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ABSTRACT. In this paper we discuss some ideas and results related
to a characterization of spaces of rational mapps of degree k in

terms of nonlinear integrable systems of Lax type.

First we address the problem of parametrizing the space of

1—~>CP1 of degree k taking « to O in terms of

rational mapps:CP
solutions of certain nonlinear integrable systems. The origin of
this problem is in the study of moduli space My of SU(2) Yang-Mills-
Higgs k-monopoles by S.K. Donaldson [1]. Here the k-monopoles is a
finite (4mk) potential energy static solution of the Yang-Mills-Higgs
4

equations on Min haviﬁg Lk-1 real'parameters. He proved

THEOREM (Donaldson) There is a one-to-one correspondence between the
extended moduli space ﬁk of SU(2) k-monopoles and the space Ratc(k)

of rational mapps:(:P‘!——»CP‘l of degree Kk which takes » to O.
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The space %k has 4k real parameters and is_a circle bundle of the
moduli space Nk of k-monopoles. Each map of Ratc(k) can be regarded
as a scattering date for k-monopole. Being based upon the
Donaldson's theorem and the result by G. Segal [2] on the topology of
rational functions, recently the author and T.E. Duncan [3] consider
the topology of the moduli space of k-monopoles. Let Ly
space of mapps:82—+82 of degree k taking «» to 0. It is proved

be the loop

PROPOSIT[ON([B]) The inclusion chLk induces a homotopy equivalence
(

up to dimension k, namely, ﬂj(mk):ﬂj Lk) for 1sjsk-1.

This helps us to determine explicitely the homotopy groups of the
moduli space /1, . We note no(Mk)z{O}. Some topological features of
Wk are also discussed in [3]. For éxample, the integer k is equal to
the first Chern class of certain holomorphic vector bundle on S1 and
the Euler characteristic of Wk is zero.

We can recall that many classes of rational functions have
arisen as rational solutions of various nonlinear integrable systems
such as the KP equation and the stational Einstein equatiéﬁs. Here
let us consider, conversely, what nonlinear integrable system
completely parametrizes a given space of rational mapps (of
functions)? Let Raigen(k) be the space of generic rational functions
of the form f(z)=2k_ é./(z—z.), where a.z0 and z.zz.. It is shbwn

J=1"] J J 17
in [3] that the (finite nonperiodic complex) Toda equation defines a
flow on the space Ratgen(k). In the subsequent discussions we
consider a subspace of Ratc(k), denoted by Rat;(k), of real

coefficient rational functions of degree k and the fixed monic

denominator p(z). See [4] for details.
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The motivation for studying Ratﬁ(k) is that, surprisingly, the
deformations on complex z-plane which leave invafiant the
singularities of solutions are closely related td the (éomplete)
integrability of nonlinear dynamical systems and nonlinear PDEs under
consideration. Indéed, there is an interesting conjecture [5] that a
dynamical system described‘by a differential system or a PDE is
integrable whenever the solutions have the Painlevé property, namely,
that their only movable singularities are poles. It is to be noted
that the celebrated Kovalevskaja's top [6] was found by supposing

that general solution of equation of motion should be a single-valued

analytic function having no singularities except for poles.

For a given set of real parameters p=(po,°°°,pk_1), we see that

each function of Ret_ (k) takes the form

—1+ooo+qo

= (1)
Zk+pk_1z _1+°--+po - p(z)

T

=l R oo

f(z) =

where q; are real parameters, p(z) and q(z) do not have any common

factor. It is worth noting that f(z) can be written uniquely as

zI—AO)_1BO | | (2)

T

where Cg=(0°"01), BOZ(qO"'qk—W)’ the superscript T denotes the

transporsed and AO is a kXk companion matrix such that

k-1 ,
det(ZI—AO) = p(z), rank[BO AOBO..'AO BO] = k. (3)

The set (AO, By CO) is called a cyclic triplet. The expression (2)
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of f(z) is called the observable canonical form in linear systems
theory. We can associate f(z) of Raii(k) with a controllable and

observable linear dynamical systen

dxlt) - pgx(r)+Bgult), y() = Chx(r), W

where x(1) is a k-vector, u(r) and y(t) are scalar variables.
Conversely, f(z) is called the transfer function of the system (4).
See [3] about an application of linear systems theory to the topology
of rational functions.

Next, let us consider the system (Osjsk-1) of nonlinear PDEs of

Lax type

QA(L) _ rad T_pd -
e (a2 (t) "-ad(t) , A(E)],  A(0) = Ag, (5)

where t is a finite set of time variable, t=(t0,---,tk_1), A(t) is a
symmetric nxn matrix function of t, and subscript L indicates the
- strictly lower-triangular part. We see that the initial value

problem (5) can be solved uniquely by the QR factorization of
ZobhgY) (6)
=0"j70 ’° ‘ :
There always exists the factors of this QR factorization. Let us

introduce a time evolution of the vectors BO and CO. Consider the

system (0sjs<k-1) of linear PDEs

8B(_tl) _ . . T . _

T (ad(t)+ad(t) "-Ad(t) )B(t), B(0) = By,

3C(t) i T .3 B

a—t—j——— = (AJ(t)L -AJ(t)L)c(t), c(0) = Cy- (7)
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The follewing lemma is the key connection between the system (5), (7)
and the space Raig(k).

LEMMA([4]) If (AO’ BO’ GO) is a cyclic triplet, then (A(t), B(t),

C(t)) is also a cyclic triplet for every t of RE,

Thus any set of Solutidn of (5) and (7) gives a rational function

f(z; t) of Rati(k) via the formula

1

£(z; t) = 0(t)T (2I-A(t)) 'B(t). = o (8)

It is also proved in [4] that det(zI-A(t))=p(z), and coﬁsequently,
the flow f(z)~+f(z; t) do not have any movable singularities. We
note that any member of (5) and (7) is compatible to each other.
After the celebrated KP hierarchy and the Toda lattice hierarchy, We
call the system (5) with the supplementary system (7) the cyclic-Toda
hierarchy. The ¢ -solution space for any equivalence class [(AO, BO’
CO)] of initial cyclic triplets satisfying (3) is called the moduli

space of the cyclic-Toda hierarchy. The main result in [4] is

R
THEOREM The space Raip(k) of rational functions of degree 1 and
fixed denominator p(z) is homeomorphic to the moduli space of the

cyclic-Toda hierarchy.

Clearly the cyclic-Toda flow leaves invariant the poles of f(z). We
see that the cyclic-Toda hierarchy completely parametrizes the space

RatR
p

(k) of rational functions (which have no singularities except for
poles). Recall the Kovalevskaya's criterion [6]. The space Rat;(k)

has 27 for Osrszk-1, or 2¥-1 for r=k connected components, where r is

-5 -



132

a number of real distinct roots of p(z). It is‘also proved [4] that
the flow of cyclic-Toda hierarchj for the fixed initial wvalue (AO,
BO, CO) is identified with one of the connected components of |
Rai;(k). Note also that poles of f(z) (roots of p(z)) méve about
complex z-plane according to the choice of fhe initial value’AO
through det(zI-AO)=p(z). Furthermore, it is easy to see that the

cyclic-Toda hierarchy has the Painlevé property defined in [5].

Finally we shall take a case where p(z) admits k real distinct

roots. The initial value AO can be transformed into a Jacobi matrix,

b1 a1.
a'] ’o .o
Ay = R L (9)
2k-1Pk

where aij. From (5) with (7) we obtain so-called the Jacobi-Toda
hierarchy whose moduli space is homeomorphic to Raig(k). _

By setting Bg=€g=(0"‘d 1), we obtain a subsystem whose flow is
identified with the connected components Raig(k,O) of Raig(k). Here
Raig(k,O) has Cauchy index k and is diffeomorphic to Rk The
original (finite nonperiodic)>Toda equation is a special mémber of
the subsystem parametrized by t1. The relationship between the
original Toda equatioﬁ and the rational function of Raig(k,O) was

first pointed out by J. Moser [7].
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