goooboooogn 1
07040 19890 1-6 -

Solvability of convolution equations in Gevrey classes

of Roumieu type

Rlidiger W. Braun, Reinhold Meise, Dietmar Vogt

( Ditssel derf Univ.)

Let E{d}

(E@% denote the Gevrey class of exponent d > 1 of
Roumieu type. Cattabriga [2] has shown that in general not
every constant coefficient linear partial differential equation
plal (gl {al gy, .
In [9], Zampieri gave sufficient conditions on P(D) for the

{d}

P(D)f = g has a solution f € for arbitrary ge€E

(RY) . He used ideas
of HO6rmander [4], who has characterized those P(D) which act

solvability of the above equation in E

surjectively on the real-analytic functions on ]@q, i.e. on

L (RY .

Recently, we have been able to characterize those convolution
operators T on the ultradifferentiable functions E{w}(IU of
Roumieu type which are surjective. In the present note we state

- {al

this result for the Gevrey classes E (R) and give a rough
sketch of its proof. For details we refer to our forthcoming

paper [1].

{a}

1. Definition. For d > 1 we define the Gevrey class € (R) of

Roumieu type and exponent d by

E{d}(IU := {feC®(R) | for each compact set Kc R there exists

h > 0O:

Le(p)
sup sup —-—-——-—-——-———If (X) ‘

< w}.
x€K pEN_ hP (p1) @

{d}(EU with its usual topology, which is obtained‘by

We endow E
taking first the inductive limit over h > O and then the pro-
Jective limit of all compact sets K in R (see Komatsu [5],2.5).

Furthermore we define



D{d}(IU := ind D{d}[—n,n]/
n - .
where
ol n,n1 := (fe ' (®) | supp(f) € [-n,nl},

{a}

endowed with the topology induced by E (IR) .

2. Convolution operators

{a}

For d > 1 and pet

Tu on E{d}(lﬂ, which is induced by p, in the follbwing way

{d}

(IR)' we define the convolution operator

Tp(f) : X P < py,f(x—y),>, feE (R) .

It is easy to check that T ZK is a continuous linear endomorphism
of £} () . g

For V(ED{d}(IU' we define p*v by

v
< PFV,Q > 1= < VY,U*Q >, QE D{d}(lR) ’
where < ﬁ,g > 1= < px,g(—x) > for gE}E{d}(ﬂQ . It is easy to
see that p*v is in D{d}(BU ',

Furthermore we define the Fourier-Laplace transform ﬁ of p by

A A -1
p T -, M(Z) =< uxre 1xz >y

and we put

V(R) := {z€C | p(z) = O}.

Using the notation introduced above, we can state our main
result:

{d}

3. Theorem. For d > 1 and p€Et (R)', the following condi-

tions are equivalent:

(1) Tu : E{d}(IU - E{d}(IM is surjective.

(2) p satisfies (i) and (ii):

R

(i) there exists v € (R)' with p*v = 6, i.e. T“ admits

a fundamental solution

A A .
(ii) V{(p) can be decomposed as V{(p) = VOUV1 with

- 2 -



|Im z|

L - T I ¢ B4 ‘
lim =.0 and lim inf > 0.
|z]se [z /4 |2l 121178

ZEVO zEV1

4. Remark. (a) In Theorem 3, condition (2) (ii) can be replaced
by each of the following conditions (iii) or (iv)

(iii) ker Tu is reflexive (or bornological, or quasi-barrelled)

(iv) ker Tu is linear topologically isomorphic to X x Y for

some nuclear Fréchet space X and some (DFN)-space Y.

(b) In Theorem 3.(2) (ii) the term 1211/6 can be replaced by
1/4 ‘
IRe z| .

To sketch the proof of Theorem 3, fix d > 1 and n € WN. Then put

cld) {a)

(n) := {feE'" ' (R) | £(x) = O for all x€ [-n,nl}

E{d}(IU /E{d}(n).

and define En : =

Next fix p € E{d}(]R) ' and choose m€ N with Supp(p) < [-m,m].
Then it is easy to check that TM induces for each n€ N a con-
tinuous linear map

{a} {a}

T, °© En+m - En by Tn(f+E

(n+m)) := Tu(f)+E (n).

Let K(p,d) denote the projective spectrum consisting of the
spaces (ker Tn)nmN and the natural restriction maps. Using
properties of the projective limit functor of Palamodov [7],

one can see that the following holds:

5. Lemma. For d > 1 let p€ E{d}(IU' be given. Assume that
{a}
D

there exists v € (R)' with p*v = 6. Then Tu is surjective
on EL9(R) if and only if Proj'K(u,d) = o.
To evaluate the condition Proj1K(u,d) = O we use a recent re-

sult of Vogt [8], by which Proj1A(A) = O is characterized for
certain countable projective spectra A(A) of (DF)-sequence

spaces. To state his result, we introduce the following
notation. ‘



6. Definition. Assume that A = (a. satisfies the

j,k,m)j,k,mEIQ

following conditions for all J,k,me€ N :

(1) aj (2) a. (3) a. >

k,m)>o‘ j,k,m < aj,k+1,m j,k,m = aj,k,m+1'

Then we fix k,m€ N and define

- N T = «©
Alk,m) := {x€CT | “x“k,m : Z lleaj,k,m < w},

Then (A (k,m),]| "k n
14

inclusion map j; n+1 G Alk,m) » A(k,m+1) is continuous. Hence
14 .

) is a Banach space and because of (3) the

we can define
A(k) := ind A(k,m).
m—->co

k .
K+1 Alk+1) » A(k) is

continuous. By A(A) we denote the projective spectrum

X
Ay xew

Then (2) implies that the inclusion 1

7. Example. Let a = (aj) and 8 = (Bj) be sequences of

jeEW JEWN
non-negative numbers with lim B. = «. Then
j—)oo

.= 1
AG’B.—-(exp(kqj+m[3j))j'k,mEN

obviously satisfies the conditions (1)-(3) in Definition 6. In
this case, A(k) is a (DFS) -space for each k€ N and we shall
denote proj A(k) by A(a,B). ‘

<~ k

The result of Vogt [8], mentioned above, can now be stated as
follows: ' -
satisfy the

8. Theorem. (Vogt [8]). Let A = (aj,k,m)j;k;mEIi

conditions in 6. and let A(A) denote the projective spectrum
defined in 6. Then the following conditions are equivaleht:
(1) Proj A(A) = O

(2) VYbEN 3n, k€N Vm,LEN 3IN,SEN Vj€E N:



j,L,N ajluln

The application of Theorem 8 is'possible because of the

following result:

9., Theorem (Meise [6]). For d > 1 let uEﬁE{d}CR)'begiven.

Assume there exists vEID{d}(IU' with pxv = 6 and

dim ker T = «, Then ker Tu is linear topologically isomorphic
_ _ 1/d _

to A(G,B),Awhere o = (|Im a 1) . JEN * B = (!a.l )JEIN for a se

quence‘(aj). which counts the zeros of p with multiplicities.

JEN

sketch of proof of Theorem 3: Arguments of Ehrenpreis [3] can

be used to show that the surjectivity of T, implies the exi-
stence of a fundamental solution for Tu. For the rest of the
proof we can assume w.l.o.g. that dim ker Tuv= w, Then
Theorem 9 can be used to show that the projective spectra
A(A ) and K(p,d) are equivalent. By the propertles of the
pro;ectlve limit functox, this implies Proj K(u d) =

Proj A(Aa,ﬁ
ting condition 8.(2) for A

) . Hence the result follows from Lemma 5 by evalua-

a,B’

10. Example. There exists an ultradifferential operator
{a}

LE N (R) ' with the following properties:

a>1

(1) V(D) = {2zeI2ie® | §,ke W}

(2) Tu : E{d}(IU - E{d}(IU admits a fundamental solution for -
each 4 > 1
(3) for each d > 1, T : E{d}(IU - E{d}(ﬂn is not surjective.

B

However, for each 4 > 1, TM : E(d)(IU - E(d)(IU is surjec-
tive, where E(q)(ﬂn denotes the Gevrey class of Beurling type

of exponent d.
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