Solvability of convolution equations in Gevrey classes of Roumieu type

Rüdiger W. Braun, Reinhold Meise, Dietmar Vogt

(Düsselderf Univ.)

Let $E^{\{d\}}(\mathbb{R}^N)$ denote the Gevrey class of exponent d>1 of Roumieu type. Cattabriga [2] has shown that in general not every constant coefficient linear partial differential equation P(D)f = g has a solution $f \in E^{\{d\}}(\mathbb{R}^N)$ for arbitrary $g \in E^{\{d\}}(\mathbb{R}^N)$. In [9], Zampieri gave sufficient conditions on P(D) for the solvability of the above equation in $E^{\{d\}}(\mathbb{R}^N)$. He used ideas of Hörmander [4], who has characterized those P(D) which act surjectively on the real-analytic functions on \mathbb{R}^N , i.e. on $E^{\{1\}}(\mathbb{R}^N)$.

Recently, we have been able to characterize those convolution operators T_{μ} on the ultradifferentiable functions $E_{\{\omega\}}(\mathbb{R})$ of Roumieu type which are surjective. In the present note we state this result for the Gevrey classes $E^{\{d\}}(\mathbb{R})$ and give a rough sketch of its proof. For details we refer to our forthcoming paper [1].

1. Definition. For d > 1 we define the Gevrey class $E^{\{d\}}(\mathbb{R})$ of Roumieu type and exponent d by

 $E^{\{d\}}(\mathbb{R}) := \{f \in C^{\infty}(\mathbb{R}) \mid \text{for each compact set } K \subset \mathbb{R} \text{ there exists}$ h > 0:

$$\sup_{x \in K} \sup_{p \in \mathbb{N}_{O}} \frac{|f^{(p)}(x)|}{h^{p}(p!)^{d}} < \infty \}.$$

We endow $E^{\{d\}}(\mathbb{R})$ with its usual topology, which is obtained by taking first the inductive limit over h > 0 and then the projective limit of all compact sets K in \mathbb{R} (see Komatsu [5],2.5). Furthermore we define

$$\mathcal{D}^{\{d\}}(\mathbb{R}) := \underset{n \to}{\text{ind}} \mathcal{D}^{\{d\}}[-n,n],$$

where

 $\mathcal{D}^{\left\{d\right\}}[-n,n] := \{f \in E^{\left\{d\right\}}(\mathbb{R}) \ \big| \ \text{Supp}(f) \subset [-n,n] \},$ endowed with the topology induced by $E^{\left\{d\right\}}(\mathbb{R})$.

2. Convolution operators

For d>1 and $\mu\in E^{\left\{d\right\}}(\mathbb{R})$, we define the convolution operator T_{μ} on $E^{\left\{d\right\}}(\mathbb{R})$, which is induced by μ , in the following way

$$T_{\mu}(f) : x \mapsto \langle \mu_{y}, f(x-y) \rangle, f \in E^{\{d\}}(\mathbb{R})$$
.

It is easy to check that \mathtt{T}_{μ} is a continuous linear endomorphism of $\textbf{E}^{\left\{d\right\}}\left(\mathbb{R}\right)$.

For $v \in \mathcal{D}^{\{d\}}(\mathbb{R})$ we define $\mu * v$ by

$$<\mu*\nu,\phi>:=<\nu,\mu*\phi>, \phi\in\mathcal{D}^{\{d\}}(\mathbb{R})$$
,

where $<\mu',g>:=<\mu_{x'}g(-x)>$ for $g\in E^{\{d\}}(\mathbb{R})$. It is easy to see that $\mu*\nu$ is in $\mathcal{D}^{\{d\}}(\mathbb{R})$.

Furthermore we define the Fourier-Laplace transform $\overset{\wedge}{\mu}$ of μ by

$$\stackrel{\wedge}{\mu}$$
 : $\mathbb{C} \rightarrow \mathbb{C}$, $\stackrel{\wedge}{\mu}(z)$:= $<\mu_{_{\rm X}}$, ${\rm e}^{-{\rm i} xz}>$,

and we put

$$\nabla(\mathring{\mu}) := \{z \in \mathbb{C} \mid \mathring{\mu}(z) = 0\}.$$

Using the notation introduced above, we can state our main result:

- 3. Theorem. For d > 1 and $\mu \in E^{\{d\}}(\mathbb{R})$, the following conditions are equivalent:
- (1) $T_u : E^{\{d\}}(\mathbb{R}) \to E^{\{d\}}(\mathbb{R})$ is surjective.
- (2) μ satisfies (i) and (ii):
 - (i) there exists $v \in \mathcal{D}^{\{d\}}(\mathbb{R})$ with $\mu * \nu = \delta$, i.e. T_{μ} admits a fundamental solution
 - (ii) $V(\hat{\mu})$ can be decomposed as $V(\hat{\mu}) = V_0 \dot{U} V_1$ with

$$\lim_{\begin{subarray}{c} |z| \to \infty \\ z \in V_O \end{subarray}} \frac{|\operatorname{Im} z|}{|z|^{1/d}} = 0 \quad \text{and} \quad \liminf_{\begin{subarray}{c} |z| \to \infty \\ z \in V_1 \end{subarray}} \frac{|\operatorname{Im} z|}{|z|^{1/d}} > 0.$$

- 4. Remark. (a) In Theorem 3, condition (2)(ii) can be replaced by each of the following conditions (iii) or (iv)
- (iii) ker T_{ii} is reflexive (or bornological, or quasi-barrelled)
- (iv) ker T is linear topologically isomorphic to X \times Y for some nuclear Fréchet space X and some (DFN)-space Y.
- (b) In Theorem 3.(2)(ii) the term $|z|^{1/d}$ can be replaced by $|Re\ z|^{1/d}$.

To sketch the proof of Theorem 3, fix d > 1 and $n \in \mathbb{N}$. Then put

$$E^{\{d\}}(n) := \{f \in E^{\{d\}}(\mathbb{R}) \mid f(x) = 0 \text{ for all } x \in [-n, n]\}$$

and define $E_n := E^{\{d\}}(\mathbb{R}) / E^{\{d\}}(n)$.

Next fix $\mu \in \mathcal{E}^{\left\{d\right\}}(\mathbb{R})$ ' and choose $m \in \mathbb{N}$ with $Supp(\mu) \subset [-m,m]$. Then it is easy to check that T_{μ} induces for each $n \in \mathbb{N}$ a continuous linear map

$$\tau_{n} : E_{n+m} \to E_{n} \text{ by } \tau_{n} (f+E^{\{d\}}(n+m)) := T_{\mu}(f)+E^{\{d\}}(n).$$

Let $K(\mu,d)$ denote the projective spectrum consisting of the spaces (ker τ_n) and the natural restriction maps. Using properties of the projective limit functor of Palamodov [7], one can see that the following holds:

5. Lemma. For d > 1 let $\mu \in E^{\{d\}}(\mathbb{R})$ ' be given. Assume that there exists $\nu \in \mathcal{D}^{\{d\}}(\mathbb{R})$ ' with $\mu * \nu = \delta$. Then T_{μ} is surjective on $E^{\{d\}}(\mathbb{R})$ if and only if $\text{Proj}^1 K(\mu,d) = 0$.

To evaluate the condition $\operatorname{Proj}^1 K(\mu,d) = 0$ we use a recent result of Vogt [8], by which $\operatorname{Proj}^1 \Lambda(A) = 0$ is characterized for certain countable projective spectra $\Lambda(A)$ of (DF)-sequence spaces. To state his result, we introduce the following notation.

- 6. Definition. Assume that $A = (a_{j,k,m})_{j,k,m \in \mathbb{N}}$ satisfies the following conditions for all $j,k,m \in \mathbb{N}$:
- (1) $a_{j,k,m} > 0$ (2) $a_{j,k,m} \le a_{j,k+1,m}$ (3) $a_{j,k,m} \ge a_{j,k,m+1}$. Then we fix $k,m \in \mathbb{N}$ and define

$$\lambda(k,m) := \{x \in \mathbb{C}^{\mathbb{N}} \mid \|x\|_{k,m} := \sum_{j=1}^{\infty} |x_j| a_{j,k,m} < \infty \}.$$

Then $(\lambda(k,m),\|\|_{k,m})$ is a Banach space and because of (3) the inclusion map $j_{m,m+1}^k$: $\lambda(k,m) \to \lambda(k,m+1)$ is continuous. Hence we can define

$$\lambda$$
 (k) := ind λ (k,m).

Then (2) implies that the inclusion $\iota_{k+1}^k:\lambda(k+1)\to\lambda(k)$ is continuous. By $\Lambda(A)$ we denote the projective spectrum $(\lambda(k),\iota_{k+1}^k)_{k\in\mathbb{N}}$.

7. Example. Let $\alpha = (\alpha_j)_{j \in \mathbb{N}}$ and $\beta = (\beta_j)_{j \in \mathbb{N}}$ be sequences of non-negative numbers with $\lim_{j \to \infty} \beta_j = \infty$. Then

$$A_{\alpha,\beta} := (\exp(k\alpha_{j} + \frac{1}{m}\beta_{j}))_{j,k,m \in \mathbb{N}}$$

obviously satisfies the conditions (1)-(3) in Definition 6. In this case, $\lambda(k)$ is a (DFS)-space for each $k \in \mathbb{N}$ and we shall denote proj $\lambda(k)$ by $\lambda(\alpha,\beta)$. $\leftarrow k$

The result of Vogt [8], mentioned above, can now be stated as follows:

- 8. Theorem (Vogt [8]). Let $A = (a_{j,k,m})_{j,k,m \in \mathbb{N}}$ satisfy the conditions in 6. and let $\Lambda(A)$ denote the projective spectrum defined in 6. Then the following conditions are equivalent:
- (1) $\operatorname{Proj}^{1}\Lambda(A) = 0$
- (2) $\forall \mu \in \mathbb{N} \ \exists n, k \in \mathbb{N} \ \forall m, L \in \mathbb{N} \ \exists n, S \in \mathbb{N} \ \forall j \in \mathbb{N}$:

$$\frac{1}{a_{j,k,m}} \leq S \max \left(\frac{1}{a_{j,L,N}}, \frac{1}{a_{j,\mu,n}} \right).$$

The application of Theorem 8 is possible because of the following result:

9. Theorem (Meise [6]). For d > 1 let $\mu \in E^{\{d\}}(\mathbb{R})$ ' be given. Assume there exists $\nu \in \mathcal{D}^{\{d\}}(\mathbb{R})$ ' with $\mu * \nu = \delta$ and dim ker $T_{\mu} = \infty$. Then ker T_{μ} is linear topologically isomorphic to $\lambda(\alpha,\beta)$, where $\alpha = (|\text{Im a}_j|)_{j \in \mathbb{N}}$, $\beta = (|a_j|^{1/d})_{j \in \mathbb{N}}$ for a sequence $(a_j)_{j \in \mathbb{N}}$ which counts the zeros of $\hat{\mu}$ with multiplicities.

Sketch of proof of Theorem 3: Arguments of Ehrenpreis [3] can be used to show that the surjectivity of T_{μ} implies the existence of a fundamental solution for T_{μ} . For the rest of the proof we can assume w.l.o.g. that dim ker $T_{\mu} = \infty$. Then Theorem 9 can be used to show that the projective spectra $\Lambda(A_{\alpha,\beta})$ and $K(\mu,d)$ are equivalent. By the properties of the projective limit functor, this implies $\text{Proj}^{1}K(\mu,d) = \text{Proj}^{1}\Lambda(A_{\alpha,\beta})$. Hence the result follows from Lemma 5 by evaluating condition 8.(2) for $A_{\alpha,\beta}$.

- 10. Example. There exists an ultradifferential operator $\mu \in \Omega$ $E^{\{d\}}(\mathbb{R})$ ' with the following properties:
- (1) $V(\hat{\mu}) = \{\pm e^{j} \pm i e^{k} \mid j, k \in \mathbb{N} \}$
- (2) $T_{\mu}: E^{\{d\}}(\mathbb{R}) \to E^{\{d\}}(\mathbb{R})$ admits a fundamental solution for each d>1
- (3) for each d > 1, T_{μ} : $E^{\left\{d\right\}}(\mathbb{R})$ \rightarrow $E^{\left\{d\right\}}(\mathbb{R})$ is not surjective.

However, for each d > 1, T_{μ} : $E^{(d)}(\mathbb{R}) \to E^{(d)}(\mathbb{R})$ is surjective, where $E^{(d)}(\mathbb{R})$ denotes the Gevrey class of Beurling type of exponent d.

References

- [1] Braun, R. W., Meise, R., Vogt, D.: Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, preprint
- [2] Cattabriga, L.: On the surjectivity of differential polynomials on Gevrey spaces, Atti del Convegno "Linear partial and pseudodifferential operators", 30 Sett. 2 Otto. 1982
- [3] Ehrenpreis, L.: Solutions of some problems of division IV, Amer. J. Math. 82, 522-588 (1960)
- [4] Hörmander, L.: On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21, 151-183 (1973)
- [5] Komatsu, H.: Ultradistributions I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA, <u>24</u>, 607-628 (1973)
- [6] Meise, R.: Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, preprint
- [7] Palamodov, V. P.: The projective functor in the category of linear topological spaces, Math. USSR-Sbornik 4, 529-559 (1968)
- [8] Vogt, D.: Projective spectra of (DF)-spaces, preprint
- [9] Zampieri, G.: An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. U.M.I. (6), 5-B, 361-392 (1986)