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On the Weyl Quantized Relativistic Hamiltonian

- Kato's inequality and essential selfadjointness -

Takashi Ichinose (& RKXK B —#8 #)

Deparfment of Mathematics, Kanazawa University

1. Introduction.

The classical relativistic Hamilonian of a spinless parti—

cle with mass m=0 in an electromagnetic field is given by

(1.1) h(p,x) = h,(p,x) + ®(x) = J(‘p—A(X))2+m2 + 0(x),
(p.x)eRIxRY.
Here measurable functions A: Rd - Rd and ®: Rd -» R are respec-
tively the vector and scalar potentials of the field. For A(x)
and ®(x) as general as possible, we want to define the Weyl
quantized relativistic Hamiltonian H = HA+¢ corresponding to
(1.1). & may be defined as the multiplication operator ®d(x)x by
the function m(x). But how does one define H, corresponding to

A

the symbol hA(p,X) ? Indeed, 1if A € Qm, HA may be defined as

W

" the Weyl pseudo-differential operator HA

(1.2) w0 = 20 Y FEP JpoadY)) Zn? u(y)dyap,
ues (RY) .

The right-hand side of (1.2) exists as an oscillatory integral,
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so that HX defines a symmetric operator in LZ(Rd) with domain
CZ(Rd). It can be shown [4] with the general theory of Shubin
[12] that HX is essentially selfadjoint on CZ(Rd). How about
the case for a more general A(x) which is not necessarily gmooth
and bounded ? This question is motivated by an inspectiqn of
the path integral representatiqn, obtained in {4], for the semi-

group exp[—tHX]: for g € LZ(Rd),

(1.3) (exp[—t(HX—m)]g)(x) = I o ~18(t,X)

g(X(t))da (X) ,

t+ .
with st = [ A(X(s-)+y/2) -y Ny (dsdy)
0

lyi1>0

t
. f f [A(X(s)+y/2)-A(X(s))]-y dsn(dy).
oY lyi>0

"Here n(dy) is a o-finite measure on Rd\{O} , called the Lévy
measure, which behaves as O(|y|~(d+l))dy near y=0, and is, on
{lyl=z1}, a bounded measure. Hence the right-hand side of (1.3)
makes sense, at least,if A(x) is locally Holder continuous. This
suggests that there may be an alternative definition of the Weyl
quantized relativistic Hamiltonian HA cqrresponding to the
classical symbol _hA(p,x) which is still valid for genefal A(X).
In the present lecture we shall give a survey of our receht
results [2], [3] on this matter. Finally we quickly explain here
the other notations in (1.3). AX is a probability measure on the
space DX([O,m)aRd) of the right-continuous paths X : [O,m)ﬂRd
having left-hand limits with X(0)=x. NX(dsdy) is a measure,
depending on each path X, on (O,m)x(Rd\{O}) defined by Nx(dsdy)
= NX(dsdy) - dsn(dy)‘with a counting measuré

NX((t,t’]xB) = #{ s€(t,t"]; X(s)-X(s-)€B },

where O<t<t’and B is a Borel set in Rd\{o}.

- 2 -
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In Section 2 we give our definition of the Weyl quantized

relativistic Hamiltonian H for general A(x) and discuss the

A

problem of its essential selfadjointness. The solution is

reduced to establishing of an analogue of Kato's inequality be-

tween HA and JfA+m7. Section 3 is devoted to an outline of
proofs of the theorems. In Section 4 some remarks are given.

2. Definition of the Weyl Quantized Relativistic Hamiltonian and

Theoréms.
Unless otherwise specified, we assume that A: Rd - Rd is

measurable and satisfies that

(2.1)  A(x) and j IA(x-y/2)-A(x) | 1y1™ 4 dy

0<l|yl<1
are locally bounded.
In particular, a locally Holder continuous A(x) satisfies (2.1).
We shall define the Weyl quantized relativistic Hamiltonian

H corresponding to the classical symbol hA(p,x) as follows.

A

Definition.

[e*iyA(x+y/2)
ly1>0

(2.2) (HAU)(X) = mu(x) - I u(x+y)-u(x)

-iA(x))u(x)In(dy),
ue ¢RY.

Ty i<1y¥ (9

Here I is the characteristic function of the set {lyl<1}.

{lyl<1}
The Lévy measure n(dy) is given by

(d+1)/2 -(d+1)/2
C(d)m 1yl K (mlyl)dy, m>0,
(2.3) n(dy) = (d+1)/2

¢ (@) 1y1~ 4 gy,

where €(d) and C'(d) are constants depending on the dimension d,

and KU(z) is the modified Bessel function of the third kind of
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order v. One can directly calculate (2.3), using the fact [7]
that t—lko(t,y)dy - n(dy) as ti0, where ko(t,x4y) is the kernel

of the operator exp[-t(/-A+mZ -m)].

Lemma 1. HA is a symmetric operator in Lz(Rd) with domain Cz(Rd).

Proof. Let u € CZ(Rd), and write

(2.4) (B (0 = muex) - [ [T AEY Dy (xay) u(x) In(ay)
lyl=1
- f [e"iyA(X+y/2)u(x+y)—u(x)—y(ax—iA(X))u(X)]n(dy)
O<lylx1
= mu + Ilu + Izu.

Noting (2.3), we can show that Il is a bounded linear operator

on LZ(Rd) and that 12u is a continuous function with compact

support, and for every compact K4 c Rd there exists a constant CK

such that, for u € Cz(Rd) with supp u g K,

(2.5) 1T, ull, < Cpllull_+hdull_+188ul_].

To show HA is symmetric we have to show that for I1

is seen that (Ilu,v) =~(u,Ilv), u,v € CZ(Rd), by change of vari-

and'Iz. It

ables and by invariance of n(dy) under the transformation y - -y.

Similarly, I, is symmetric, if we note

2
f [e-iyA(x+y/2)

(Izu)(x) = - lim u(x+y)-u(x)In(dy). O
e<lyi<i

el0

Next, we shall explain where the definition (2.2) of HA
comes from and see thathA coincides with the Weyl pseudo-differ-
ential operator HX , (1.2), if A(x) satisfies, for instance,

(2.8) Aec”, 1% < Cy » ol 2 1.
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Notice that the condition (2.6), which is a little more genéral
than A € Bm, inciudes the physically important case of constant
magnetic fields : A(x) = A-x with A a real constant matrix.

Our starting point is the Levy-Khinchin formula ([6],[11])

(2.7) /p?+m?Z = m - I [eipy—l—l{|y|<1}ipy]n(dy).

lyl1>0
Let u € Q(Rd). Multiply both sides of (2.7) by the Fourier

transform ﬁ(p) of u and make the inverse Fourier transform. Then

(2.8) (/?EIET u)(x) = mu(x)
-]

First note with HO = /-A+m? that when A(X)éO, (2.8) is consis-

Iy|>0[U(X+y)—U(x)~—I{lyl<1}yaxu(x)]n(dy).

tent with (2.2). On the other hand, if A(x) satisfies (2.8), we
can rewrite (1.2) as oscillatory integrals, by changing the

variables p~A(§%X) = p° (writing p again instead of p”"), to get

Il

(HXu)(x) (Zn)—dffexp[i(x—y)-(p+A[§%X))]J57:E7 u(y)dydp

(sz:ﬁ7 (exp[i(x—')-A[X;‘)]u(-)))(x).

Since, for x fixed, the function y - exp[i(x—y)-A(zéz)]u(y)

belongs to Q(Rd), we see in virtue of (2.8) that the above last
formula equals HAu, concluding that HX = HA on 9(Rd). Thus

we have shown

Lemma 2. If A(x) satisfies (2.6), then, for u € Q(Rd),

(2.9) (Hyu)(x) = (HXu)(X) = (/?ZIE?(exp[i(x—-)-A[X;‘)]u(-)))(x).

Remarks 1°. The relation (2.9) says that apply HA or HX to
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u amounts to the same thing as apply the free quantum
Hamiltonian /-A+m? to the appropriately "gauge transformed" u.
. Of course, the same is valid for the Schrodinger operator with
magnetic fields:

(-10-A(x)) 2u(x) = (-a(exp[1tx-) a3 ) Ju))) 0. w e 9®Y.

O. can also be obtained by

2 The expression (2.2) Of H

A
calculating, through Ito's formula'(e.g. [6]), the generator of

the semigroup represented by path integral (1.3).

The main results are the following two theorems.

2
loc

Theorem 1. Suppose that A(x) satisfies (2.1) and ® € L d

(R™),
- ®(x)20 a.e. Then
(i) HA + ¢ 1is essentially selfadjoint on C:(Rd).
(ii) The selfadjoint extension of HA , denoted-again by the
same HA , 1s bounded from below: HA = m.
Remark. Nagase-Umeda [10] have shown that if A(x) satisfies
(2.6), the Weyl pseudo-differential operator HX is esséntially

selfadjoint.

Theorem 1-(i) can be shown in just the same way aé in Kato
[8], if an analogue of Kato's inequality (as in Theorem 2 below)
is established. Notice that (J?ZTE? +1)_1 is poSitivity preserv-
ing. bThe proof of Thebrem 2-(ii) follows from the proof of
Theorem 2. |

Now, for u € LZ(Rd), define a distribution Hyu € @'(Rd) by

. ~ o, . d
(2.10) C(Hyu,@) = (u,He), @ € Co(RY).

_6_
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Here note with (2.4) that lIIl(,oII2 < Cﬂmﬂz and (2.5).

Theorem 2 (Kato's inequality). Suppose A(x) satisfies (2.1).

1

2
If u € L and HAu € Lloc ,

then the following distributional

inequality holds:

(2.11) Re[ (sgn u)HAu] > /-A+m? lul.
: . u(x)/lu(x)l, u(x)# 0
with (sgn u)(x) =
0 s u(x)= 0.

3. Outline of Proofs of Theorem 2 and Theorem 1-(ii).

In the proof it is crucial that HA is represented as an
integral operator (2.2).

(First Step) Let u € c~nL?

, and put US(X) = Jlu(x) 12+g2, €>0.
Then u_ is c”. Since -|v(x)|Iv(x+y)|+lv(x)]|2 >
-V (X)V_(x+y)+v_(x)?, and dlu(x) 12 = 8u_(x)?, we have (writing,

for simplicity, ((HA—m)u)(X) and ((Ho—m)ug)(x) as (HA—m)u(x),

and (Ho—m)us(x), respectively)

(3.1) Re[u(x)(HA—m)u(x)] = 2—1{u(x)(HA—m)u(x)+u(X)(HA—m)u(x)}

J

+ u(x)le

I
D=

’(“(X)[e_iyA(X+y/2)u(x+y)—u(x)—I

|<1}y(ax—iA(X))]u(X)

ly 1>0 {ly

iyA(x+y/2)u(X+y)_u(X)_I{|y|<1}y(ax+iA(x))u(x))])n(dY)

b2 I [-lu(x) lu(x+y) I+lu(x) 1?2 + 2_1I{|y|<1}y8|u(X)IQ]n(dy).

lyt>0

2 f [~u8(x)u8(x+y)+u8(X)2 + 2_11{‘y|<1}y8u8(x)2]n(dy)

lyl>0
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= uS(X)(HO—m)uS(X),

pointwise. Integrating the first and last members of (3.1) yields
Re((HA—m)u,u) p3 ((Ho—m)ug,ue) > 0. This proves Theorem 1-(ii),
since HA is symmetric by Lemma 1.

On the other hand, dividing the first and last members of

(3.1) by u8 yields

(3.2) Re[(u(X)/ue(X))(HA—m)u] > (Ho—m)us,

pointwise and so in the distribution sense.
8

(Second Step) For general u, let u = 05*u , where p6* is
Friedrichs' mollifier. We obtain from (3.2)
5,8 8 8
(3.3) Re[[u /(u )8](HA—m)u ] > (H -m) (u®), .
where (u‘s)8 = (Iu5I2+82)1/2, £>0. We let 810 first and then £i0.

As 8§10, we have (by taking a subsequence if necessary) uaau in

L2 and a.e. so that (u6)8-~>u8 in L2 and a.e. It follows that

{us/(ua)g} is bounded and converges to ﬁ/u8 a.e. and Ho(ua)8 >

Hou8 in 92°. For the moment, suppose that
8 . 1
(3.4) HAu - HAu in Lloc’ $40.
Then the left-hand side of (3.3) converges in Lioc Thus we get
(3.5) Rel[ (sgn u)(HA~m)u] > (Ho—m)lul,

in the distribution sense. Finally let gl0. The left-hand side
of (3.5) converges to Re[(sgn u)(HA—m)u] a.é., while the right-

hand side to (Ho—m)lul in 2°. o

To prove the remaining assertion (3.4), we need regularity

of a function u € L2 with HAu € Lioc as in the following lemma.
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Lemma 3. If u E,L2 and HAu € Lioc , then u has a decomposi-
tion u = ug+ou, such that, for every ¢ € C:(Rd),

1

2
wul, Howpl E‘L , and wuz, Hoqltu2 € L°.

First we prove (3.4). By (2.4), HA = m + Il+ 12. Let u €
1

. 2, 5d
loc® 1 is a bounded operator on L“(RY),

2 1 . é .
we have Ilu € L°, and hence Izu € Lloc‘ Since Ilu - Ilu in
2

: ) . 1 .
L™ as 810, we have only to show Izu - Izu in Lloc' It is
b

clear that 12u - 12u in 92'. Therefore it suffices to show
8’ . 1
u

é : )
(3.6) . Izu - 12 - 0 in L1OC s 8,8 1 0.

L2 and HAu € L Since 1

To see (3.6), first note that for every compact K C Rd

there is a constant C, such that, for wECZ(Rd) with supp ¢ c K

K 4’
(3.7) IT00, 4 = IK|12@|dx < CelIH ol +lol,], i-1,2,
where Kr = {x; dist(x,K)xr}. Next let ¢ € Cz(Rd), 0L ¢y (x)x£1,
with ¢(x)=1 on K2 and supp ¥ c K3. By Lemma 3, u = u,+ U, - yu

and ¢u2 are L2, and so is wul. If 0<é&<<l, the (t,!rui)‘5 satisfy

the condition for ¢ in (3.7). We have, for i=1,2, Ho(l#ui)6 =

é
and 12ui

) i B )
(Ho¢ui) € L = Iz(wui) on K. Then, by (3.7),

&%)

8
HIzu —12u 1.K

2 S 8’ 6 8’
S N N TR ASC R A IR IO LSO A P

whence follows (3.86).

The proof of Lemma 3 needs task. We establish a kind of

1

1loc (cf. [5,

integral representation for u € L2 with HAu € L

Appendix]). We get from (2.9)



((Hy+Du,0) = (u,(H,+1)e), o € Co(RY).

Take ¢@(y) = GS(X—y) with
- - 7wz '
6. (x) = (2m) Y 2x(x/R)% 1(exp[ g(/p°+m +l”)(x), £ 20,
€ /pZ+m? + 1

where x € Cz(Rd) and R > O (?~1 denotes the inverse Fourier
trahsform). Then
(3.8) ((HA+1)u,G8(X—-)) = (u,(HA+1)G8(x—')).
Write

((Hy+1)G (x--)) (y) = ((H+1)G (x-+)) (y)- E (x,y)- F (x,¥)
and let ¢gl0. Then the right-hand side of (3.8) converges to

u-Qu-Eu-Fu , while the left-hand side of (3.8) converges to

1

G[HA+1]u, both in Lloc

Thus u = G[HA+11u+Qu+Eu+Fu. Here Q, E
and F are certain integral operators, and G is the one with ker-
nel GO(X—y). Then Lemma 3 follows by studing the kernels of G,

Q, E and F with the aid of the theory of singular integrals. O

4. Concluding Remarks.

1°. our Weyl quantized relativistic Hamiltonian HA“general—
ly differs from the square root of the nonnegative selfadjoint

operator (-i8-A(x))2 + m?

HA # /(-19-A(x))?+ m?
They coincide for A(x) = A-x, with A a real symmetric constant
matrix. This can be seen with the composition formula for Weyl
péeudo— differential operators (e.g. [1, p.151-21).

However, we shall not discuss which is physically more

appropriate as a relativistic quantum Hamiltonian of a spinless
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particle. HA suits better from the path integral point of view,

because HA has an exact classical symbol hA(p,x) as a Weyl

pseudo-differential operator (cf. [9]). But HA is not gauge-

invariant, though J(-1i8-A(x))<+m“ 1is.

o) 2

27. When A(x)=0, Theorem 2 turns out: If wu € LT and

Ty 1
J-A+m? u € Lloc , then
(4.1) Re[ (sgn u)/-A+m?2 ul > /-A+m? |ul,

in the distribution sense. It appears that Theorem 2 should
follow immediately from (4.1) and (2.9) by substituting the
function exp[i(x--)A(X;.

problem whether (2.9) is true for A(x) not satisfying (2.8) or

)]u(-) into u in (4.1). However, it is a

u(x) not belonging to Q(Rd).

3°. An analogue of Kato's inequality will be shown for the
operator L corresponding to the Lévy process (e.g. [13]):

= = d S+ d +
(Lw) (x) = -[5§ ) 8585, 008, + 35_1b,(08; + c(x)]ux)

-]

- O[u(X+y)—u(X)-I{|y|<l}y8u(x)]n(x,dy).
yv|>

_11_
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