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MULTI-ERGODIC ASPECTS OF HAMILTONIAN DYNAMICS
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ABSTRACT

The origin of the f—p power spectrum in hamiltonian systems is
discussed from the viewpoint of the stagnant motions in the transition
regime between chaos and torus. "~ The essential point is that the
purely stagnant motions are non-stationary (p =2), and as the result

the global chaos in hamiltonian systems becomes multi-ergodic in

general. The distribution of Lyapunov exponents and the fluctuation
of the PSD function are discussed in relation to the large deviation

theory.

1. Introduction

Chaotic motions in hamiltonian systems often reveal a long time
tail, e.g., the T —ppower spectrum. A fundamental mechanism to create
such a long time memory is the stagnant effect in the boundary layer
between chaos and torus. The transition regime between chaos and

torus is called the stagnant layer in this paper.

An essential feature of the stagnant layer is the perpetual
stability of orbits, that was proved by Nekhoroshev for the first time
[1]. Applying the Nekhoroshev's theorem to the transition layer
between chaos and torus, a statistical universal law was derived in
the previous paper [2]. Consider the stagnant layer coordinate r as
is shown in Fig.1l, where .r stands for the phenomenological depth of

the stagnant layer. A representative orbit C stays for a long time



near the outermost KAM surface before it escapes from the stagnant
layer. The first passage time T necessary for orbits to cross over a

threshold A r obeys to a universal distribution P(T) given by,

P(T) ~ 1/(TlogT) (1)

Numerical results are well in line with the theoretical estimation by
eq.(1) [3].

Universal features of a
stagnant layer can be derived
from the following scaling
assumptions; first of all we

assume that the invariant

measure P(r) which describes

stagnant motions is strongly

localized near the final KAM,

Fig. 1. Schematic picture of stagnant layer. ‘ -A
P(r) . r , (2)

and that the Lyapunov exponent which characterizes the orbital
unfolding in the tangent space satisfies,

d
A v T , (3)

where r stands for the distance in action space from the outermost KAM

surface, A and d positive constants. Then the distribution of the

Lyapunov exponent P(A) becomes,
-D
P(1) v A , (4)

with D=1-(A-1)/d. Furthermore, the distribution of the first passage
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time P(T) becomes,

P(T) v T . (5)

with B=2-D . Here T/ ~A 1 is used. The 1last estimation is
consistent with eq.(1) when D=1 holds.

a=-0.0300
Figure 2 shows a numerical
e |- : result of the first passage
time distribution for the
In P : generalized billiard system
[3]. Then the power spectrum
S(f) of the variable Y = -

log r reveals,

I R -2
sS(fHy v/ £ . (6)

18.9 11.8

Fig.2 The first passage time distribution
(a=1-B)

The essential feature of the stagnant motions are non-
stationarity or non-recurrence, e.g., the mean first passage time is

infinite and the probability measure of eq.(2) is not normalizable.

2. From Non-stationarity to Multi-ergodicity

Figure 3 shows the phase portrait of the standard mapping,

)

Y(n+2)=2Y(n+1)-Y(n)+K/2 7C sin[Y(n+1)] (mod.l1l) , (7)

with K=0.5. Torus regions are distributed in a quite fractal manner.
Each torus is wrapped up with the inherent stagnant layer as was
discussed before. A chaotic motion is trapped in every stagnant layer

for long time. As the result the PSD function S(f) reveals many

Cu



197

singularities at the resonant frequencies f 's.
i

SE) ~ S 1f -t (8)
i i
Here f 1is the characteristic frequency in the i-th stagnant layer,
and p_lstands bfor the singularity index. Figure 4 shows the mean
powerlspectrim <S(f)> obtained numerically, where < > implies the
average value over the asymptotic measure of an orbit considered. The
fourier tranaformation is used as follows,

ck,Y) = (1/J‘N)2J,Y(j)exp[—izvz kj/N] 9

: 2
and the PSD function S(f,Y)=/C(k,Y)| and the frequency f=k/N.

XCN+1)

X (N

Fig.3 The phase portrait of .the standard mapping(K=0.5).

When we consider the coarse—grained'sampling process defined by
Y'(m)=Y(Z m+j) (j=1,2,...;3=0,1,2,..., ¢ -1; Z=integer), the power
spectrum or the fourier component C'(k',Y') is given by C(kY) as
follows,

-1 N/¢

C(k,Y) = Jga mf_.l Y(Z m+j)exp[-i2iL k(£ m+j)/N], (10)
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= C'(k",Y")

with k'=k-N/¢Z . Thérefore, the singularity at f= Z /N in eq.(8) is
rewritten into the singularity at f'=k'4/N=0. This enables us to
consider that each singularity in eq.(8) is originated from the
stagnant motion near the final KAM. torus whose characteristic
frequency is f (i=1,2,...). In other‘ words, the multi-singularity in
the PSD functién implies the coexistence of many asymptotic measures
which are strongly localized near the final KAM tori. The coexistence
of such asymptotic measures is called the multi-ergodicity for short.
From eq.(6) the spectral indeces should be equal p =2, if an orbit is
perpetually trapped in the stagnant layer. But 1in the numerical
calculations the values are fluctuating, and the statistical
distribution must be considered, since the orbit can not be confined
in the deep inside of each stagnant layer. The distribution function
of the indeces P(p) is considered to be a characteristics of the

multi-ergodic motion.

10"
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Fig.4 The mean power spectrum at K=1/2

Equation (8) persists that a lot of ordered cycles with different

periods are immersed in a multi-ergodic orbit. This situattion is

8



quite similar with the critical phenomena in statistical mechanics,
where the coexistence of many phases can be explained even in the
thermodynamical limit.

3.

Large Deviation Properties of Multi-ergodic Motions

The anomalous fluctuations of multi-ergodic motions are

characterized by the large deviation property of the PSD function [4].
Let us consider the following scaling form,

SE> v N AL (£)+1
AL(E)

(11)
is the scaling index of the PSD function

For the
uniform.

<S(f)>.
ordinary random process, the index A{ is unity in whole frequency
domain 0<f<l, but for the multi-ergodic motion the index is not

Figure 5 shows the distribution of the index P(xt) which will be
scaled as F(«L )~ -logP(4c)/logN. The dimension spectrum F(iL) was

theory.

discussed in [3] from the viewpoint of multi-fractals,but it seems to
be better to discuss it in the framework of the large deviation

The details were discussed in [3].
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Fig.5 The dimension spectrum at K=1/2
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" The convergence of the Lyapunov exponent }(T) is also curious as
the result of the multi-ergodicity. '

M = (1/Dlogll § (MI/1 $ O)1) , (12)

where §$(T) is the tangent vector at the time T and the initial
ensemble is the asymptotic measure ‘of an orbit under consideration.
Figuge 6 is the distribution of the Lyapunov exponent P(;L ,T). At
T=10 the distribution has three peaks, but only one dominant peak

remains at T=10

It is surmised from Fig.6(a) that the distribution is consisted
of three factors P () (i=1,2,3), |
i

P(51) = aP1(7),) + bP2(?L) + cP3 () , (13)

where P, 1s normalized in each domain and (a,b,c) are global

i
normalization constants;

Pl(?L) ; 0 < 7 <0.005
Pz(;L) ; 0.005 <3 <0.02
P3(;L) ; 0.02< ] <0.1

We can surmise that three components mentioned above have defferent
large deviation properties. Indeed, the phase points which belong to
each distribution P (i=1,2,3) are clearly separated in phase spéce as
is shown in Fig.7 .

The lowest peak distribution P is originated from the stagnant
motions which strongly 1ocalized around KAM tori (Fig57—a), and it
obeys to a hyperbolic law of eq.(4) with D=0.35 at T=10 . The last
peak distribution P is coming from the chaotic motions far from KAM
tori (Fig.7(b), where the orbits are extended in a wide chaotic
region. The second peak distribution P2 is the most ambiguous one.

It is difficult to decide its origin in phase space definitely. The



conclusion has not yet beeh obtained, but it is surmised that P
characterizes the diffusion process across the cantori or the narrow
gates in phase space, which can confine the orbit in a small sub-space

for a long but finite periods.

50. 04 50.0—

(a) T=10° o {b) T=108

Fig.6 The distribution of the Lyapunov exponent at K=1/2

The large deviation of each contribution from P~ must be
elucidated in terms of the entropy H(;1) defined by,

P () ~ exp[-T ¢ BV (14)

where q stands for the convergence speed for each contribution. In
the thermodynamical limit of T—=00 , the distribution P(] ) approaches
to a single component with the minimum value of q 's . In the
present simulation, P. will be realized when T goes tol infinity, and
then the universal form of the entropy is derived numerically as well

as theoretically,
HX) = 1 - X + exp[X] , (15)
under an appropriate scale transformation, and that the normal

exponential convergence obtained , i.e., q3=1. The details will be

discussed precisely in the forthcoming paper [6].
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Fig.7 The orbital distributions which contribute to the three dominant
components in Fig.6. (a) :P1 (A),(b) :P2(7L) ,(c) :P3(;L ).

The origin of the long time tails in hamiltonian systems was
discussed by Geisel [5] along the same line as is explained in this
article. But the main purpose of our study is to research the
origin of non-stationary fluctuations beyond the infra-red crisis
limit of <S(f)> ~ f .
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