SKP hieranchy & OSp-SKP hieranchy 1: 7117

都立大理 池田薰 (Kaoru. Ikeda)

80. 序文

KP hierarchyは普遍Grassmann別様体(UGM)上のか学系とコなすことができ、UGM上の各手rameは初期データとしてかりhierarchyの解をパラメトライズする[5]。この Picture はかけ Phierarchyにもあてはまる[8],[7]。 かけ Phierarchyにもあてはまる[8],[7]。 かけ Phierarchyになるな体 "超場"(super field)上への け Phierarchyの自然な拡張でする[3]、[4]、[10]、[17][13]。
かり Phierarchyには普遍起 Grassmann 別様体(USGM)が対応する。

さてドPhieranchyによいて無限個する時間変数の珍偶数番目の変数をOとずく。 さらに解となる擬微分作用素"W"に対して 2xW*2x=W", たた"レ*はformal adjointとする, なる対称性を課す。こうして得たh:eranchyをBtrPhieranchy [1]という。 BKPhieranchyの対称小生(2xW*2x=W")はでの初期データでするひGM上のframeの条件によきかえられる。

それは frame の名かがクトがみたする次の関係式でする。 逆にそのような条件をみたすひのM上のframeがら BhP hienahchyを構成することができる。 条件 ax W*ax = W は 無限次元 tie群 O(00) に関する対称性であることがわがる。 以上の影論を Super化する。 O(00) にあたるものは tie super群 OSp(3), ただし Sは超場ならわすものとする。 でなり BhP hie nanchyにあたるものは 表題の OSp-ShP hienanchy である。

この小論は筆者が最近上野喜三雄氏(早大理工), 山田裕史氏(都立大理)の3人で行った仕事[12]の一部の紹介であ [12]ではSHPhierarchyの双線形留数公式や外重ソットン 解の構成についても述べられているがそれるの事項に関して はすでに上野日の詳しい解説[8],[9]があるのでそちらを参 既していただきたい。 以下この稿の構成を述かる。 ずいて我はBAPhieranchyについてゆや詳しく論じる。 この館の主目的はOSp-StrPhienarchyの紹介にあるのだが, BhPhienanchyの話にはOSp-ShPhienanchyの試論の基礎 になること、いきなりSuperからはじなると記号の複雑さ等 により豁しの本筋が見えなくななことなどからえのようなした。 ニニでは擬微分作用素工器の2×21下引入の表現を考え、BHPhienanchyの解になるopenatorWへの条件 2x W*2x=W~15m O(m)に関する対称小生の条件に他ならないことを示す。 さら

最後に我々がこの小論でひGM(USGM)といって113のはひGM(USGM)全体ではなくての網密な肥体でGM^P(USGM^P)にあたるものである。 この小論によりる議論をUGM^P(USGM^P)から UGM(USGM)全体人 拡張することは(その難るは別として)分後の課題となるう。

§ 1 BKP hierarchy 1: 7 "7 .

んを標数 0の体とし、光= を[[x]] を R上の X に 廟 する形式的中級数環でする。 微分作用素環 D. 擬微分作用素環 E たなで定義する。

$$\mathcal{P} = \left\{ P = \sum_{0 \le j < +\infty} \alpha_j(x) \partial_x^j \mid \alpha_j(x) \in \mathcal{X} \quad \alpha_j(x) = 0 \text{ for } j > > 0 \right\}$$

$$\mathcal{E} = \left\{ P = \sum_{-\infty < j} \alpha_j(x) \partial_x^j \mid \alpha_j(x) \in \mathcal{X} \quad \alpha_j(x) = 0 \text{ for } j > > 0 \right\}$$

さて t=(t₁,t₂,t₃,--) を無限個の時間変数として光係数のも に関する形式的巾級数環 X[[t₁]] をあるためて光と書(。 トア hierarchyの Sato 方程式とは次のものである。

$$\frac{\partial W}{\partial t_n} = B_n W - W \partial_x^n \qquad n = 1, 2, \dots$$
 (1.1)

19
$$W = \sum_{j=0}^{n} w_{j}(x,t) \partial_{x}^{-j}$$
, $w_{j}(x,t) \in \mathcal{K}$, $w_{o}(x,t) = 1$ z^{n}

$$B_{n} = (W \partial_{x}^{n} W^{-1})_{t}$$

このときWをKP hierarchyのwane operatorを113。 以後 か、Eの係数には時間変数もが含まれているものとする。 E から Mat(2×2,2)への写像やも以下のように定義する。

$$t t \in Q_{i}^{i} P = \sum_{j} \phi(P)_{ij} \partial_{x}^{j} .$$

 $Fact 1 \phi は積を保存する。 すなもち <math>P,Q \in E$ if $\phi(PQ) = \phi(P)\phi(Q)$ 。

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x} PQ = \frac{\partial \mathcal{$$

WekPhierarchyのwave operator と73と $\phi(W^{-1})|_{X=t=0}$ 三月は UGH 上のframeとなる。ただしこ月= $(S_{ij})_{i\in \mathbb{Z}}$ 。 」、てか Phierarchyの mave operator は UGH 上のframeを定める。
逆の対応として

命題2 日をUGM上のframeとする。 $\vec{w}=(\cdots w_z,w_z,1,0\cdots)$ $w_j \in \mathcal{X}$ が次の方程式をみたすものとする

$$\stackrel{\star}{m} \exp(x\Lambda + \sum_{j=1}^{\infty} t_j \Lambda^j) \subseteq = 0$$
 (1.2)

 $z = \sum_{j=0}^{\infty} w_j \partial_x^{-j} = 1 + Phierarchy n wave operator z = 1 + 3 = (Sixinj)_{i,j \in 2}$

証明 方程式 (1.2) を Grassmann 方程式と11 う。 Grassmann

方程式に関する補額を述べる。

補題3 こ, こをひらM上のframeとする。 こ, こに自 3 3 Grassmann方程式が同じ解 * 記= (… m2 m, 1,0...) をもっとする。 フェッ

$$t = \exp(x_{\Lambda} + \sum_{j=1}^{\infty} t_{j} \Lambda^{j}) \Xi' = 0$$
.

このとき、3geGL(NC)が存在して 三三三go

三日明 Ghassmann 方程式 (1.2)に対し右から 3ge GL(Nc) さかけることにより次の方程式を得る。

$$\overrightarrow{w} \exp(x_A + \sum_{j=1}^{n} t_j A^j) = 0$$
 (1.2)

 $f_{\xi} f_{\xi} = \left(\frac{2}{3} \right)_{i \in \mathcal{D}} \quad \text{if } f_{\xi} = \int_{i \in \mathcal{D}} f_{\xi} f_{\xi} \int_{i \in \mathcal{D}} f_{\xi} \int_{i \in$

ポップ t 成に対してごか一意にさだまることをいえばより。 (1.2)の西辺をみに関しか回微分すると

$$\vec{w} [n] e \times p (\times \Lambda + \sum_{j=1}^{n} t_j \Lambda^j) \widehat{\Xi} = 0$$
 (1.3)

を得る。 ただし *放[n] = (····**1.00··) なるものであり *放より一意に定まる。 (1.3)におりてX=t=の となくと

$$t_{\widetilde{M}}[n]|_{X=t=0} \widetilde{\widetilde{\Box}} = 0$$
 (1.4)

でなる。 (1.4)より 気は各」につき (三)より順次定まる。 、 ごはなびに対し一意に定まる。神類の証明終ろ。//

さて (1.2) によりさだまる Operator Wは次をみたす。

$$\Xi = \phi(\vec{w})|_{x=t=0} \Xi_{\phi} g \tag{1.5}$$

ただしまちGL(N^c)のお3元。 実際 $WW^{-1}=1$ ェツ西辺のタ をとって $\phi(w)\phi(w^{-1})=1$ 。 (1.6)

ところで一般にPEEとするとLeipningの法則により

OxP=シナPdx。 西辺の中をとると

$$\frac{\partial}{\partial x} \phi(P) = \Lambda \phi(P) - \phi(P) \Lambda \tag{1.7}$$

を 得る。 方程式 (1.7) を 積分 する と

$$\phi(P) = \exp(x\Lambda)\phi(P)|_{x=0}\exp(-x\Lambda) \tag{1.8}$$

を得る。 Wo = Wlt=0 とする。 (1.5) & M (1.6) より

$$\phi(W_o) \exp(x \Lambda) \phi(W_o^{-1})|_{x=o} \exp(-x \Lambda) = 1 \qquad (1.9)$$

(1.18)の西辺に右からこpをかけて外の行目に注目すると。

ただし、 は、 は $p(W_0)$ の 才 0 4 f B で $1_{NC} = (S_{i+1,j})_{i,j \in NC}$ 。 さて $(1\cdot 2)$ に まいて t = 0 とすると

$$\vec{w} = \exp(x \Lambda) = 0$$
 (1.11)

を得る。 (1.10) と(1.11) を比較すると補題るより(1.5)を得る。 さて知は(1.2) と同値な Grassmann方程式

$$t = \exp(x \Lambda + \sum_{j=1}^{\infty} t_j \Lambda^j) \phi(W^{-1}) |_{X=t=0} \exists \phi = 0$$
 (1.12)

をみたす。 ところで $Y = W \exp(\frac{\infty}{J_{=1}} t_j \partial_x^J) W_0^{-1}$ とおくと (1.12) より Y は $\partial_x = \mathbb{R}(\mathbb{E} p \ n \rightarrow n \ o \ perator (<math>\partial_x^2 \in \mathbb{E} \pm 13$) と $\mathcal{Y}|_{t=0} = 1$ を みたす。 $\mathcal{U} = W_0^{-1}$ とおくと W, Y は

$$W^{-1}Y = \exp\left(\sum_{j=1}^{\infty} t_{j} \partial_{x}^{j}\right) U \tag{1.13}$$

をみたす。 (1.13)は擬微分作用素の群に関するBirkhoff分解であり Birkhoff分解よりドPhierarchyが強うことは見易い(Cf[4],[1]])。

以上見てきたように KP hierarchy と UGM は 写像 p & w Grassmann 方程式を通じ 互いに対応 (7113。 次に B KP hierarchy について述べよう。 $\widehat{\mathcal{X}}$ を $\widehat{\mathcal{X}}$ = $\mathcal{X}|_{t_2=t_3=\cdots=0}$ となく。 B KP hierarchy とは

$$\begin{cases} \frac{\partial W}{\partial t_{2n+1}} = B_{2n+1} W - W \partial_{x}^{2n+1} & m = 0.1.2, \dots \\ \partial_{x}^{-1} W^{*} \partial_{x} = W^{-1} & (1.14) \end{cases}$$

命題4 PEEに対して

\$\phi(p*) = \K \phi(P) K

がなりたつ。 但し $J=(i-)i_{Si,-j})_{i,j\in\mathbb{Z}}$ として $K=\Lambda J$ とする。

証明 $P=f\in\mathcal{K}$ とする。 $\phi(f)_{i,j}=\binom{i}{i-j}f^{(i-j)}$ でする。ただし
(を) $a,l\in\mathbb{Z}$ は 2 耳原係数で (を) =0 そ ℓ との とする。 一般に $A=(a_{i,j})_{i,j\in\mathbb{Z}}$ としたとき

* K * A K = ((-) " a-j-1,-i-1) :.jez z" \$ 3 \$ 5

$${}^{t}k^{t}\phi(f)K = \left((-)^{i-j}\binom{-j-1}{i-j}f^{(i-j)}\right)_{i,j\in\mathbb{Z}}.$$

$$=(-)^{i-j}\begin{pmatrix}i\\i-j\end{pmatrix}.$$

 $f^* = f$ x) $P = f \in \mathcal{X}$ in 対(て命題の主張は正しい。 次に $P = \partial_x^n \ge 13 \ge \phi(\partial_x^n) = \Lambda^n \tau^* + f^n H = (-)^n \Lambda^n$ 。 $-f(\partial_x^n)^* = (-)^n \partial_x^n \ge 1$ $P = \partial_x^n = x \ne 1$ in $x \ne 1$ in $x \ne 1$ $x \ne 1$

以上のことより一般のPER対しても命題の正当性は明らか。 証終/

命顕4により (1.15)の西辺の中もとると

$$\mathcal{J}^{\dagger}\phi(w)\mathcal{J} = \phi(w)^{-1} \qquad (1.16)$$

これは $\phi(W)$ 無限次元直交 Lie 2 0 (m) [1], [7] (=属17113) ことを示している。 但し 0 (m) とは次のよに群である。

$$O(\infty) = \{ A \in GL(\infty) \mid J^{\epsilon}AJ = A^{-1} \} \quad .$$

 $\langle \vec{3}_i, \vec{3}_j \rangle_B = 0$ i,j < 0 (1.18)

が成り立つ。 ただし $f=(f_i)_{ie2}$, $g=(g_i)_{ie2}$ としたとき $\langle F, F \rangle_B = \sum_i (f_i)_{ie2}$ とする。

さて一般に 三=(乳)(co が (1.18) をみたしていたとする。 1 3と 日EGL(Nº) に対に 三よりを1ラバクトルも(1.18)をみたす。

(1.18) をみたすframeをisotropic frame ということにすると以上のこと より isotropic frameという条件は UGH上の条件とCZも well defined であることがあかる。 Isotropic frameよりなるUGMの部分集合 をi-UGHと呼ぶ。 いままごり議論から

*BHP hierarchy に対応するひGMの点はi- UGMの点であ。"
き得る。

次にこらi-UGMな3frameとする。このときGrassmann 3程式

$$\overrightarrow{w} \exp(x_A + \sum_{i=0}^{\infty} t_{i+1} A^{ij+1}) = 0$$
 (1.19)

エッモに関する kphieranchyの mane operator W E4等3。このとこW は Bkphieranchyの mane operator となるか、 Wが (1.15)をみたすが正かと考察によう。

補題5 Grassmann为年显式

 $t_{m_0} \exp(x\Lambda) = 0$ (1.20)

の解すべい。より構成される mave operatorをWo とする。このでき 日モレーUGHならば、中(Worl) 日から isothopic frameとなる。 証明 $W_0W_0^{-1}=1$ より正型の中をとると $\phi(W_0)\phi(W_0^{-1})=1$. ところで一般に $P\in\mathcal{E}$ に対してライプ・ニッツ則 $\Im_XP=\Im_X^2+P\Im_X$

上式の西辺の中をとることにより

 $\frac{\partial}{\partial x}\phi(P) = \Lambda\phi(P) - \phi(P)\Lambda$

を得る。 この方程式を積分すると

 $\phi(P) = \exp(x\Lambda)\phi(P)|_{X=0} \exp(-x\Lambda)$

を得る。 p(Wo)p(Wo+)=1に上式を適用すると

 $\phi(W_0) \exp(X\Lambda) \phi(W_0^{-1})|_{X=0} \exp(-X\Lambda) = 1$ (1.21)

(1.21)の西辺に右から它pをかけその沙の行目に注目すると Grassmann 方程式

を得る。 裕顕3より =g = GL(N°) 3 で存在して ((1.20) と64較に) p(Wo⁻¹) |x=o こ。 = こ g

s, z 中(Wot) |x=o こりはisotropicでも3ミとがわかった。 よ, z

exp(x1) \$ (Wo) |x=0 Epexp(-X1NC) : isotropic

∴) exp(x1) € 0(00)

= exp(x1) \phi(W_0^1) |_{X=0} exp(-x1) \bigg|_{\phi}

= $\phi(W_0^{-1})$ C_{ϕ} : isotropic

たたし ANC=(Sithis)ijco。 これで補題がは示せた 証終/

補題6. $P \in \mathcal{E}$ を O階 monic \mathfrak{T} operator \mathfrak{T} あるとする。 このとき $\phi(P) \subseteq_{\rho}$ 5" isothopic \mathfrak{T} frame \mathfrak{T} あるとすると $\phi(P) \in O(\infty)$. **這**日日 $\phi(P) = (\vec{P_i})_{iea}$ とすると \mathcal{T} $\phi(P) \mathcal{T}$ $\phi(P) = (\langle \vec{P_i}, \vec{P_i} \rangle_{B})_{i,j \in \mathbb{Z}}$. 安かわかる。

$$(4r) \langle \overrightarrow{p}_{c}, \overrightarrow{p}_{j} \rangle_{B} = \begin{cases} 1 & i=j \\ 0 & i < j \end{cases}$$

$$(4r) \langle \overrightarrow{p}_{c}, \overrightarrow{p}_{j} \rangle_{B} = \begin{cases} 1 & i=j \\ 0 & i < j \end{cases}$$

$$(5r) \langle \overrightarrow{p}_{c}, \overrightarrow{p}_{c} \rangle_{B} = \begin{cases} 1 & i=j \\ 0 & i < j \end{cases}$$

$$(5r) \langle \overrightarrow{p}_{c}, \overrightarrow{p}_{c} \rangle_{B} = \begin{cases} 1 & i=j \\ 0 & i < j \end{cases}$$

$$P = \sum_{j=0}^{\infty} k_j \partial_{x}^{-j} \qquad P_0 = 1 < 73 < 0 < \overline{P}_0, \overline{P}_1 >_B = P_1 - P_1 = 0 .$$

スプヤ(P) ブウ(P) = $\phi(o_x^2 P^* \partial_x P)$ であることから次の準化式を得る。

(*) なが (た, た)B=0より j < 0に対し (た, だ)B=0 が(1.23) より結論できる。 ところで

$$\partial_{x}^{\dagger} P^{*} \partial_{x} P = \sum_{j=0}^{\infty} \langle \vec{R}, \vec{R} \rangle_{B} \partial_{x}^{-j} \qquad \text{if } \partial_{x} P^{*} \partial_{x} P = 1$$

$$\therefore \phi(P) \in O(\infty)$$

(1.19) よりさたする mane operator を Wとし $W_0 = W|_{\overline{\epsilon}=0}$ とすると 被罪 5.6 より

$$\partial_{x}^{-1} W_{0}^{*} \partial_{x} = W_{0}^{-1}$$
 (1.24)

が成立する。 これをもとに次の定理を得る。

定理7 Grassmann 方程式 (1.19) に 式いて SEUGMが lsotropic なframe であったとする。このとき ではから構成される wave operator W は BKP hieranchy の wave operator である。
証明 で、W*2x = W' を示せばよい。 W*8x W'を モニ與して展開する。

$$W^* = \sum_{\alpha} (W^*)_{\alpha} \hat{\mathcal{T}}^{\alpha} \qquad W'' = \sum_{\alpha} (W'')_{\alpha} \hat{\mathcal{T}}^{\alpha}$$

ただし 以比別重指数 で $Q=(Q_{2n+1})_{m20}$ でし有限個を除り20とする。 $\widetilde{C}^{\alpha}=C^{\alpha_1}_{1}C^{\alpha_3}_{3}-\cdots C^{\alpha_{2n+1}}_{2n+1}-\cdots$ とする。 すがての月重複数 Q につけて

$$\partial_{x}^{-1}(W^{*})_{x}\partial_{x}=(W^{-1})_{x}$$
 (1.25)

を示せばよい。 d=(0.0,--) とした時 $(W^*)_{\alpha}=W_0^*$, $(W^{-1})_{\alpha}=W_0^{-1}$ で t_3 から 神段 5.6 ょ) (1.25) は正しい。 次に u=(1,0,0,--) とする。 t_1 に関する 発展方程式

$$\frac{\partial W}{\partial E} = B_1 W - W \partial_x \tag{1.26}$$

において西辺の米をとると

 $(B_1)_{(0,0,-..)} = (W_0 \partial_x W_0^{-1})_+ + y \quad \partial_x^{-1} (B_1^*)_{(0,0,-.)} \partial_x = -(B_1)_{(0,0,-.)} f^* t_x$

$$\partial_{x}^{-1}(W^{*})_{(1,0,0,-)}\partial_{x}=-(W^{-1})_{(0,0,-)}(B_{1})_{(0,0,-)}+\partial_{x}(W^{-1})_{(0,0,-)}$$

が成立する。 一方 (1.26) より $\frac{\partial W^{-1}}{\partial t_{1}} = -W^{-1}B_{1} + \partial_{x}W^{-1}$ $(W^{-1})_{(1,0,0,...)} = -(W^{-1})_{(0,0,...)}(B_{1})_{(0,0,...)} + \partial_{x}(W^{-1})_{(0,0,...)}$ $\lambda_{x}(W^{*})_{(1,0,0,...)}\partial_{x} = (W^{-1})_{(1,0,0,...)}\mathcal{F}'' \hat{\Lambda}' \dot{\Sigma} \uparrow 3.$

以下同様にメに関する場合法で示せばよい。言正終/

この節を組るにあたって CKP hierarchy はも言及したい。 CKP hierarchy とはそに関する発展方程式系と wave operatorに関する 対称性の条件,

$$\begin{cases} \frac{\partial W}{\partial t_{2n+1}} = B_{2n+1}W - W\partial_{x}^{2n+1} & n = 0, 1, 2, \dots \\ W^* = W^{-1} & & & \end{cases}$$

である。BMP hierarchy がツーなののと関連していたのと同様 CMP hierarchyは無限が欠え Symplectic 群 Sp(の)と関連している。 Sp(の)の作用ででなめ積はく子子と= エージャチュー、デ=(f;)、子=(3;)である。

§2 OSp-Stp hierarchy = >117.

(superfield)という。 名上の微分作用素 Dを D= 20+00xで定義する。 又名上の超べり人ル場を

$$\begin{cases} D_{2n} = \frac{\partial}{\partial t_{2n}} \\ D_{2n+1} = \frac{\partial}{\partial t_{2n+1}} + \sum_{k \geq 0} t_{2k+1} \frac{\partial}{\partial t_{2n+2k+2}} \end{cases}$$

で定義する。

注意 $D^2 = \partial_x$, $[D_{2n+1}, D_{2m+1}]_+ = 2D_{2n+2m+2}$ 5 水 D^2 D^2

Es 12 13 22- grade

Es = Es. + Es.

が入る。たたし

StP hierarchyとはの階monic troperator W∈ Eso に関する次の発展方程式系のことである。

 $D_{n}W = \mathcal{E}_{n}(B_{n}W - WD^{n}) \qquad n = 1.2,3,...$ $t_{2}t_{2}^{*} L B_{n} = (WD^{n}W^{-1})_{+} Z^{*} \mathcal{E}_{n} = (-)^{\frac{M(n+1)}{2}} \geq 13_{0}$

こて名を $\mathcal{S}=\mathcal{S}|_{t_{j}=0}$ $j_{\equiv 0,1} (mod4)$ で定義する。 WE O階 monic $\tilde{\Sigma}$ $\tilde{S}_{\underline{o}}$ の元とする。 OSP-STP hierarchy は次のものである。

$$\begin{cases} D_n W = \mathcal{E}_n (B_n W - W D^n) & n = 2.3 (mool 4) \\ D^{-1} W^* D = W^{-1} & (2.2) \end{cases}$$

ただし $P = aD^{n}$, $a \in S_{\frac{1}{2}}$ とけっとき $P^{*} = (-)^{nj} \mathcal{E}_{n} D^{n} Q$ とする。 $P \in \mathcal{E}_{S_{\underline{\mu}}}$, $Q \in \mathcal{E}_{S_{\underline{\mu}}}$ とけっとき $(PQ)^{*} = (-)^{n^{0}} Q^{*} P^{*}$ が成立する。

さてこれがらら1の内容をSuper化移。独に先立っていくつかの記号、代数的概念を定義しょう。

① $\text{Mat}(2|2,8) = \{(a_{ij})_{i,j\in2} \mid a_{ij} \in 8\}$ $\text{Mat}(2|2,8) = \{(a_{ij})_{i,j\in2} \mid a_{ij} \in 8\}$ Mat(2|2,8) = Mat(2|2,8) = Mat(2|2,8) Mat(2|2,8) = Mat(2|2,8)

 $Mat(2/2,8)_{\underline{\mu}} = \{(a_{ij})_{i,j \in 2} \mid a_{ij} \in \mathcal{S}_{\underline{i+j+\mu}}\} \quad \mu = 0,1$ z + 1 = 3

3)
$$A = (a_{ij})_{i,j \in \mathbb{Z}} \in Mat(2|2, 8)$$
 | $2 \neq j \in A$ | $2 \neq A$ | $2 \neq j \in A$ | $2 \neq A$

七月3。

 \mathcal{E}_{8} 55 Mat(2/2,2) \wedge n map ψ E次 z 定義 i 3。 $P \in \mathcal{E}_{8}$ 12 対 $(\psi(P) = (\psi(P)_{ij})_{ij \in 2\ell}, \mathcal{D} \cap \mathcal{D}$

 F_{ac+8} . $P,Q \in \mathcal{E}_{s} \in \mathbb{R}$

iEM. Fact 1の註明と同じ。

こてShPhieranchyと普遍超Gnassmann的様体(USGH)の関係を見ていこう。 WeshPhieranchyのwave operatorとする。このWiz対しUSGH上のSuperframeを

Y(w-1) | x=0=e=0 = 4

で定義する。 並にことびSGM上のsuper frameとすると次の命題がなりたつ。

命題9. 次のGrassmann方程式

$$\stackrel{t}{\text{mexp}} (\Theta \Lambda + X \Lambda^2 + \stackrel{\infty}{\sum} t_j P^j) = 0$$
 (2.3)

証明. 命題2の証明と同じである。 しかし Wo = Wlt=oとしたとき

4(Wo) = exp(On+x12) 4(Wo)/x=0=0 exp(-O1-X12)

となることに注意が必要なので、そのことについて述べる。UESa. ルニナナロタとおく。このとき

$$\psi(u) = \begin{cases} \phi(t) + 6\phi(t) & 0 \\ \phi(f_{x}) + \phi(t) & (-)^{a}(\phi(t) + 6\phi(t)) \end{cases}$$

であるから

$$D + (u) = \begin{cases} \phi(2) + \theta \phi(f_x) & 0 \\ \phi(f_x) + \theta \phi(g_x) & (-)^2 (\phi(2) + \theta \phi(f_x)) \end{cases}$$

 $\phi(f_x) = \frac{\partial}{\partial x} \phi(f) = \Lambda \phi(f) - \phi(f) \Lambda$ ($\phi(x) \in 同様$)に注意.
すると

$$D \dot{\psi}(u) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \dot{\psi}(u) - \dot{\psi}(u) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$D + (P) = (\Lambda + (u) - + (u)^{\dagger} \Lambda) \Lambda^{n} = \Lambda + (P) - + (u)^{\dagger} \Lambda^{n} \cdot \Lambda$$
$$= \Lambda + (P) - + (P)^{\dagger} \Lambda .$$

よって一般のPに対してもD $Y(P) = AY(P) - Y(P)^{\dagger} \Lambda$ が成立するのでこの式を積分して

では次にOSP-SMP hierarchyをパラメトライスでするひSGM 上のsuper frameを特徴がけよう。

定義
$$A \in Mat(2/2, 8)$$
a とし $A = \begin{bmatrix} Aoo, Ao, \\ Aio, Aii \end{bmatrix} と is$

$$At \stackrel{\vee}{A} = \begin{bmatrix} {}^{t}A_{00}, & (-)^{A_{10}} \\ (-)^{A_{11}}A_{01} & {}^{t}A_{11} \end{bmatrix}$$

できだめる。

がなり立つ。

命題10
$$P \in \mathcal{E}_{Aa}$$
 に対して
 $\dot{\psi}(P^*) = (-)^a \begin{bmatrix} o & ch \\ ch & o \end{bmatrix} \star \dot{\psi}(P) \begin{bmatrix} o & h \\ h & o \end{bmatrix}$

がなりたつ。

$$\psi(u) = \begin{bmatrix} \phi(t) + 0 \phi(t) & 0 \\ 0 \phi(t_{*}) + \phi(t) & (-)^{a} (\phi(t) + 0 \phi(t)) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

であることは注意し計算をすればより。

言正然 11.

定義. Lie supergroup OSp(&) E次2"定義13。 OSp(8) = { A & SGL(8) | [] o | xx A [] o | = A-1}

次の事実に注意せよ。 ひゃとふ。 について D'U*D=U" (+(U) = Osp(8).

 $\stackrel{:}{\leftarrow} 7 \text{ W & OSP-SKP hierarchy of mane operator } \underset{:}{\leftarrow} 132$ $\stackrel{:}{\leftarrow} (W^{-1}) \in OSP(8) = \left((3^{18})_{100} \right)_{\alpha,\beta=0,1} = \widehat{f(W^{-1})}|_{X=\theta=\widehat{t}=0} = \widehat{t}_{\theta}$ てしたときまでくくの達は次の2次の関係式をみたす

$$\langle \vec{3}^{\circ \circ}, \vec{3}^{\circ \circ} \rangle_{B} - \langle \vec{3}^{\circ \circ}, \vec{3}^{\circ \circ}_{C} \rangle_{C} = 0$$
 (2.4)

$$\langle \vec{3}_{i}^{\circ \circ}, \vec{3}_{j}^{\circ \circ} \rangle_{B} - \langle \vec{3}_{i}^{\circ}, \vec{3}_{j}^{\circ \circ} \rangle_{C} = 0$$
 (2.5)

$$\langle \vec{3}_{i}^{\circ 0}, \vec{3}_{j}^{\circ 0} \rangle_{B} + \langle \vec{3}_{i}^{\prime \prime}, \vec{3}_{j}^{\prime 0} \rangle_{c} = 0$$
 (2.6)

$$\begin{pmatrix}
\vec{3}_{i}^{\circ}, \vec{3}_{j}^{\circ} \rangle_{B} - \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0 \\
(\vec{3}_{i}^{\circ}, \vec{3}_{j}^{\prime\prime}) \rangle_{B} - \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\circ\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{B} + \langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\circ\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle \vec{3}_{i}^{\prime\prime}, \vec{3}_{j}^{\prime\prime} \rangle_{C} = 0$$

$$\langle$$

Superframe □ EUSGMI= \$112 Superframe = 't ==== 2eSGL(INCINC, A)で定義する。たたでし

SGL(N'IN', A) = {A=(Qij):jenc | Qije Aij E(A)时可重 己の各タラベクトルが(2.4)へ(2.7)をみたすならごの名タラベクト ルも(2:4)~(2:7)をみたすことが簡単な計算にりもかる。

上, て 12.4)~(2.7) IS USGM上の条件と17 mell defined であることがわかる。 (2.4)~(2.7)を対すす superframe を isotropic super shame がらなるUSGM上の部分集合をi-USGMという。 「フロのpr-Strp hierarchyに対応するUSGM上のSuper frame はi-USGM上のsuper frame であることがあかった。 次12色の対応について結果のみを述べる。

定理 || Grassmann 方程式

 $t = \exp(\Theta \Lambda + X \Lambda^2 + \sum_{j=2,3 \pmod{4}} t_j P^j) = 0$

(= ずいてこう"i-USGM上の superframe ならは" till より構成される wave operator は OSp-Stp Rienarchy の mane operator である。

References

[/] E.Date, M.Jimbo, M.Kashiwara and T.Miwa: Transformation groups for soliton equations, Proc. RIMS Symp. "Nonliner Integrable systems — Classical Theory and Quantum Theory ——", T.Miwa and M.Jimbo ed. World scientific 1983, 39 - 119.

[2] K.Ikeda: A supersymmetric extension of the Toda lattice hierarchy, Lett. Math. Phys. 14 (1987), 321-328.

____: "The super Toda Lattice Hierarchy" preprint.

- Yu.I.Manin and A.O.Radul: A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Comm.Math.Phys. 98(1985), 65-77.

 [4] M.Mulase: Solvability of the super KP hierarchy and a generalization of the Birkhoff decomposition, Inventiones Math. 98(1988), 1-46.
- [5] 佐藤幹夫述,野海正俊記:ソットン方程式と普遍,2ラスマン 外核体,上智大数学講究金表、No.18,1989年。
- [6] K.Takasaki: Symmetries of the super KP hierarchy, to appear in Lett. Math.Phys.
- [**7**] K.Ueno and K.Takasaki:Toda lattice hierarchy. Adv.Studies in Pure Math. 4 "Group Representations and Systems of Differential Equations." Kinokuniya 1984, 1-95.
- [8] 上野喜三な雀:"Super ITP系、OSpSITP系" 数理研講究録(60 代教解析学の諸相。
- [9] ——— : "Super IT P系, OSP SHP系." 数理研講究錄 6.95 代数解析学の発展。
- [10] K.Ueno and H.Yamada: Super Kadomtsev-Petviashvili hierarchy and super Grassmann manifold. Lett. Math. Phys. 13(1987). 59-68.
- [n] _____: Supersymmetric extension of the Kadomtsev-Petviashvili hierarchy and universal super Grassmann manifold. Adv. Studies in Pure Math. 16 "Two-Dimensional Conformal Field Theory and Solvable Lattice Models". Kinokuniya 1988 . 373-426.
 - [/2] K.Ueno. H.Yamada and K.Ikeda:Algebraic study on the super-KP hierarchy and the ortho-symplectic super-KP hierarchy, to appear in Comm. Math. Phys.
 - [/3] H.Yamada: Super Grassmann hierarchies A multicomponent theory -. Hiroshima Math. J. (1987). 373 394.