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Note on Hirzebruch’s Proportionality Principle

TOSHIYUKI KOBAYASHI (UNIV. OF TOKYO)
KAORU ONO (TOHOKU UNIVERSITY)

Abstract. A $\theta$-stable homogeneous space $G/H$ is introduced with the asso-

ciated Riemannian space of compact type $G_{U}/H_{U}$ . The equation among the

characteristic classes over $\Gamma\backslash G/H$ inherits from the corresponding one over

$G_{U}/H_{U}$ . As an application we also obtain a certain necessary condition for

the existence of a uniform lattice.

\S 1. INTRODUCTION

In [Hi], Hirzebruch showed

FACT(HIRZEBRUCH $S$ PROPORTIONALITY PRINCIPLE). Let $D$ be a boun$ded$

Hermitian symnetric domain, $\Gamma$ a torsionless discre$te$ cocompact $su$ bgroup
of th$e$ automorphism group $Aut(D)$ of $D$ , and $M$ the compact Hermitian
symmetric space dual to D. Then there is a real number $A=A(\Gamma)$ such

that $c^{\alpha}(\Gamma\backslash D)[\Gamma\backslash D]=Ac^{\alpha}(M)[M]$ for any $c^{\alpha}$ , where $\alpha=(\alpha_{1}, \ldots , \alpha_{k})$ is a

multi-index and $c^{\alpha}=c_{1}^{\alpha_{1}}\cup\cdots\cup c_{k}^{\alpha_{k}}$ is a monomial of Chern classes.

The purpose of this note is to clarify this principle by eliminating unnec-
essary conditions. Let us explain the idea briefly in the above case. In order
to compare $D$ and $M$ , we shall take a common complexification of $D$ and
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$M$ which we look upon as real manifolds by forgetting the original complex

structures. This enables us to treat non-Riemannian case and non-complex

case as well as Hermitian case.

In this paper, we shall deal with not only characteristic numbers but also
characteristic classes. Furthermore, we can replace the tangent bundles over
Hermitian symmetric spaces by homogeneous vector bundles over a wide

class of homogeneous spaces, - which we call $\theta$ -stable homogeneous space

(see \S 3)-, containing the cases where the isotropy subgroup is the group of

the fixed points of an automorphism of finite order (eg. semisimple sym-

metric spaces), compact (homogeneous Riemannian spaces), or a Levi part

of a parabolic subgroup, etc. Formulation and our main theorem are stated

in \S 4, asserting that equations among characteristic classes (R-coefliicient)

of a homogeneous vector bundle over a $\theta$ -stable homogeneous space in-
herit from those of an associated Riemannian space of compact type. Our
approach is elementary alike Weyl’s unitary trick or Flensted-Jensen dual-

ity in representation theory (see [FJ]), and the results lead to interesting

corollaries:

COROLLARY 1. Let $X$ be a Riemannian manifold of constant curvature.
Then all the Pontrjagin class vanishes in $H^{*}(X;\mathbb{R})$ .

COROLLARY 2. Let $G$ be a semisimple Lie group contained in a connected
complexified Lie group $G_{\mathbb{C}},$

$\Gamma$ be any discrete subgroup of $G_{\mathbb{C}}$ acting on
$G_{\mathbb{C}}/G$ freely and properly discontinuously. Then all the Pontrjagin class of
$\Gamma\backslash G_{\mathbb{C}}/G$ vanishes in $H^{*}(\Gamma\backslash G_{\mathbb{C}}/G;\mathbb{R})$ .

COROLLARY 3. Let $G/H$ be a (not necessarily Riemannian) semisimple

symmetric $sp$ace an$dG_{U}/H_{U}$ the associated Riemannian symmetric $sp$ace
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of compact type. Let $\Gamma$ be any discrete subgroup of $G$ acting on $G/H$ freely

and properly discontinuosly. If $\sum a_{\alpha}p^{\alpha}(G_{U}/H_{U})=0$ in $H^{*}(G_{U}/H_{U}; \mathbb{R})$ ,

then $\sum a_{\alpha}p^{\alpha}(\Gamma\backslash G/H)=0$ in $H^{*}(\Gamma\backslash G/H;R)$ . Here $p^{\alpha}$ denotes a monomial

ofPontrjagin classes. Furthermore, if $H$ is connected, the above result holds
when we replace $p^{\alpha}$ by a monomial ofPontrjagin classes and the Euler class.

COROLLARY 4. Let $H$ be the centralizer of a toral $St1$ bgroup of a connected

semisimple Lie group $G$ , and $G_{U}/H_{U}$ an associated Riemannian space

of compact type (generalized fl$ag$ variety). Then there is an embedding
$G/Harrow G_{U}/H_{U}$ , through which $G/H$ carries a $G$ -invariant complex struc-
$ture$ induced from a $G_{U}$ -invariant complex structure on $G_{U}/H_{U}$ . Let $\Gamma$ be

any discrete subgroup of $G$ acting on $G/H$ freely and properly discontinu-

osly. If $\sum a_{\alpha}c^{\alpha}(G_{U}/H_{U})=0$ in $H^{*}(G_{U}/H_{U}; \mathbb{R})$ , then $\sum a_{\alpha}c^{\alpha}(\Gamma\backslash G/H)=0$

in $H^{*}(\Gamma\backslash G/H;\mathbb{R})$ . Here $c^{\alpha}$ denotes a monomial of Chern classes.

Corollary 1 can also be deduced from the following

FACT(1.1)([S]). If $X$ is a Riemannian manifold of constant curvature, then
$X\cross S^{1}$ admits a flat affine connection.

The proof of this fact is not given in [S], so we show it for the sake of

completeness (see Appendix B).

Note that $H$ is noncompact in general. $G/H$ is a bounded Hermitian

symmetric domain in Corollary 4 if and only if $Ad_{G}(H)$ is a maximal com-

pact subgroup of the adjoint group Int $(g)\equiv Ad_{G}(G)$ .

If $\Gamma$ is a uniform lattice in $G/H$ and $H$ is connected, the converse state-

ment of Corollary 3 and Corollary 4 also holds. It is well-known that there
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exists a uniform lattice in $G/H$ when $H$ is a compact and $G$ is linear

([Bo]). On the other hand, when $H$ is noncompact, a discrete subgroup

of $G$ does not necessarily act on $G/H$ properly discontinuously. Various

aspects arise about the discrete subgroup which can act properly discon-

tinuously on $G/H$ : some admit uniform lattices, some admit only finite

groups. (see [Ko] and the references there). Applying the results to Euler

class, we have

COROLLARY 5. Let $(G, H)$ be a linear $\theta- stable$ pair. If rankG $=$ rankH

and $\dim_{\mathbb{R}}q\cap g$ is odd, then $G/H$ admits no uniform lattice, that is, there

exists no discrete $su$ bgroup $\Gamma$ of $G$ such that $\Gamma\backslash G/H$ is a compact smooth

manifold.

For example, let

$G/H=SO(i+k,j+l)/SO(i,j)\cross SO(k, l)$ .

Then there is no uniform lattice of $G/H$ when when three elements among
$i,j,$ $k,$ $l$ are odd and the other is even.

The authors are very grateful to Professor Akio Hattori for his constant
stimulation and encouragement.

\S 2. PRELIMINARIES

In this section, we review the notion of invariant connection of reductive

homogeneous space and the reduction of connections to real forms (cf. [N],

[K-N]).

Let $\pi$ : $Parrow X$ be a smooth principal $H$-bundle. A connection on
$Parrow X$ is a splitting of the tangent bundle $TParrow P$ into an $H$-equivariant
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Whitney sum $TP=Ver(P)\oplus Hor(P)$ , where $Ver(P)=Ker(d\pi$ : $TParrow$

$TX)$ is the tangent bundle along fibers, and $Hor(P)$ is so called a horizontal

subbundle. The connection form $\alpha\in \mathcal{E}^{1}(P, \mathfrak{h})$ is defined by the composition

of $TParrow Ver(P)$ , the first projection of the splitting $TP=Ver(P)\oplus$

$Hor(P)$ , and $Ver(P)arrow \mathfrak{h}$ , the inverse of $\mathfrak{h}\ni X\mapsto X_{p^{*}}\in Ver(P)_{p}$ , where
$X^{*}$ denotes the fundamental vector field on $P$ . The curvature form $\Omega\equiv D\alpha$

is the horizontal $\mathfrak{h}$ -valued 2-form on $P$ given by $\Omega(X, Y)\equiv D\alpha(X, Y)def=$

$d\alpha(prX,prY)(X, Y\in TP)$ , where $pr:TParrow Hor(P)$ stands for the second

projection of $TP=Ver(P)\oplus Hor(P)$ .

Let $H’$ be a subgroup of $H,$ $P’arrow X$ a smooth principal $H’$ -bundle.
$P’arrow X$ is called a reduction of $Parrow X$ if $P=P’H\cross H$ . If $Y$ is a

submanifold of $X$ and a smooth principal $H’$ -bundle $7i’$ : $Qarrow Y$ is a
reduction of $\pi_{|Y}$ : $P_{|Y}arrow Y$ satisfying,

(2.1) $(TQ)_{p}\subset Ker(d\pi_{p}’)\oplus Hor(P)_{p}$ ,

for any $p\in Q$ , we have a connection on $Q$ induced from the one on $P$ .

Namely, let $Hor(Q)_{p}^{d}=^{ef}Hor(P)_{p}\cap(TQ)_{p}$ , then the subbundle $Hor(Q)$ of

$TQ$ determines a connection on $Qarrow Y$ .

For $E=P\cross\rho V$ , the vector bundle associated to a representation $\rho$ :

$Harrow GL(V)$ , we have a connection induced from a connection on $P$ . The

curvature form $\Omega^{E}$ of this connection is a End$(E)$ valued 2-form described

as follows:
$\Omega^{E}(u, v)^{d}=^{ef}[\rho, d\rho(\Omega(\overline{u}, \overline{v}))]$ ,

via the identification P $Ad^{\cross_{(\rho)}End(V)}=End(E)$ . Here for $x\in X,p\in P$
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with $\pi(p)=x,\overline{u},$ $\overline{v}\in(TP)_{p}$ are lifts of $u,$ $v\in(TX)_{x}$ respectively, and $d\rho$

is a Lie algebra homomorphism $garrow g\downarrow(V)$ induced from $\rho$ .

We call a homogeneous space $G/H$ is reductive when there exists an
$Ad(H)$ -stable vector subspace $q$ complementary to $\mathfrak{h}$ in $g$ . For a reductive

homogeneous space $G/H$ , a connection on a principal $H$-bundle $Garrow G/H$

is defined as follows: for $g\in G$ ,

$Hor(G)_{g}^{d}=^{ef}L_{g*}q$ .

This connection is called the canonical connection of the second kind on
$G/H$ in [N]. The curvature form is given by $\Omega_{o}(X, Y)=-[X, Y]_{1\mathfrak{h}}$ where

$Z_{1\mathfrak{h}}$ denotes the $\mathfrak{h}$ component of $Z\in g=\mathfrak{h}+q,$ $0$ is the origin corresponding

to the identity element of $G$ and $X,$ $Y\in q$ .

For any reductive homogeneous space $G/H$ contained in its complexifi-

cation $G_{\mathbb{C}}/H_{\mathbb{C}}$ , the canonical connection of the second kind on $G_{\mathbb{C}}/H_{\mathbb{C}}$

induces the one on $G/H$ . In fact, $g\subset \mathfrak{h}\oplus q_{\mathbb{C}}$ implies the condition

(2.1). Thus the principal bundle $Garrow G/H$ inherits the connection from

$G_{\mathbb{C}|G/H}arrow G/H$ .

\S 3. $\theta$ -STABLE PAIR

In this section we introduce a notion of a $\theta$-stable pair $(G, H)$ and con-

struct an algebra homomorphism between the cohomology rings of $\Gamma\backslash G/H$

and of the associated Riemannian space of compact type $G_{U}/H_{U}$ .

Let $g$ be a semisimple Lie algebra defined over $\mathbb{R}$ . We call a subalgebra
$\mathfrak{h}$ in $g$ is $\theta$-stable when there exists a Cartan involution $\theta$ of $g$ such that

$\theta \mathfrak{h}=\mathfrak{h}$ . Then the following lemma is proved by standard arguments (see

[War] Ch.1 \S 1).
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LEMMA(3.1). Let $\mathfrak{h}$ be a $\theta- stablesu$balgebra in $g,$ $q$ the orthogonal sub-

space of $\mathfrak{h}$ in $g$ with respect to the Killing form. Then $g=\mathfrak{h}+q$ gives a

direct decomposition as a $\mathfrak{h}$ -module. Furthermore, the adjoint representa-

tion $ad_{1\mathfrak{h}}$ : $\mathfrak{h}arrow gl(g)$ is semisimple. Especially, $\mathfrak{h}$ is a reductive Lie algebra,

that is, $\mathfrak{h}$ is decomposed into a direct sum of the center and the semisimple

ideal $[\mathfrak{h}, \mathfrak{h}]$ .

EXAMPLE(3.2). Let $g$ be a semisimple Lie algebra over $\mathbb{R}$ . The following

subalgebras are $\theta$-stable in $g$ .

1) The centralizer (or normalizer) of a $\theta$-stable subalgebra in $g$ .

2) The fixed point subalgebra of a linear automorphism of $g$ of finite order

([He] p.277).

3) A semisimple subalgebra ([M]).

Now we introduce a notion of a $\theta$-stable pair’.

DEFINITION(3.3). Let $G$ be a connected semisimple Lie group, $H$ a closed

subgroup of $G$ . We call $(G, H)$ a $\theta$-stable pair when the following two

conditions are satisfied:

a) There is a Cartan involution $\theta$ of $G$ such that $H$ has a polar decomposition

$H=(H\cap K)\exp(\mathfrak{h}\cap p)$ , where $g=e+p$ is the corresponding Cartan
decomposition of $g$ and $K$ is the connected subgroup of $G$ with Lie algebra
$e$ .

b) The connected Lie subgroup corresponding to the Lie algebra $\mathfrak{h}_{\mathbb{C}}=\mathfrak{h}\otimes \mathbb{C}$

is closed in the adjoint group Int $(g_{C})$ .

When $(G, H)$ is a $\theta$-stable pair, we call $G/H$ a $\theta$ -stable homogeneous
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space.

When $G$ has a faithful finite dimensional representation, we call $(G, H)$

is a linear $\theta$-stable pair. In this case, the connected components of $H$ are
finite because $K$ is compact.

The condition a) in the above definition implies $\theta \mathfrak{h}=\mathfrak{h}$ , and so $\mathfrak{h}$ is a
$\theta$-stable subalgebra in $g$ . Conversely if $H$ is connected, the condition a) can
be replaced by the condition that $\mathfrak{h}$ is a $\theta$-stable subalgebra in $g$ .

Let $(G, H)$ be a $\theta$-stable pair. Then there is a closed subgroup $H_{\mathbb{C}}$ of

a connected Lie group $G_{\mathbb{C}}$ with Lie algebras $\mathfrak{h}_{\mathbb{C}}=\mathfrak{h}\otimes \mathbb{C}$ and $9c=g\otimes$

$\mathbb{C}$ respectively such that the inclusion $gcarrow g\otimes \mathbb{C}$ induces the following
commutative diagram:

$\iota$

$Garrow G_{\mathbb{C}}$

$\cup$ $\cup$

$\iota$

$Harrow H_{\mathbb{C}}$ ,

and that

(3.4) $H_{\mathbb{C}}=\iota(H)\cdot(H_{\mathbb{C}})_{0}$

(Say, choose $G_{\mathbb{C}}$ the adjoint group Int $(g_{C})$ and put $H_{\mathbb{C}}$ by (3.4).)

Let $(G, H)$ be a $\theta$-stable pair, $\theta$ a Cartan involution of $g$ which makes
$\mathfrak{h}$ stable, and $g=e+p$ be the corresponding Cartan decomposition of $g$ .

Then we have a direct sum decomposition

$g=\mathfrak{h}\cap f+\mathfrak{h}\cap P+q\cap g+q\cap P$

as a vector space. Let $G_{U}$ be a connected Lie subgroup of $G_{\mathbb{C}}$ with Lie

algebra $g_{U}=e+\sqrt{-1}p$ . Set $H_{U}=H_{\mathbb{C}}\cap G_{U}$ . Then $H_{U},$ $G_{U}$ are compact
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real forms of $H_{\mathbb{C}},$ $G_{C}$ respectively, and we have a natural map

$G/H$ $arrow$ $\iota(G)/H_{\mathbb{C}}\cap\iota(G)$ $arrow$ $G_{\mathbb{C}}/H_{\mathbb{C}}$ $arrow\lrcorner$ $G_{U}/H_{U}$ .
covering complexification complexification

We call $G_{U}/H_{U}$ (resp. $G_{\mathbb{C}}/H_{\mathbb{C}}$ ) an associated Riemannian space of compact

type (resp. a complexification) for a given $\theta$ -stable homogeneous space
$G/H$ .

REMARK (3.5). Each connected component of $H_{U}$ meets $H_{\mathbb{C}}$ . Moreover the

cohomology ring $H^{*}(G_{U}/H_{U}; \mathbb{R})$ is independent of the choice of the above

complex Lie group $G_{\mathbb{C}}$ . This notice is sometimes convenient for actual

calculation.

EXAMPLE(3.6). Let $G$ be a connected semisimple Lie group. $(G, H)$ is a
$\theta$-stable pair in either of the following cases:

1) $H$ is the centralizer (or normalizer) in $G$ of a $\theta$-stable subalgebra $t$ . When
$t$ is a $\theta$-stable abelian subspace, an associated Riemannian space of com-
pact type $G_{U}/H_{U}$ is called a (generalized) flag variety (cf. lemma$(6.1)$ ).

2) $H$ is an open subgroup in the group of the fixed points of an automor-

phism $\sigma$ of finite order of $G$ . When $\sigma$ is involutive, the homogeneous
space $G/H$ is called a semisimple symmetric space.

3) $H$ is a semisimple connected subgroup in $G([Y]$ guarantees that $H_{\mathbb{C}}$ is

closed in $G_{\mathbb{C}}$ ).

4) $H$ is compact.

Let $(G, H)$ be a $\theta$-stable pair. Then $G/H,$ $G_{U}/H_{U}$ and $G_{\mathbb{C}}/H_{\mathbb{C}}$ are

reductive homogeneous spaces in the sense of \S 2 with complementary sub-

spaces $q,$ $q_{U}=q\cap f+\sqrt{-1}q\cap P$ and $q\otimes \mathbb{C}$ respectively. Therefore invariant
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forms are identified with the invariant elements in the exterior algebra of
the cotangent space at the origins. Namely,

$\mathcal{E}^{*}(G/H;\mathbb{R})^{G}\simeq(\wedge q^{*})^{H}$ ,

$\mathcal{E}^{*}(G_{U}/H_{U}; \mathbb{R})^{G_{U}}\simeq(\wedge q_{U^{*}})^{H_{U}}$ ,

and
$\mathcal{E}^{*}(G_{\mathbb{C}}/H_{\mathbb{C}}; \mathbb{C})^{G_{C}}\simeq(\wedge q_{\mathbb{C}^{*}})^{H_{\mathbb{C}}}$ .

Define a linear map $d:\wedge(q^{*})^{H}arrow\wedge(q^{*})^{H}$ by

$(dh)(X_{1}, \ldots, X_{n})=\sum_{i<j}(-1)^{i+j}h([X_{i}, X_{j}]_{1q}, X_{1}, \vee.\vee., X_{n})ij(X_{i}\in q)$ ,

$d:\wedge(q_{U}^{*})^{H_{U}}arrow\wedge(q_{U}^{*})^{H_{U}}$ by

$(dh)(X_{1}, \ldots, X_{n})=\sum_{i<j}(-1)h([X_{i}, X_{j}]_{1q_{U}}, X_{1}, .., X_{n})ij(X_{i}\in q_{U})$ ,

and $d:\wedge(q_{\mathbb{C}^{*}})^{H_{\mathbb{C}}}arrow\wedge(q_{\mathbb{C}^{*}})^{H_{\mathbb{C}}}$ by

$(dh)(X_{1}, \ldots, X_{n})=\sum_{i<j}(-1)^{i+j}h([X_{i}, X_{j}]_{1q_{\mathbb{C}}}, X_{1}, \vee.\vee., X_{n})ij(X_{i}\in q_{\mathbb{C}})$ .

Then it is easy to see that these $d’ s$ correspond to the exterior derivatives

under the above isomorphisms. Finally, define a linear isomorphism $\phi$ : $qarrow$

$q_{U}$ by

$\phi(X+Y)=X+\sqrt{-1}Y$ $(X\in q\cap e, Y\in qnp)$ .

Then we have the following
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LEMMA(3.7). With notation as above, let $\xi$ and $\xi_{U}$ be invariant differential

forms on $G/H$ and $G_{U}/H_{U}$ respectively. Assume $\xi$ and $\xi_{U}$ satisfy th$e$

following condition:

(3.8) $\xi_{U}(\phi(X_{1}), \ldots, \phi(X_{a}), \phi(Y_{1}), \ldots\phi(Y_{b}))$

$=(\sqrt{-1})^{b}\xi(X_{1}, \ldots, X_{a}, Y_{1}, \ldots Y_{b})$ ,

for any $X_{i}\in q\cap e,Y_{j}\in q\cap P$ .

Then if $\xi_{U}$ is an exact form, there is a $G$ -invariant form $\eta$ on $G/H$ such

that $\xi=d\eta$ . If $\xi_{U}$ is a closed form, $\xi$ is also closed.

PROOF: The natural isomorphism (see Remark$(3.5)$ )

$(\wedge q^{*})^{H}\otimes \mathbb{C}\simeq(\wedge q_{\mathbb{C}^{*}})^{H_{C}}\simeq(\wedge q_{U^{*}})^{H_{U}}\otimes \mathbb{C}$

induces

$\mathcal{E}^{*}(G/H;\mathbb{R})^{G}\otimes \mathbb{C}\simeq \mathcal{E}^{*}(G_{\mathbb{C}}/H_{\mathbb{C}}; \mathbb{C})^{G_{\mathbb{C}}}\simeq \mathcal{E}^{*}(G_{U}/H_{U}; \mathbb{R})^{G_{U}}\otimes \mathbb{C}$ .

The assumption (3.8) imply that $\xi$ and $\xi_{U}$ are the same images in the middle

term. Suppose $\xi_{U}$ is an exact form. Then there exists a $G_{U}$ -invariant form
$\eta_{U}$ on $G_{U}/H_{U}$ such that $d\eta_{U}=\xi_{U}$ , because $\xi_{U}$

. is $G_{U}$ -invariant and $G_{U}$

is compact. Let $\eta\in \mathcal{E}^{*}(G/H;\mathbb{R})^{G}\otimes \mathbb{C}$ be the corresponding element of $\eta_{U}$

under the above isomorphism. Then we have $\xi=d\eta$ . The second claim is
similar and easy. Thus the lemma is proved. I

PROPOSITION(3.9). With notation as above, let $\Gamma$ be a discrete $su$ bgroup

of $G$ acting on $G/H$ freely and properly discontinuously. Then

$\mathcal{E}^{*}(G_{U}/H_{U}; \mathbb{R})^{G_{U}}\otimes \mathbb{C}arrow\sim \mathcal{E}^{*}(G/H;\mathbb{R})^{G}\otimes \mathbb{C}arrow\nu \mathcal{E}^{*}(\Gamma\backslash G/H;\mathbb{R})\otimes \mathbb{C}$
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induces a $\mathbb{C}$ -algebra homomorphism

$l$ : $H^{*}(G_{U}/H_{U};\mathbb{C})arrow H^{*}(\Gamma\backslash G/H;\mathbb{C})$ .

If $\Gamma\backslash G/H$ is compact and $H$ is connected, then is injective.

PROOF: The first claim is an immediate consequence of the preceding

lemma. If $\Gamma\backslash G/H$ is compact and $H$ is connected, $G_{U}/H_{U}$ and $G/H$ have
$G$ and $G_{U}$ invariant orientation respectively. Therefore $\prime r$ is injective from
the Poincar\’e duality. 1

REMARK(3.10). For the injectivity of $\prime r$ , the assumption of connectedness

of $H$ can be replaced by $Ad(H)_{1q}\subset SL(q)$ , which means that $G/H$ admits a
$G$ -invariant orientation. But in general $\prime r$ is neither injective nor surjective.

As the proof of our theorem in \S 5 shows, $l$ transfers the characteristic

classes on $G_{U}/H_{U}$ to the corresponding ones on $\Gamma\backslash G/H$ .

REMARK(3.11). It is easy to see that $G_{U}/H_{U}$ is a compact symmetric

space if and only if $(G, H)$ is a semisimple symmetric pair. It is a well

known fact due to \’E.Cartan that $H^{*}(G_{U}/H_{U}; \mathbb{C})\simeq \mathcal{E}^{*}(G_{U}/H_{U}; \mathbb{R})^{G_{U}}\otimes \mathbb{C}$

if $G_{U}/H_{U}$ is a symmetric space.

\S 4. STATEMENT OF RESULTS

Let $(G, H)$ be a $\theta$-stable pair. Retain notations in \S 3. Let $\rho$ : $Harrow$

$GL(V, \mathbb{R}),$ $\rho_{U}$ : $H_{U}arrow GL(V_{U}, \mathbb{R})$ be finite dimensional representations.

We call $\rho$ and $\rho_{U}h^{\backslash }as$ the same complexification when there are a complex

vector space $V_{\mathbb{C}}$ , a representation $\rho c$ : $H_{\mathbb{C}}arrow GL(V_{\mathbb{C}}, \mathbb{C})$ and isomorphisms
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$\psi$ : $V\otimes \mathbb{C}arrow\sim V_{\mathbb{C}}$ and $\psi_{U}$ : $V_{U}\otimes \mathbb{C}arrow\sim V_{\mathbb{C}}$ such that the following diagram
commutes.

$H$ $arrow\iota$
$H_{\mathbb{C}}$ $rightarrow$ $H_{U}$

$\rho\downarrow$ $\downarrow\rho_{C}$ $\downarrow\rho_{U}$

$GL(V, \mathbb{R})$
$\epsilon\psi_{\#}arrow$

$GL(V_{\mathbb{C}}, \mathbb{C})$

$\psi_{U^{\lrcorner}}^{arrow}\#$

$GL(V_{U}, \mathbb{R})$ .

Now we are ready to state our main theorem.

THEOREM. Let $(G, H)$ be a $\theta- stable$ pair, $G_{U}/H_{U}$ an associated Rieman-

nian space of compact type, $G_{\mathbb{C}}/H_{\mathbb{C}}$ a complexification. Let $\Gamma$ be any

discrete subgroup of $G$ acting on $G/H$ freely and properly discontinuously

from the left.

1) Let $\rho$ : $Harrow GL(V, \mathbb{R}),$ $\rho_{U}$ : $H_{U}arrow GL(V_{U}, \mathbb{R})$ be finite dimension$al$

representations with the same complexification. Set $r_{E^{d}=^{ef}\Gamma\backslash G}\cross V,$
$E_{U}^{d}=^{ef}\rho$

$G_{U}\cross_{U}V_{U}\rho$

If there is a relation $\sum a_{\alpha}p^{\alpha}(E_{U})=0$ in $H^{*}(G_{U}/H_{U} ; \mathbb{R})$ , then the equation

$\sum a_{\alpha}p^{\alpha}(rE)=0$ in $H^{*}(\Gamma\backslash G/H;\mathbb{R})$ holds. Here $\alpha=(\alpha_{1}, \ldots , \alpha_{k})$ is a
multi-index and $p^{\alpha}=p_{1}^{\alpha_{1}}\cup\cdots\cup p_{k}^{\alpha_{k}}$ is a monomial of Pontrjagin classes.

2) Let $V$ be a finite dimensional vector space over $\mathbb{C},$ $p:H_{\mathbb{C}}arrow GL(V, \mathbb{C})$

a representation of $H_{\mathbb{C}}$ . Set $r_{E^{defdef}}=\Gamma\backslash G\cross V,$
$E_{U}=G_{U}\cross_{U}\rho_{|H}\rho_{|H}$ V.

If there is a relation $\sum a_{\alpha}c^{\alpha}(E_{U})=0$ in $H^{*}(G_{U}/H_{U}; \mathbb{R})$ , then the equation

$\sum a_{\alpha}c^{\alpha}(rE)=0$ in $H^{*}(\Gamma\backslash G/H;\mathbb{R})$ holds.

$3)If\Gamma\backslash G/H$ is compact and $H$ is connected, the converse statement of 1)

and 2) also holds.
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EXAMPLE(4.1). Let $D=SO_{o}(n, 2)/SO(n)\cross SO(2)$ be a complex quadric,
$\Gamma$ a discrete cocompact subgroup of the automorphism group $Aut(D)$ of
$D$ , and $M$ the compact Hermitian symmetric space dual to $D$ . Then
$c_{j}(\Gamma\backslash D)\neq 0$ for any $j$ with $1\leq j\leq n=\dim_{\mathbb{C}}D$ because we know that the

corresponding result for $M$ holds.

EXAMPLE(4.2). The total Chern class $c(\mathbb{C}P^{n})=1+c_{1}(\mathbb{C}P^{n})+\cdots+$

$c_{n}(\mathbb{C}P^{n})$ of a complex projective space $\mathbb{C}P^{n}$ is given by

$c(\mathbb{C}P^{n})\equiv(1+x)^{n+1}$ $mod x^{n+1}$ ,

where $x$ is the first Chern class of the hyperplane section bundle. Let

$X(p, q)=U(p+1, q)/U(1)\cross U(p, q)$ $(p+q=n)$ . Then $X(n, 0)=\mathbb{C}P^{n}$

and $X(0, n)$ be the dual Hermitian symmetric domain of noncompact type

(ref. [He] for the terminology). Let $\Gamma$ be a discrete subgroup of $U(p+1, q)$

acting on $X(p, q)$ freely and properly discontinuously. Then we have

$c_{j}( \Gamma\backslash X(p, q))=(\prod_{l=0}^{j-1}\frac{n+1-l}{n+1})c_{1}(\Gamma\backslash X(p, q))^{j}$ $(1\leq j\leq n)$ .

If $\Gamma$ is a uniform lattice, $c_{j}(\Gamma\backslash X(p, q))\neq 0$ for any $j$ with $1\leq j\leq n$ . It

can be proved that there exists a uniform lattice for $X\{0,$ $n$ ), $X(n, 0)$ (Rie-

mannian case) and $X(1,2r)$ , whereas any discrete subgroup acting properly

discontinuously on $X(p, q)$ with $p\geq q$ is finite (see [Ko]).

REMARK(4.3). We do not require that $\Gamma$ is cocompact, so Theorem holds

even when $\Gamma=1$ .

\S 5. PROOF OF THEOREM

Let $(G, H)$ be a $\theta$-stable pair. We retain notations in \S 2 and \S 3. As we
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prepared in \S 2, the curvature forms $\Omega$ and $\Omega_{U}$ of $Garrow G/H$ and $G_{U}arrow$

$G_{U}/H_{U}$ are given by

$\Omega_{o}(X, Y)=-[X,Y]_{1\mathfrak{h}}$ (X, $Y\in q$ ),

$\Omega_{Uo}(X_{U}, Y_{U})=-[X_{U}, Y_{U}]_{1\mathfrak{h}_{U}}$ $(X_{U}, Y_{U}\in q_{U})$ ,

where $Z_{1\mathfrak{h}},$ $Z_{1\mathfrak{h}_{U}}$ and $Z_{1\mathfrak{h}_{\mathbb{C}}}$ denote the second projections with respect to the

decompositions $g=\mathfrak{h}+q,$ $g_{U}=\mathfrak{h}_{U}+q_{U}$ and $9c=\mathfrak{h}_{\mathbb{C}}+q_{\mathbb{C}}$ respectively.

So the curvature forms $\Omega_{O}^{E},$ $\Omega_{O}^{E_{U}}$ of homogeneous vector bundles $Earrow G/H$

and $E_{U}arrow G_{U}/H_{U}$ are given by

$\Omega_{o}^{E}(X,Y)=-\rho([X, Y]_{1\mathfrak{h}})\in gt(V)$ ,

$\Omega_{o}^{E_{U}}(X_{U}, Y_{U})=-\rho_{U}([X_{U}, Y_{U}]_{1\mathfrak{h}_{U}})\in gt(V_{U})$ ,

where we identify $g[(V)$ and $g\mathfrak{l}(V_{U})$ with End$(E)_{0}$ and End$(E_{U})_{0}$ respec-

tively.

As Pontrjagin classes of a real vector bundle $F$ are determined by Chern
classes of its complexification $F_{\mathbb{C}}=F\otimes\underline{\mathbb{C}}$, we shall compare the curvatures
of $E\otimes\underline{\mathbb{C}}$ and $E_{U}\otimes\underline{\mathbb{C}}$ ;

$\Omega_{o}^{E\otimes\underline{\mathbb{C}}}(X, Y)=-\rho_{\mathbb{C}}([X, Y]_{1\mathfrak{h}})\in g\mathfrak{l}(V_{\mathbb{C}})$ ,

$\Omega_{o}^{E_{U}\otimes\underline{\mathbb{C}}}(X_{U}, Y_{U})=-\rho_{\mathbb{C}}([X_{U}, Y_{U}]_{1\mathfrak{h}_{U}})\in g\mathfrak{l}(V_{\mathbb{C}})$,

where in the first equality $g1(V_{\mathbb{C}})$ is identified with End$(E\otimes\underline{\mathbb{C}})_{0}$ and in the

second equality $g1(V_{\mathbb{C}})$ is identified with End$(E_{U}\otimes\underline{\mathbb{C}})_{0}$ under $\psi$ and $\psi_{U}$

respectively (notation \S 4). Define a linear isomorphism $\phi$ : $qarrow q_{U}$ by

$\phi(X+Y)=X+\sqrt{-1}Y$ $(X\in q\cap e, Y\in qnp)$ .

15
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Since $[X, Y]_{1\mathfrak{h}}=[X, Y]_{1\mathfrak{h}_{\mathbb{C}}}$ and $[\phi(X), \phi(Y)]_{1\mathfrak{h}_{U}}=[\phi(X), \phi(Y)]_{1\mathfrak{h}_{\mathbb{C}}}$ , we have

$[\phi(X), \phi(Y)]_{1\mathfrak{h}_{U}}=(\sqrt{-1})^{\delta(X)+\delta(Y)}[X, Y]_{1\mathfrak{h}}$ ,

and so
$\Omega_{o}^{E_{U}\otimes\underline{\mathbb{C}}}(\phi(X), \phi(Y))=(\sqrt{-1})^{\delta(X)+\delta(Y)}\Omega_{o}^{E\otimes\underline{\mathbb{C}}}(X, Y)$ ,

where $X$ and $Y$ are elements of $q\cap e$ or $q\cap p$ and we set $\delta(W)=0$ if

$W\in q\cap f,$ $\delta(W)=1$ if $W\in q\cap P$ .

By Chern-Weil theory ([D],[K-N]), characteristic classes are represented

by using curvatures. Namely, there is an C-algebra homomorphism

$w$ : $Inv(L)arrow H^{*}(BL;\mathbb{C})$ ,

for a Lie group $L$ , where $Inv(L)$ denotes the ring of $\mathbb{C}$-valued invariant

polynomials of the Lie algebra [of $L$ , and $BL$ denotes the classifying space

of a Lie group $L$ . When $L$ is a compl$ex$ Lie group, we denote by $Inv_{\mathbb{C}}(L)$

the subring of $Inv(L)$ consisting of holomorphic polynoimials. The Chern

classes are considered as elements of $H^{*}(BGL(n, \mathbb{C});\mathbb{R})$ . For $f\in Inv(L)$

and a principal $L$ bundle $Parrow X$ , the Chem class is represented by the

differential form on $X$ corresponding to the tensorial (i.e. $L$ -invariant and

horizontal) form $f(\Omega, \ldots , \Omega)$ on $P$ where $f$ is identified with its polarized

multilinear form. If $L$ is compact and connected, the homomorphism $w$ is
an isomorphism.

For a complex vector bundle $Farrow X$ of rank $n$ , the k-th Chern form $c_{k}$

of $F$ is represented by $f_{k}(\Omega^{F}, \ldots, \Omega^{F})$ on $X$ , where $f_{k}$ is the homogeneous

part of degree $k$ in $t$ of the real valued polynomial

$\overline{f}(A)(t)=\det(I-\frac{t}{2\pi\sqrt{-1}}A)$ $(A\in u(n))$ .
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This formula is also applicable for $GL(n, \mathbb{C})$ vector bundles and gives a

representative of the total Chern class via the identification:

$Inv_{\mathbb{C}}(GL(n, \mathbb{C}))\simeq Inv(U(n))\simeq H^{*}(BU(n);\mathbb{C})\simeq H^{*}(BGL(n, \mathbb{C});\mathbb{C})$ .

Considering $f$ as a multilinear form as before, we have,

(5.1) $f(\Omega_{o}^{E_{U}\otimes\underline{\mathbb{C}}}, \ldots, \Omega_{o}^{E_{U}\otimes\underline{\mathbb{C}}})(\phi(X_{1}), \ldots, \phi(X_{a}), \phi(Y_{1}), \ldots\phi(Y_{b}))$

$=(\sqrt{-1})^{b}f(\Omega_{o}^{E\otimes\underline{\mathbb{C}}}, \ldots, \Omega_{o}^{E\otimes\underline{\mathbb{C}}})(X_{1}, \ldots, X_{a}, Y_{1}, \ldots Y_{b})$ ,

where $X_{i}\in q\cap e,$ $Y_{j}\in q\cap P$ , and $f\in Inv(GL(n, \mathbb{C}))$ .

If $[(wf)(E_{U}\otimes\underline{\mathbb{C}})]=0$ in $H^{*}(G_{U}/H_{U}; \mathbb{R})$ , there exists a $G$ -invariant

form $\eta$ on $G/H$ such that $d\eta=(wf)(E\otimes\underline{\mathbb{C}})$ owing to lemma(3.3). Since
$f(\Omega_{o}^{E\otimes\underline{\mathbb{C}}}, \ldots , \Omega_{O}^{E\otimes\underline{\mathbb{C}}})$ and $\eta$ are locally invariant (i.e. its pullback is
$G$ -invariant on $G/H$), the characteristic class $[(wf)(rE\otimes\underline{\mathbb{C}})]=0$ in
$H^{*}(\Gamma\backslash G/H;\mathbb{C})$ .

Applying this to the case that $[wf]$ is the image of $\sum a_{\alpha}c^{\alpha}$ under the

homomorphism

$H^{*}(BGL(n, \mathbb{C});\mathbb{R})arrow H^{*}(BGL(n, \mathbb{R});\mathbb{R})$ ,

we get 1) in Theorem. The proof of 2) in Theorem is similar and 3) is

derived from the last statement of Proposition(3.7).

\S 6. PROOF OF COROLLARIES

Proof of Corollary 1.

A Riemannian manifold of constant negative (otherwise the statement is

obvious) curvature is a quotient of the n-dimensional hyperbolic space form

$\mathbb{H}^{n}=SO_{o}(n, 1)/SO(n)$ by a torsion free discrete group of isometries. Thus

from the knowledge of $G_{U}/H_{U}=S^{n}$ , we obtain Corollary 1.
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Proof of Corollary 2.

The associated Riemannian space of compact type for the $\theta$-stable pair
$(G_{\mathbb{C}}, G)$ is $G_{U}\cross G_{U}/\triangle G_{U}$ , where $G_{U}=\{(g, g)\in G_{U}\cross G_{U}; g\in G_{U}\}$ . Since

this space is diffeomorphic to a group manifold $G_{U}$ , all the Pontrjagin class

vanishes. Now, Corollary 2 is deduced from Theorem.

Proof of Corollary 3.

Corollary 3 holds when $(G, H)$ is a $\theta$-stable pair in general. Corollary 3

is almost proved by applying 1) in Theorem to the adjoint representations

$Ad_{|H}$ : $Harrow GL(q)$ and $Ad_{|H_{U}}$ : $H_{U}arrow GL(q_{U})$ . We only have to take

account of Euler classes.

As $G/H$ admits an indefinite metric by the Killing form restricted to

$q$ , the structure group of the tangent bundle can be reduced to $SO_{o}(p, q)$

for some $p,$ $q\in N$ , where $p+q=\dim q$ . To deal with Euler classes, we
treat the complexified vector bundles again. From the fact that the rings
of invariant polynomials of $SO_{o}(p, q),$ $SO(p+q)$ and the ring of the in-

variant holomorphic polynomials of $SO(p+q, \mathbb{C})$ are isomorphic, there is
$P\in Inv_{\mathbb{C}}(SO(p+q, \mathbb{C}))$ such that

$P_{|\epsilon o(p+q)}=P^{e}$ ,

where $P^{e}\in Inv(SO(p+q))$ is the invariant polynomial corresponding to

the Euler class. Therefore in this case, we can calculate the Euler class by

using $P$ and the $SO_{o}(p, q)$ -connection on $G/H$ .

Proof of Corollary 4.

Let $G$ be a connected semisimple Lie group and $G_{\mathbb{C}}$ a complex Lie group
with complexified Lie algebra of $G$ . Let $\theta$ be a Cartan involution of $g$ , and
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$g=e+P$ the corresponding Cartan decomposition. Let $G_{U}$ be the compact

real form of $G_{\mathbb{C}}$ whose Lie algebra is given by $g_{U}=g+\sqrt{-1}p$ . Fix an

abelian subspace $t(\neq 0)$ in $f$ . Let $H,$ $H_{U}$ , and $H_{\mathbb{C}}$ be the centralizers of $t$ in
$G,$ $G_{U}$ , and $G_{\mathbb{C}}$ respectively. Fix a parabolic subgroup $R$ of $G_{\mathbb{C}}$ with Levi

part $H_{\mathbb{C}}$ .

Then we have a generalized Borel embedding1 :

LEMMA(6.1) (FOLKLORE). With notation as above, $bo$th $G_{U}/H_{U}$ and

$G/H$ are simply connected, and especially $H_{U}$ and $H$ are connected. Fur-

thermore, there exists a $G_{U}$ -invariant complex struct$ure$ on a compact

manifold $G_{U}/H_{U}=G_{\mathbb{C}}/R$ , and $G/H$ is realized in an open G-orbit of the

identity coset of $G_{\mathbb{C}}/R$ .

We shall give a proof of this fact in Appendix A for the reader’s conve-
nience.

It is known that there is a Levi decomposition $R=H_{\mathbb{C}}\cdot N$ , where $N$ is the
unipotent radical of $R$ . As $N$ is a normal subgroup in $R$ , any representation
$\rho_{\mathbb{C}}$ : $H_{\mathbb{C}}arrow GL(V, \mathbb{C})$ is extended to $R$ by letting $N$ act on $V$ trivially. We

also denote this extension by $\rho$ for brevity.

As we define a complex structure on $G_{U}/H_{U}$ by the isomorphism
$G_{U}/H_{U}\simeq G_{\mathbb{C}}/R$ , the holomorphic tangent bundle of $G_{U}/H_{U}$ is given by

$G_{\mathbb{C}}\cross_{|R}g_{\mathbb{C}}/\mathfrak{r}Ad\simeq G_{U}\cross Ad_{|H_{U}}9c/\mathfrak{r}$
, and the holomorphic tangent bundle of

1 [Griffiths-Schmid] (Acta. Math. 1969) treated when $H$ is compact and called $G/H$ dual

manifolds of K\"ahler C-space. [Shapiro] (Comment. Math. Helv. 1971) treated when

$G/H$ is a semisimple symmetric space which was classified on the Lie algebra level in

[Be}.
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$G/H$ is given by
$(Gc_{Ad}\cross_{|R}g_{\mathbb{C}}/\mathfrak{r})_{|G/H}\simeq G\cross_{|H}g_{\mathbb{C}}/\mathfrak{r}Ad$

On the other hand, we have the following commutative diagrams.

ad
$\mathfrak{r}arrow g\mathfrak{l}(g_{\mathbb{C}}/\mathfrak{r})$

$\cup$ $\uparrow\simeq$

ad
$\mathfrak{h}arrow$ $gl(q)$

via the isomorphism $q\simeq 9c/\mathfrak{r}$ induced from the inclusion $qLarrow g_{\mathbb{C}}$ , and

ad
$\mathfrak{r}$ $arrow g\mathfrak{l}(g_{\mathbb{C}}/\mathfrak{r})$

$\cup$ $\uparrow\simeq$

ad
$\mathfrak{h}_{U}arrow$ $g\mathfrak{l}(q_{U})$

via the isomorphism $q_{U}\simeq g_{C}/r$ induced from the inclusion $q_{U}rightarrow 9c$ .

Therefore Corollary 3 is reduced to 2) in Theorem.

Proof of Corollary 5.

As $G$ has a faithful finite dimensional representation, the connected com-
ponents of $H$ is finite. Therefore the non-existence of a uniform lattice

in $G/H$ is derived from the case where $H$ is connected. When $H$ is con-

nected, $H_{U}$ is also connected from (3.4), and the Euler number $\chi(G_{U}/H_{U})$

does not vanish owing to Hirsch’s formula2 of the Poincar\’e polynomial of

the maximal rank compact reductive pair $(G_{U}, H_{U})$ . On the other hand,

$\chi(\Gamma\backslash G/H)=0$ because the tangent bundle $T(\Gamma\backslash G/H)$ splits according to

the $H\cap K$ module decomposition $q=qne+q\cap P$ and because $\dim_{\mathbb{R}}q\cap f$

is odd.

2H.Cartan, J.-L.Koszul, and J.Leray, Colloque de Topologie, Bruxelles, 1950
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REMARK (6.2). When rankG $=$ rankH, it is easy to see that $\dim_{\mathbb{R}}q$ is

even. Therefore $\dim_{R}q\cap e$ is odd if and only if $\dim_{R}q\cap P$ is odd.

\S 7. APPENDIX

A. Proof of Lemma (6.1).

From definition we have

(A.1) $G\cap H_{\mathbb{C}}=H,$ $G_{U}\cap H_{\mathbb{C}}=H_{U}$ .

Since $\mathfrak{h}_{\mathbb{C}}=(\mathfrak{h}_{\mathbb{C}}\cap e_{\mathbb{C}})+(\mathfrak{h}_{\mathbb{C}}\cap p_{\mathbb{C}})$, both $H_{U}$ and $H$ are real forms of $H_{\mathbb{C}}$ . Then
$H$ and $H_{U}$ are connected because $K\cap H_{C}=Z_{K}(t)$ and $G_{U}\cap H_{\mathbb{C}}=Z_{G_{U}}(t)$

are connected (see [He] Ch.7 Corollary 2.8.). As $H$ and $H_{U}$ contain the

center of $G$ and $G_{U}$ respectively, $G/H$ and $G_{U}/H_{U}$ do not depend on the

choice of coverings of $G$ and $G_{\mathbb{C}}$ . Thus both $G/H$ and $G_{U}/H_{U}$ are simply

connected, and from now on we may assume that $G$ is contained in its
simply-connected complexification $G_{\mathbb{C}}$ .

Fix a general element $Z$ in $\sqrt{-1}t$ so that bc $=\{X\in g_{C}; [Z, X]=0\}$ .

Then $g_{\mathbb{C}}$ is decomposed into the negative, $0$ , and the positive eigenspaces

of $ad(Z)$ , namely, $9c=\mathfrak{n}^{-}+\mathfrak{h}_{\mathbb{C}}+\mathfrak{n}$. Let $R$ (resp. $R^{-}$ ) be a parabolic

subgroup of $G_{\mathbb{C}}$ with Lie algebra $\mathfrak{h}_{\mathbb{C}}+\mathfrak{n}$ (resp. $\mathfrak{h}_{\mathbb{C}}+\mathfrak{n}^{-}$ ). The natural

inclusions $G\subset G_{\mathbb{C}}\supset G_{U}$ induce

$G/G\cap R\subset G_{\mathbb{C}}/R\supset G_{U}/G_{U}\cap R$ .

We will show that

(A.2) $g+(\mathfrak{h}_{\mathbb{C}}+\mathfrak{n})=g_{U}+(\mathfrak{h}_{\mathbb{C}}+\mathfrak{n})=g_{\mathbb{C}}$ .

(A.3) $G\cap R=G\cap H_{\mathbb{C}},$ $G_{U}\cap R=G_{U}\cap H_{\mathbb{C}}$ .
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Then (A.2) implies $G/G\cap R$ and $G_{U}/G_{U}\cap R$ are open sets in $G_{\mathbb{C}}/R$ , and

since $G_{U}$ is compact we have $G_{\mathbb{C}}/R=G_{U}/G_{U}\cap R$ . Using (A.3), we have
$G/H\subset G_{\mathbb{C}}/R=G_{U}/H_{U}$ which will complete the proof of the lemma.

Now let us show (A.2), (A.3). let $\tau$ be a conjugation of $9c$ with respect

to a real form $g$ (or $g_{U}$ ). Since $Z\in t=g\cap g_{U}$ , we have

$\tau(\mathfrak{h}_{\mathbb{C}})=\mathfrak{h}_{\mathbb{C}},$ $\tau(\mathfrak{n})=\mathfrak{n}^{-}$ ,

and
$\tau(\mathfrak{n}^{-})=\mathfrak{n}$ .

We also denote by $\tau$ its lifting to an automorphism of a simply connected Lie

group $G_{\mathbb{C}}$ . Let $X$ be any element of $\mathfrak{n}^{-}$ . Then $X=-\tau(X)+(X+\tau(X))\in$

$n+g$ (or $\in \mathfrak{n}+g_{U}$ ), which shows (A.2). Let $g$ be any element of $G\cap R$

(or $G_{U}\cap R$). Acting $\tau$ to the equation $gRg^{-1}=R$ , we get $gR^{-}g^{-1}=R^{-}$

Because $R$ and $R^{-}$ are self-normalizing, $g\in R\cap R^{-}=H_{\mathbb{C}}$ , proving (A.3‘).

REMARK (A.4). With notation as above, $G/H$ is a semisimple symmetric

space if and only if the nilradical $\mathfrak{n}_{\mathbb{C}}$ is abelian, and a bounded Hermitian

symmetric domain if and only if $H$ is maximal compact in $G$ . These sym-

metric spaces are called ‘
$\frac{1}{2}$ -K\"ahler’ and ‘K\"ahler’ respectively in Berger’s

classification ([Be]).

B. Proof of Fact (1.1).

The simply connected hyperbolic space form $\mathbb{H}^{n}$ can be embedded into
$\mathbb{R}^{n,1}$ , which is $\mathbb{R}^{n+1}=\{(x_{0}, \ldots, x_{n});x_{i}\in \mathbb{R}\}$ equipped with the indefinite

metric $dx_{0}^{2}+\cdots+dx_{n-1}^{2}-dx_{n}^{2}$ . As the isometry group of $\mathbb{H}^{n}$ is a subgroup of

index 2 in $O(n, 1),$ $M$ can be written as $\Gamma\backslash \mathbb{H}^{n}$ where $\Gamma$ is a discrete subgroup
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of $O(n, 1)$ . For any fixed $r>0(r\neq 1)$ , we define $\varphi=\varphi_{r}$ : $\mathbb{R}^{n,1}arrow \mathbb{R}^{n,1}$ by

the scalar multiplication of $r$ . $M\cross S^{1}$ is diffeomorphic to $\Gamma\cross<\varphi>\backslash \mathbb{R}_{+}^{n,1}$ ,

where $\mathbb{R}_{+}^{n,1}$ is $\{(x_{0}, \ldots , x_{n});x_{n}>0\}$ and $<\varphi>is$ the group generated by $\varphi$

in $GL(n+1, \mathbb{R})$ . As $\Gamma\cross<\varphi>is$ a subgroup of $GL(n+1, \mathbb{R})$ , the standard

flat affine connection on $\mathbb{R}^{n+1}$ is preserved under the action of $\Gamma\cross<\varphi>$ .

Therefore $M\cross S^{1}$ admits a flat affine connection.
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