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1. INTRODUCTION

Recently, numerical solutions of initial-boundary value problems of the
heat equation are often obtained by boundary element methods based on
boundéry integral equations, because the approach enables us to treat heat
conduction problems with domains extending to infinity, with polygonal
domains and non-smooth data with much ease. For the Dirichlet problem,
direct methods lead to the approximation of a Volterra integral equation of
the first kind. The kernel function involved in the boundary integral
equation corresponds to the sigle-layer heat potential, which is weakly

singular.

The approximation of boundary integral equations in transient heat
conduction problems has been considered by several authors; see Brebbia et
al.(1984) for example in engineering applications. They used the
collocation method with boundary finite elements as trial functions on the
boundary. As regard to the mathematical analysis, Costabel et al.(1987) and
Onishi(1987) discussed the Neumann problem and they showed the existence of
the solution of a corresponding Volterra integral equation of the second
kind on & non-smooth boundary. They showed the convergence and the



stability of the projection method in the space of continuous functions.
Recently, Yang (1986) and Arnold and Noon(19875.presented some attempts at
boundary element methods using the single-layer heat potential to the
solution of Dirichlet problem on a smooth surface. More recently,

Okamoto (1988) showed an application of Fourier transform to the Dirichlet
problem and proved unconditional stability as well as conditional
convergence of the boundary element approximation for the heat operator in

L?-sense.

In this paper, we will show the convergence property and the stability
of Galerkin’s method applied to the solution of the boundary integral
equation of the Dirichlet problem of heat conduction in a solid with
piecewise Liapunov surface with corners and edges in a more general class.
The discussion is done for three-dimensional problems, but the validity of
the results remains also for problems in two dimensions.

2. DIRICHLET PROBLEM IN A NON-SMOOTH DOMAIN

We shall confine the geometry of the domain in question. Let Q be a
simply connected bounded open domain in the three~dimensional Euclidean
space R® and assume that the closed bounded surface I' = 9Q consists of a

finite number of open smooth subsurfaces Fi (i=1,---,N) so that T =

1;u< fi’ where ?i = rfd ari. Then the surface has a tangent plane at every
<i<N ,

point x e‘fi if the tangent plane at the edge point of Fi is understood to

.be the corresponding half plane. Moreover, the angle v between the exterior
normal vector n{x) to Ti at x € Fi and the vector (x-y) for an arbitrary

point vy € Fi (xxy) satisfies the Liapunov condition, see Michlin (1987,

p-285) for example:

lcosv] € L(M) ly-x1® (0 <x <1) , (2.1)



where L is a global constant depending only on I'. The set of points on I’
where the surface is not smooth forms corners and edges. This is denoted by
8T = U ari, which has zero Lebesgue volume measure.

1<isN
Let d@x(y) denote an infinitesimal solid angle at x € R*® subtending the

infinitesimal surface area dI'(y) at y € T-8T; see Michlin (1978, p.287).
Then

_ 1
= ( 'X)'n3< ) dr(y) . (2-2)
ly-x|

Remarks. Let I(x) be the index set attributed to the point x, for which x €
Fi with i € I(x).  If x § I, then I(x) is the null set. Put I°(x) =
{1,2,-++,N} = I(x). For i e I(x) it follows from (2.1) that | (y-

x)-n(y) I/1ly-x1> = |cosv|/ly-x|® < L/ly-x|2_‘c for any y € fi’ Therefore, the

integral J} dex(y)_is absolutely convergent. For j € Ic(x), J} dex(y) is
i 3

also convergent since |y-x| 2 C(x) > 0 for y € Fj' Hence, 8(x) = j}d@x(y)

is well defined for every x € R®.

For x € I', ©(x) is equal to the interior solid angle at the vertex x of
the cone, whose side surface is constructed by all the half ray tangential
lines to the surface I' radiating from x. For a piecewise Liapunov surface T
it follows that ‘

sup J.Ide (y)| = sup J."Y"X)'H‘Y)' dr(y) = A < 4o (2.3)
xer?® ‘T % xeR® T ly-x1°

with some constant A. 1In addition we require I to satisfy



lim sup WS(X) =<1 ’ : (2.4)
60 xel

where Wa(x) is defined by the expression:

Ws (x) = 5= { f 1de (y) | + 12r-©(x) |} . (2.5)
' 0<ly-x|<8

Remarks. The piecewise Liapunov surface satisfying (2.4) is called Wendland
surface. The condition (2.4) (Wendland 1965) allows the splitting of the
integral operator of the double-layer potential into the sum of a
contraction operator and a completely continuoﬁs one in C(I'), which is basic
for the validity of the Fredholm-Radon method in potential theory.

We consider the heat equation for unknown temperature u(x,t):

= Au , (x,t) € (Qu %)x(0,T] (2.6)

wa;
e

for some finite value T, in which A is the Laplacian in R® with respect to

the variable x and O denotes the exterior of the domain Q.
On the boundary we consider the Dirichlet condition:
u(x,t) = u(x,t) ,  (x,t) e I'x[0,T] . (2.7)

In addition, we consider the initial condition:

’. u(x,0) = ug(x) R xe QuQ® (2.8)

for the bounded Cauchy datum u, in C(Q U Q). 1In Qe, the corresponding

Cauchy datum u, may be assumed to grow at most exponentially:

luo (x) | < ajexplB,ix|®] (2.9)



with some constants «;>0 , B:>0 and 0<0<2; see Krzyzanski (1971, p.455) for
example. We can assume without loss of generality by considering the

Weierstrass integral that u, = 0 in QU Qc.

3. BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND
We shall derive a boundary integral equation corresponding to the
Dirichlet problem (2.6)-(2.8) and investigate properties of the integral

operator. We start the discussion with definitions of single-layer heat

potential

Gg(x,t) := sz;q(y,T)v(y,t:x,t)df(y)dx . (3.1)

with the density g and double-layer heat potnetial:

e oviy,T:x,t) 3.5
Hu(x,t) : J:j;u(y,T) an () -dI' {(y)drt ’ (3.2)

with the density u, where n(y) is the external normal at y to the boundary
I'. Here, v is the fundamental solution to the heat operator 9/0t-A:

[( 1 )lexpl - _x’ ] » (t>1)
2Vm ey 1(t=)
V(YIT;XIt) = (3.3)
‘ 0 (t<t) ’
with r = |y-x|.
Put
g(x,t) := —— Q(x,t) + Ha(x,t) , xeTl (3.4)

fua



with the expression:

A _ 0(x), A ~ r?
Hu(x,t) = (1- —EE—)u(x,t) + . ru(y,t)TE:?Tv(y,t:x,t)d@xﬁy)dx . (3.5)

According to Costabel et al. (1987), unknown boundary flux g=du/dn in the
normal direction is given as a solution of the linear Volterra-Fredholm

boundary integral equation of the first kind:
- Ggix,t) = g(x,t) ' (x,t) € T = TIx[0,T] (3.6)

Next lemma shows that G can be understood as a linear bounded operator

from C(IP(I):[0,T]) into C(T).

Lemma 3.1. The operator G: C(LP(I):[0,T]) = C(Z) defined by (3.1) is
bounded for p>2.

Proof. Using the idea in Pogorzelski (1966, p.353), we have for any p (0 <

p < —%— ) the inequality:

. 1. 1 1 r? (3/2) 4 r?
1x,t) = ' - g
V(YIT X, ) 22un3/2 (t_,t)u' r3_2“'[ 4(t-1) eXP[ 1(t-1) ]
1 G1
< - (3.7)
(t-t)H 3720
with Gi1 = sse-s/(22”n3/2) and s = —%— - 0. We apply the Hdlder’s inequality

twice to Gqg(x,t) and obtain from (3.1) that

-

IGq(x,t) | < f:{ fl_lq(y,w)lpdr}”p{ frlvlp’dl‘}]‘/p’dt

1 1
p'=, ’ = r
< _[tnq(-,nn {( f vl P amP ¢ f 1P an)P /P 4
0 P r r



= mes(r)p/p'Jt||q<-,1)il f |vidrdr
0 P Jr

with —%— + —%7 = 1, where mes(I') = J}dr(y). In view of the inequality (3.7)

we can see that inequalities above are valid only for such values of pu

satisfying (3-2u)p’< 2, i.e., —%—(3- '%T) < Q. Then we have

=
1Gq(x,t) | < {Gimes(T) P jt dt al (y)

_ Lyl e P (py .
0 (t-t)F Jr 37 S cw (T') : [0, T])

If we take pu with —%— < p < 1, the integrals are convergent. Consequently,

there exists a constant C depending only on I and T such that ||Gql] <

. . . 1 2
Cllin‘IC(Lp(F):[O,T])' The assumption p>2 is equivalent to —5—(3 o7 )y <

1.

Remarks. In order to apply the Hilbert space approach in the approximation

method in the next section, we shall regard G as an operator:

G: mol/20-1/4 5y ) 41/2,1/4 5,

Lemma 3.2. Under the assumption (2.3) and for u € C(X), the continuous

function g(x,t) of (3.4) satisfies the inequality:

agll <

Njw

A
tgg )il

Proof. The continuity of g(x,t) is shown in Costabel et al.(1987). We
shall prove the inequality of the lemma: By the variable transformation; |-

6 = r/2Vt=—x, HG(x,t) in (3.5) can be expressed as

Hix,t) = 1 - &Gk, b

-1



-G2A 2 .
S Ay, t- z%r )do }de_(y)

¥ 5% J;{ V% f:/szgze

Consequently, we have

| | - )
lﬁmAHS{u—%f|+§%L<ﬁj}%°dmm%wnumu

< 1+ 2o dn

2
The last inequality follows from (2.3) and from 0 < ©(x) < 4n , J%bze % do

Iw/4.

Properties of the intégral operator G are now discussed in the space

ut/2:1/4 5y and its dual space H-1/2,—1/4(2)’ introduced by Lions and

Magenes (1968, p.10 and p.44): Let H1/2’1/4(Z) be a Sobolev space defined by

ut/2:1 /%5y - 1220y 10,11 A a4 @2 M0,

equipped with the norm:

2 - )2
2,178 g, JjIIW(.,t)Ilﬂl/z(g§

H
llw(., t)=w(.,8) 112,
+ JTJT 7 LT gsqat
070 lt-s| ‘

We denote by ({(-,-))o the.scalar product:

((Wwi,w2))o0 := J':(WJ-('lt)lwz('lt))Lz (r)dt

o2}



Next two important lemmas are much due to Costabel(1987).

Lemma 3.3. There exists a constant a >0 depending only on X such that

-1 : : R .
o “lltalll _ _ < HHieall o salliglll _ _
v H 1/2, 1/4(2) Hl/2'1/4(2) H 1/2, 1/4(2)

The next lemma shows strong coerciveness of the bperatot G.

Lemma 3.4. There exists a constant B >0 depending only on X such that

((Ga,@))e 2 Blllglil?_ _
g~1/2,-1/4 5,

1/21'—1/4

for all q in H_ (Z).

4. APPROXIMATION ON THE BOUNDARY

In this sectioh, we shall conside& the seﬁi-discretization of the
solution by Galerkin method using boundary finite elements. We shall show
convergence and accuracy of the semi-discretized approximate solution.  The
way of arguments is much due to Nedelec and Planchard (1973) as well as
Hsiao and Wendland(1977) . ' ‘

Let vy be finite-dimensional subspaces of the Hilbert spacé H-l/z(r),

approximating the solution q(x,t) of the Volterra-Fredholm integral
equation (3.1) and (3.6), such that n90Vh is dense in LZ(I') and v, © Vy, for

h > h’. Put dim(Vh) = n by assuming that n = 1/h for n = 1,2, ---. Let
{o.(x)}._ denote the basis of V.. We consider the approximation of
J j=1,2,--+,n h .

g{x,t) in the form:

oA
q (x,t) = X q.(t)e.(x) - | ‘ (4.1)
h j=1 Jj J



10

with coefficient functions &j(t) (0 £t £T) to be determined.

We shall consider the semi~discrete Galerkin approximation: Find

—1/2/—1/4

unknown qp in H (£) satisfying that

((th,qé))o = ((gh,qﬁ))o for all qﬂ € Vh ’ (4.2)

1/2,1/4(2)

where 9 is an L?-orthogonal projection of g € H into

Lz(Vh;(O,T)): That is, with the projector

. 2 2 .
P, : g€ L°(Z) — gy, € L (Vh.(O,T))

h

< . s .
We assume that IIPhgl|H1/2,1/4(z)_|lg||H1/2,1/4(z). This is equivalent to

the proposition:

((th, wi))o = ((g, ¢i))o for all 9, € Vh’ i=1,2,---, n. (4.3)

Theorem 4.1. Let g be the solution of (3.6) in g1/2,-1/4

(£) and q, be a

solution of (4.2). Then, there exists a constant p(Z) >0 such that

Ilg = q 1 _ -
h H 1/2' 1/4(2)
(4.4)

<p{ inf |Illg - qﬁillﬂ-l/Z,-1/4

+ 1llg = gl b .
qﬁe Vh h H1/2'1/4(Z)

()
Proof. From (3.6) we have

((Ga, a’))e = ((g, a’))o for all o e g 1/2/-1/4(3 | . (4.5)

For an arbitrary qﬁ,in Vh, it follows from Lemma 3.4 that

10



((Glap= ap), g~ aqf))o 2 B [llq - qﬁ"';_l/z,—1/4(z)

On the other hand, we can see that

((Glay~ q)) s qy- qp))e = ((G{a = gp)-(qa = q )), gy~ qp))o

((Gla = af), qu= gf))e = ((Gla@ = G), G- af))o

((Glq - qf))s g,= gp))e - (g = gyr gy~ q))o

IA

111G(q - @) I 11 Hap- a1l g0
h H1/2'1/4(2) h h H 1/2, 1/4(2)

< (@lla = oIl yyp qyg 0 * 1S = S0l ay2 178 o )

X lay=allll _ -
h =h''0, 1/2, 1/4(2)

The third equality follows from (4.2) and (4.5). The last inequality
follows from Lemma 3.3. Combining the above inequalities, we have

Billg, = aplll _ -
h™ “n''p-1/2,-1/4 5,

()
from which it follows that

11

11
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IA

+

g - qﬁ[llH_1/2,_1/4(z)

Illqh— qﬁlllH_l/2,_1/4(z)

. ‘
<@ +E)illg-altll _ _ + 7 Illg - g1l . )
B n'ly-1/2,-1/4 5,7 B h'1 172,174 5,

This leads to the desired inequality (4.4) with p =‘max{(1+a/B), 1/B}.

We can obtain a stronger result in the next theorem, which shows the

—1/2'—1/4

optimal rate of convergence of the Galerkin approximation in H (Z).

Theorem 4.2 ( Cea’s lemma ). The semi-discrete Galerkin approximation (4.2)

is inverse stable: For the Galerkin solution ay it holds that
llg = q T _ _
h H 1/2, 1/4(2)

< (1 + % ) inf

- 4 .
o thnlq il 1/2,21/a g, -

) B

Proof. The Galerkin approximétion (4.2) is equivalent to the problem of

—1/2r_1/4

finding the unknown 9y of the form (4.1) in H (£), satisfying the .

operator equation:
PhGPhqh = Phg . (4.6)

By the same way of arguments as in Wendland (1982, p.21), we can see from
Lemma 3.4 that

2 * =

< Il 1P, GP

a1 Pla, U g .
h%n' 1 172,174 4, R ym1/2,-1/4 5

The first equality followed from the relation:

12
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((GPhth qh))o - ((PhGPhqh, qh))a = (((I - Ph)GPhqh' qh))o =" 0 ,

since a, € Vh and (I -~ Ph)GPhqh € Vh+’ the orthogonal complement of Vir forr

every t € [0,T)]. Then we have

<
< 1lIp,GP

Blilg 111 _ _ a. il 4, S
h''.-1/2, 1/4(2) h*h' ‘H1/2'1/4(2)

Since this inequality holds for all qh“, we know that PhGPh: H_l/z'—1/4(2) -
H1/2’1/4(2) is invertible. The inverse is bounded as follows:
1112, GP ) L1
h“ h H1/2,1/4(z)’H—1/2,-1/4(E)
e Ye 11,
‘ h™h h 3‘1/2"1/4(2) 1
= sup S B (4-7)
g, %0 [11g, 111
h h H1/2r1/4(2)

see Kantorowitsch and Akilow (1964, Satz 2,2.V) for example. From (3.6) and
(4.6) it follows that '

- -1
qy = (P,GP,) "P,Gq

1, ¢ . g-l/2,-1/4

This defines the Galerkin projector Gy = (PhGPh)- PG : () -

H-l/z'—1/4(2). We shall show that Gh is bounded. For this purpose, we put

9, = Pth. From (4.7) and Lemma 3.3 it follows that

-1 S
Lll(PhGPh).~Pth1||H_1/2,—1/4(2)

-1
S TITH(BLGP) TH I - - FHIP,Gal ]
h™"h H1(2,1/4 1/2,-1/4 5, h ul/2:1/4 5,

() ,H

13
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< Qi gy )

This implies that Gh is bounded as desired: Namely

LG U g0 1/ - < 2 (4.8)
h H 1/2, 1/4(2),H 1/2, 1/4(2) B v
Note that thé = qﬁ for all qﬁ € Vh because
PGP, qf = P, Gqj . (4.9)

Consequently we have

A

e =gyl ay2,-1/4 g0 W™ GIV cay2,-170

IA

(1+ 116 -1/2,-1/4,.,)

ey _ -
hit 1/2,-1/ (£)

‘z),u

which leads to the assertion of the theorem from (4.8).

For the concreteness of the discussion, as Vh we shall consider the
regular finite element spaces Sn with the following two conditions for some

positive integer m; see Hsiao and Wendland (1981, p.4) for example:

14
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Convergence property: Let t £ s be such that -(m+1l) £t < s £ mt+tl, -m < s

and t £ m for some non-negative integer m. Then for any gq € Hs(r) there

exists akqﬁ € Sh such that

lla - qqil . < ch® gl (4.10) °
H S (T)

(T) Sqr

with some constant Ci which is independent on q and h.

Inverse assumption: Let t £ s be such that |t], |[s| £ m. Then there exists

a constant C2 independent on h such that

< cah® Pyg il for all q € S, . (4.11)
: H

Ilay ||
h us ()

()
Remarks. Nedelec and Planchard (1973, Lemme 3.1 and Lemme 3.2) showed that,
if T is a polyhedron, linear triangular finite element spaces satisfy (4.10)
and (4.11) with m = 1, provided that all the angles 6 in the triangulation
satisfy 8 =2 60 > 0 with a constant 08¢, which is independent of the maximum
diameter h among all triangles. For constant triangular finite element
spaces, the convergence property (4.10) is satisfied with m = 0;‘see Nedelec
‘and Planchard (1973, Lemme 3.4). ﬁowever, (4.11) holds only for -1 £t < s
< 0, see Nedelec and Planchard (1973, Lemme 3.3).

As an immediate consequence of Theorem 4.2 and (4.10) we have

Theorem 4.3. For the semi-discrete Galerkin solution ay, with constant

boundary finite elements on the triangulation of the polvhedron I', it holds
that ‘

< o s+1/2

) )

15
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It is often the case that Dirichlet data ﬁ(x,t) of (2.7) or Cauchy data
uo (x) of (2.8) are given imprecisely due to measurements. The right hand

side g{(x,t) of (3.6) can not be obtained exactly because of the approximate
evaluation of the term Hﬁ(x,t) in (3.4) and (3.5). Due to the limitation of
a finite number of digits available in the numerical computation, round-off

errors are not avoidable. These cause the additional impreciseness involved

in the right hand side g(x,t). We assume that the polluted g, denoted here
by E, belong to H0’1/4(2) . Instead of (3.6), we have to solve the
equation: ' ‘ /

Gq(x,t) = g(x,t) , (xt) € Z (4.12)

In this situation we have the ill-posedness of the Galerkin approximation as
next theorem shows. '

Theorem 4.4. For the semi-discrete Galerkin solution a£ of (4.12) with 9, €

S

h’ it holds that

s+1/2 -1/2 S :
< Cafh el s, -1/4 5, * 0 g =gl 0,174 5,

(2) ()

with some constant Cs > 0 and 0 £ s £ 1.

Proof. The way of the proof is due to Hsiao and Wendland (1981, p.9). From
(4.6) it follows that ~

~J

~ B
PhGPh(q - qh) = PhGPhq - Phg
- G . ‘ Ay

Using (4.9) we can see that

16



~ ~N
PGP (q - q) = (PGP~ P,G)(q - q) + P,(g - g)

for all qﬂ € Sh' Application of (PhGPh)—l to both side of the equality

vields that
av3 —l ~s
q-q, = (I-Gy(g-qf) - (PGP) "P (g - Q)
Consequently, from (4.7) and (4.8) it follows that

flg - g 111

(4.13)
s +% ) a-atil +E 1B (g - DI
= B h H—1/2,—1/4(2) B h H1/2,1/4(2)
< a+gren™ 2 an |, Lt 5 e Mg -G g,
HI () H,

)

The last inequality followed from (4.10) and (4.11).

17

Remarks. For constant elements we can obtain only the first inequality of

(4.13). Hence it is suggested that, when constant elements are used,
nurmerical computations must proceed so that

IllPh(g - g)lll 1/2,1/4 is evaluated as small as possible. In other
H ! () '

words, the right hand side is required to be smooth and it should be
calculated with high accuracy.

Remarks. A rough estimate of the optimal choice of h may be given from
Theorem 4.4 by minimization of the expression in {---} with respect to h:

From the relation

. -
pst1 _ 1 M9 - 9ll10.1/4 5

N

1
(s + 3)iltalll
2 HS'1/4(2)

17
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we have the guidline:

1
s+1

) .
H0’1/4(2

h £ = o (lilg -gll} )

op

5. APPROXIMATION IN TIME

In this section, we shall consider a constructive theory in the full-
discretization of the solution by Galerkin method using one-dimensional
finite elements in the time variable. We shall estimate the condition
number of the coefficient matrix in the linear system of equations for a
time-stepping procedure. We shall obtain convergence and accuracy of the
approximate solution.

Let us subdivide the interval [0,T] into N small segments of equal

k= tg-qt At; k=1,2,---, N (= T/At ). Let T, be

corresponding finite element subspaces of C([0,T]), approximating

length with nodes t

coefficient functions &j(t) in the expression (4.1). Let

{Wk(t)}k=0,1,---,N denote the basis of T, . From (3.6) it follows that

n

z fta.(t)v--(t,t)dx =G, (t)y , i=1,2,---,n ' (5.1)
o J 1j 1 .
=1 0

where
Vrhm)=ff¢JMWWWWJmmMNMﬁW) (5.2)
J r’'r* J
%w)=fgm¢mﬂmam) . (5.3)
T :

This is the linear system of Volterra integral equations of the first kind
for unknowns Qj(t) with kernels Vij(t,t). Let qj(t) be the orthogonal

jecti £ q.(t) into T,, :
projection o qj( ) into At®

18
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\yk(t) , 0t <t (5.4)

: A
with coefficients q? , which stand for approximate values of qj(tk). As an

approximation, we consider the Galerkin method: Namely, we will find unknown
qj(t) satisfying that

n
m _ ’tm '
jz Y, (B) {jzlquj(r)vij(t,t)dt}dt = 6 v, (E)G; (t)dt {5.5)

form=1,2,---,N. Substitution of (5.4) into these equations yields the

linear system of algebraic equations for unknowns q? :

5 %'q‘.‘a’.‘. =p® (5.6)
j=1 k=0 J 13 i
where
ak, = ftm (t) Jt (t)V, . (t,t)drdt (5.7)
ij o 'm o'k iyt ' .
m —
by = Jz%m(t)ei(t)dt ) (5.8)

Note that atj depends on the number m of the time step, in general.

Inductively suppose that all q§ ( k £m-1) are known. Then, the system of

equations (5.6) can be written in the form:

q.a.. . (5.9)

19
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We shall express this form using matrices and column vectors as follows:

m-1

™™ = ™ - 3 R . (5.10)
. k=0 : .
Note that all square matrices [A(k)] (k=20,1,---,m ) are symmetric since
V,. = vji in view of the reciprocity v{y,t:x,t) = v(x,1:y,t) in (5.2).

13

Lemma 5.1. The matrix [A(m)] is symmetric, positive definite, and all
(m) )

eigenvalues A (A satisfy
B 2 (m)
cs hAt lmin(B) < A(A )y < aC4Atlmax(B) (5.11)

with some constant Cs >0 and Cs >0, where [B] is the Gram matrix of the

basis {@i(x)}i=1'2’_

+ 2 _ . =
in L°-sense: bij (¢i, ¢j) in(B) and

L2’ 7‘m
lmax(B) are smallest and largest eigenvalues of [B], respectively.

..,n

Proof. The basic idea of the proof is due to Richter (1978). With real

numbers §i (i=1,2,--,n), consider the quadratic form:

n
_ m
Q(a) i'§=laijgi§j

= Jtmwm(t)thm(T)Jij.nh(x)nh(y)v(y,t:x,t)dF(x)dF(y)dxdt -
0 0 rr
n
Here we put: M (x) = p3 §i¢i(x) € V. Set gf(x,t) =y (t)n, (x). Then we
i=1

have

_ - - , . p .
o) = fz (Gaf, (+/t), Q- t))paydt - (5.12)

20
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1/2,1/4

From Lemma 3.4 with T=tm it follows for any g € H (£) that

- 14 [4 [4 2 ’

> Bx((qg,g)>012/l||gl:|§1,2'1/4(2)".

The last inequality followed from the definition:

Take g(x) nh(x). Then it becomes

5 ; 2 ‘ .
Q(a) 2 BIJT(ﬂ (-),v_(t)n, (-)) acl=/ 1 in 1
o b m h 12 h H1/2’1/4(Z

() )

2 4 2
Bif v a1 2iing 114, Jiriingl }
o™ B2 B2y

v

2 2
thlew ()dt 1™ ling 11 - /T
C3 0 m h L2 (1)

The last inequality followed from the inverse assumption (4.11) with s =

(m)].

1/2, t = 0. This implies the positive definiteness of [A For the

finite element base y, (t), there exists an integer p, which is independent
k

on k, such that supp(wk) c [t t We have:

k-p’ k+p]‘
Jtm wm(t)dt = 0(at) , Jtm wm(t) 12at = 0(At)
0 0 . .

independently of m. We have also that

21
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n
L, 112, = Y b,.E.E.
h' 'L (I 1,9=1 1374133
Consequently, there exists a constant Cs3(Z) such that
2 2
Q(a) 2 i’c: hAt?A . (B) & - (5.13)

On the other hand, from (5.12) it follows that

Q(a) < IllGallll Itlap LEl -
h H1/2'1/4(£) h''-1/2, 1/4(2)

2 2 2

Salllgll™_ - Say(D) gl

h H 1/2, 1/4(2) h L2(2)

2{m 2 2

= ay Jt ly (&) 17dt TIn ||

0 m ; h LZ(F)
< ayzAtCsllnhllzz

L

()

with some constant Cs >0. The second inequality followed from Lemma 3.3.

1/2,—1/4(2) 5

L2(Z) with the constant y >0. Consequently there exists a constant Ca(Z)
such that

The third inequality followed from the continuous imbedding: H

L BYIEIT . (5.14)

Q(a) < aC4Atlma

By combining (5.13) and (5.14), we can obtain (5.11).

Corollary 5.1. The condition number K(A(m)) of the coefficient matrix in
the linear system of equations (5.10) satisfies t

x(a{™, s%c;m nit x(B) . : (5.15)
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proof. From (5.11) the assertion follows immediately, since

(m)
(m)) = ;\'max(A )

}‘min(A

aCsCs lmax(B)

<
(m), = BhAt :
™) Apin (B

in -

kK (A

In order to obtain error estimates of fully discretized approximate

solution qj(t) of (5.4), let us introduce the interpolates q?(t) defined by

I = g A | 0 <t < " (5.16
and we assume the convergence property:
Iqi(t) - &j(t)| <ceat® , 0<t<T (5.17)

with some constants Cs >0 and ¢ >0.

Remarks. If linear finite element shape functions ( roof functions ) are

used for T and aj(t) has bounded second derivative, then (5.17) holds with

At
6 = 2; see Strang and Fix (1973, Theorem 3.1) for example.

From (5.1) we have the next semi-exact equations:
Jtm 5 ftA gt }d —'Jtm £)G, (t)dt
Y () 1 q.(t)Vij(t,t) t}dt = 0 Vo, (B)G, (

0 3=10

Subtracting (5.5) from this equation we have
[ vaer i £ a0
. - q. V,. t)dr}idt = 0
6 \vm(t){j>=:1 0[q3<r) qy () 1V (T t)ar)

Hence

23
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n . . s
’tm lt I - :
0 wm(t){jzl otqj(t) - qj(t)]Vij(t,t)dx}dt

n BRI : '
I e Tooy - Cer ~
= fz wm(t){jzlfz[qj(r) qy (7) 1V, s (v, t)dr }de .

Put e? = aj(tk) - q? . This indicates the error committed in the time-

discretization at time—épace lattice point (Pj,tk) with Pj € I'. Since

I ook
L(t) = qu(t) = v, (t
qj( ) q]( ) kEOerk( ) '
we have
n m :
Y X e?af. = V7 (5.18)
3=1 k=0 J *J
where
m a Jtm Jt I o
vy = _§ " (E) {qy(t) = qy(t)} Vyy(r,t)dnde
j=1 "0 0
Theorem 5.1. Let & (h,At)=h/{AtAmin(B)}. Then the maximum norm ||{e™}]]_
of the error column vector {em} = eT,---,eﬁ )’ satisfies
111e™} 11, < G2atPEExp[G2TE] | , (5.19)

witﬁ some constant Gz >0.

Proof. By usiﬁg the inequalities (3.7) and (5.17), v? can be estimated as

follows:
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(t-t)*

Since finite element bases have the properties; -1 < ¢i(x) £ 1 and -1 <

25

19" < ceat® f:ml v (t) [J: —at f 1oy (x) | ): f o5 | St ar .
: ! . . . r g .

wk(t) < 1, all integrals involved in the right hand side are convergent for °

1/2 < p < 1. We can see that

m dr 01 m 1-p m
Jt I\V(t)IJ‘t-—-dtST-JttvdtSpAt-r——_—.——
o ® 0 (t-t)* -n Jy 1=

m=p

since supp(y_ ) c [t 't ].J Since ¢. has a'iocélly compactnsupport, that
m m 1

m-p

is,
f lwi(x)ldr(x) < C1h?
T

with some constant C7 > 0, independent on i, we can see that

n
[ e, = [ 1o w1 G;gr—z‘L dr (x)

fhp (%) 1T (x) max 3 f[(p (¥) | %E(z)_
xel j=1 o ek

From (2.3): and the fact that.wj;has a locally compact support, the:e»exisps §

a constant Gs, depending only on I', such that

max 3 94 (¥) | Gdfly) < 6 .
xcT’” j=1 T r H

Consequently we have the estimate:
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. 1-p
t ,
™1, := max |v]] < CsCaGaph?at®+t E%E" < G2ttt (5.20)
i

with the constant Gs = CszGapTl‘“/(l-u). Similarly, we can see from (5.7)
that

a k m k+ dt

2z lay.l < Jt Iy (t)IJt pr (t)] ——— dt

j=1 *J e t k (t-t)#

m-p k-p

n
x [1oge1 3 [ 1oy 1 SEW -
r j=17r J ook

< 2p2At2CsC7h?Gs

Here we used the inequality:

th+91wk(¢)| —d < 2patcs
K (t-t)#
-p

with some constant Cs >0. Therefore, there exists a constant Gs such that

n
™y = max X 1al%) < Gsn2at? ) (5.21)
% 1<ign j=1 1J ’

Now we shall show (5.19). For this purpose, we express (5.18) in the matrix

form:

m-1
a™ye™ = (v - kzb[A‘k’]{ek) )

Using (5.20) and (5.21), we can see that
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111e™ ' ' m-1 .
e < ™™g ™+ T o™ nneEng,
™It k=0
m-1
< h2at?( Gaat® 4 s X H{ek}ll°° ) .
k=0
From (5.11) we know that
™yt s —352
BhAt lmin(B)
Consequently we have the recursive relation for ll{em}llm:

' m-1
1™, € Ge p2mgr (A%7H T 11,
min k=0

with some constant Gs > 0. Using the result in Onishi (1982, Eg.4.45), we
can see that

| R )
™11, S (altfe’} I +B (1 + o)™t

where

nat®?

) Gs . (B
min min

D
=2
™D

From the inequality 1l4x < e* (x 20 ), we have

(1+a)" ~ <Exp [Gshm/A_, (B)]

If we can assume that ||{e®}||_ = 0, we arrive at (5.19) by noting that m
had .

T/At and G2=Gs.

27

<



So far we have considered several solutions; the exact solution gq(x,t)

-1/2,-1/4

of the équatioh (3.6) in H (Z), semi—discretized solution qh(x;t) of

the form (4.1), fully discretized solution

n
lqh,At(x’t) = jglqj(t)¢j(x) in T, XS, ©(5.22)

with qj(t) defined by (5.4), and interpolated solution

n

| a (x,t) = q§(t)¢j<x) in T, xS (5.23)

j=1

with qi(t) defined by (5.16). Put e(x,t) = q(x,t) - q ,.(x,t). This
1
indicates the total error of the boundary finite element solution 9 At- We
y , r

shall estimate e(x,t) in H—1/2’_1/4(2

).

Theorem 5.2. Under the assumptions (4.10), (4.11) and (5.17), the total
error e(x,t) is bounded by

. . s+1/2
(llelll _1,n _ < et 1qrr L
y-1/2,-1/4 3, S =1/4 3,
(5.24)
+ Atc_l{e At R (B) +lG h 2B pyn(G.TE]} |
h #8%Y *max ° X;Z;TET xpli2

for 0 £ s £ 1, with some constants Gz >0 and Gs >0.

Proof. From (4.1), (5.22) and (5.23) it follows that

e(x,t) = {q(x,t) = q (x,8)} + {q (x,t) - q (x,t)}

28



*lap(xt) = q A (xE))

= {a(x,t) - q (x,t)} + El{q () - q (t)} @y (%)
J—
(5.25)

L ¢
+ 2 {gi(t) - g.(t)} o,(x)
j=1 3 3 3

The second term on the most right hand side can be bounded as follows:

s A I 2
R (qj = qj) ¢j|I|H_1/2'_1/4

j=1

2 L I 2
< X {q, = gi} o.111

=1 J J J L2 ()
- E jT{ t Tie) 1, (t) - g5 (t) }dt (9,,9.)
52170 l( ) ‘qi( qj qj ¢ir¢ Lz(r)
2,.20

<y 2rc?at nA ok (B)

The last inequality followed from (5.17). The third term on the most right
hand side can be bounded similary as follows:

g I 2
111 (@ = g.) o, 1117 _
j=1 I 3 it g1/2, 1/4(

-

IA

2
||| Z {q -q.l 9.1
3=1 303 12y

2
IIIZ{Ze\VHPII
j=1 k=0 J % 12 (x)
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Notice that the inequality:

§ k k
| exy, (t)| £ Co( max [l{e }II)
k=g J K 0<k<m %

holds with some constant Cs >0. It follows from Theorem 5.1 that

n

I 2

= ()

n
< 123 (max 11151102011 2 041117,
0<k<m =1 3 1)
< y2cicfac?%e%exp (26216 1T nh___(B) .

ax
From Theorem 4.3 and (5.25), the total error satisfies that
Fllelll _ -
H 1/2, 1/4(2)

o

(145 c.nS*1/2

A

Ilaltl -
uS’ 1/4(F)

+

yVTAt® IV (coaty X )

max (B

k (B) Gz2Th

* CoGeh g~ Bl zex ey !

with 0 £ s £ 1. This completes the proof.
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