0<a <a <=,
(A.1) o 1
2k=1 5 < o .,
“k

(A.2) 2§=1“’12<|Fk|2 < w .

2

w Tyl

(A.3) h

Wy > 2 .
0 k=1 ﬁwk

ﬁkamp]e:?k:hhve two examples , as the frequency {mk;keN}

satisfying (A.1)

cok=(k2+m2)1/2 , m>0 (the relativistic case) ,

1 , M>0 (the non-relativistic case)

wk=k2(2M)‘

We can define a positive self-adjoint operator @ on
cog?(N) by
o e, = ho e, .
(4.15) {~ 0 00
w e = thoe (k € N)

Then we get the free Hamiltonian H associated with o

0
defined by |

(4.16) H, =, dI' (@)

where d['(w) is the second quantization of w .

_18_..
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Let
(4.17) 7 = (0.F].T5.-) € cog?(m)
and’let
(4.18) H, := A+(7)A(e0) + A+(e0)A(7)

The operator H describes the Hamiltonian of the oscilla-

I

tor interacting with infinitely many scalar bosons . We

note that
(0)

0 - ., + +
(4.19) HI = Ek=1(rkbka + Fka bk) on D

Since the operator HI is well-defined on ?F(Ceﬂz(m)) and
symmetric , we denote the closure of HIF?F(Ceﬂz(N)) by the
same symbol . Then , the total Hamiltonian H is given by
(4.20) H := Hy + HI .

We have D(HO) ¢ D(H) , and the closure of HfD(HO) is es-
sentially self-adjoint on any core for HO' We shall denote

the closure of HfD(HO) by the same symbol H .

We define a linear operator [ on Ceﬂz(N) as follows :

(4.21)  D(L) := E<L.h.[{e, ;keN }]

oo P'Q
' wnen T 2 e (k=0)
(4.22) L e :- FO 0 =141 ¢
.fkeo + @) € (k=1,2,-)

It is easy to see that the operator L can be extended to
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a closed symmetric operator on Ceﬂz(N) , and E is a core
for its extension .
Lemma 4.7. (a) L is self-adjoint , and there exists a

x
unitary operator U on C@ﬂz(N) such that [J Lﬂep =

€ e,
PP
where ep>0 for any peN* and {ep:peN*} is the all zeros
2
o Tyl
Of D(Z)=Z - &)O’+ zkzl—z—-——'— .
h (wk—Z)
%
(b) Put <ek|IUep>=:ukp (k.peN ) . theP
x (keN:peN')
u, =- u eN: pe ,
k @~ 0
P ﬁ(wk ep) P
2
[ lrkl X
Ep‘(oo"'zk:lﬁ———e—)“o (peN )
Y T Ey
2
2 w gl -1 %
ugl? = {143y T )2} (pel’)
“k ®p

Let T(U) be a unitary operator on ?S(CQQZ(N)) defined by

n

(4.23)  T@W [ S _(Cop”M)" = op_,U (0 € N)

(4.20) T [ sy(€ o g7’ = T (the identity)

and define for each f ¢ C@ﬂz(ﬂ)'
g ) = ranateHrra Tt

(4.25) { 1
B (f) = T(WA ()I(U)

;20_
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-We put

ﬁ£-== ﬁ+(ek)

*
(4.26) { (k e N)

ﬁk :=.ﬂ (ek)
Since [ is unitary on Ceﬂz(N) , the following commutation
relations hold on ?F(Cepz(ﬂ)) , for all f,g ¢ Ceﬂ?(N) ,
(4.27)  [B(£).8°(8)] = <f|g> .
(4.28)  [A(£).8(g)] =0, [ (£).8(g)] =0 .
% *
Lemma 4. 2. d(H)={ﬁeon0+m+ﬂeNnN;NeN .no.m.nNeN }
corollary: H satisfies conditions (H.1) and (H.2)

Lemma 4..3. (a) ﬁp, ﬁ;eﬁ(D.H) are H-diagonal .

: *
(b) s = - =-g+ (p e N)
ﬂp P ﬁp

Lemma 4.4. q and a+e@ﬂ(H) (€(0. 4))
Lemma 4.5, (2) ol@=-@ )y

where «w(q) denotes the Mori’s frequency of q .

F(z)

(b) For zeC |, jgt g(t)e't? = lola) 35y

where ¢ is the Mori’s memory function of q .

1

_1 —_
(L )y, ((z-L) )
e kp kp
F(z) := 2p=0
pzk -1 -1

: | 2 i
and , for any operaﬁoriT'on Cog”(N), Ty =<e,|Te > .
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]Zeoremv4L€i (a) Mori’s Langevinlequation for [gl(t) 1is
‘ d t. ,
(4.29) af[a](t)=iD(0)[a](t)—JgS ¢(t—5)[a](5)+[IM](t) :

Here the Mori’s memory function ¢ is characterized by

itz,,. . _ iD(0)F(z) +
H(t) = ’2”(1 TF(D)) (zeC )

(4.30) L st e
2% 0

and ¢(0)=-D(0)A=-w(a)A . where

2 2
T, | o Tl
2 and AR 3
h wp(wp‘Z) B ey

(4.31)  F(z):=%_,

and Mori noise [IM](t) satisfies

(4.32)  <[1,1(0);:[1,1(0)>,=- B%Si_% - %EA‘
) R (t) = <[al:[al(t)>

R G 1 e ' p

- Ak p=0|D’(ep)[ " €

is an almost periodic function .

Kemark 4.7. The equality «(q)=D(0) physically means that
Mori’s frequency is equal to ‘the difference between the
frequency @ of a quantum harmonic oscillator and the ini—
tial value of the canonical correlation function of Mori

noise multiplied by gh. In [11], K.Lindenberg and B.J.West

T22-
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gave attention to the quantity A . (4.32) gives such a
physical meaning that A is the initial value of the canon-

ical correlation function of Mori noise multiplied by gh
We note that Ra(t) does not converge as t — o .
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