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0. Introduction.

In the theory of singularities of linear differential equations,
it is important to know whether a system of 1linear differential
equations is regular singular or irregular singular. To a given system
of linear differential equations and a point, we can assign a number,
called the irregularity, so that the system is regular singular at the
point, if and only if the number is equal to 0. In this article, we

investigate the irregularity of linear differential equations.

1. Irregularity of a Linear Ordinary Differential Equation.

Consider a lineariordinary differential equation of the m-th order
Pu£CZﬁ4ﬁu(x)(d/dx)i)u:O at the origin ' in the complex plane,. vhere
a; (x)Y is holomorphic at a point x for any 1=0,1,...,m. Without loss of
generality, we may suppose that the point x is the origin. P can be
regarded as a linear operator of various functional spaces. Let © be
the ring of convergent power-series at the origin and © be the ring -of
formal pOwer—sefies at the origin. .Let K and K be the field of
fractions of © and ©, respectively, and let E be the ring of convergent
Laurent séries‘ at the origin. 0, K and E are the rings of germs of
holomorphié; meromofphic and esséntially .singular- fucntions at the

origin, respectively. Malgrange [168) proved
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Theoreﬁ I. For M=06, 6, K, K and E, P is a linear operator from M
to itself with the index x(P,M) = dim Ker (P:M—M ) - dim Cckgr (P:M—M):
x®P,0) = mv@), x®8 = swl-v@)), xPK = -
sup (i-v(a; )+ m-v{a,)) , x@P,K) = 0and xP,E) = 0.

Then, he defined the irregularity i(P)y.of P at the origin as the
number  sup{(i-v{a;))-m-via,)), which i;s equal to \x(P,@)—x(P,O),
xP,6/0), xP.K)-xP.K), -xP.K), xP.KK), xPE-xPK), and
x(P,E/K).

Notice that the irregularity is also equal to ¥ (P,.E/0)-x(P,K/0)
and that E/0 and K/0 are the rings of hyperfunctions and distributions
with support at the origin, respectively.

Let @y be the sheaf of germs éf functions asymptotic to the formal
series O over the real blow-up (C,pr) of C with the center at the
origin. Then, we have H!'(pr1(0),0))=6,/0 by a theorem of Malgrange
[17) , P can be also considered as a linear operator from @Gy into
itself and ,

0-Ken (P,Gp)~Go—Go—0
is an exact sequence of sheaves by a theorem of Hukuhara (86) ,
Malmquist (18] and Trjitzinsky (27) . From these facts, the
irreregularity of P at the origin is also equal to dim
H r1(0),XeP,0)) . On the other hand, by a Theorem of Hukuhara
(6] , Malmquist [18) and Trjitzinsky - [27) ., the function which
assigns to 8 € pr ' (0) the dimension of ¥en(P,Gg)s » has only a finite
number of discontinuous points. And so, the irregularity is also equal
to- (1/2)(the total variation of the function: 6 «¢ pr‘l Q) — dim
Ken (P,Byde ). These are due to Malgrange and Deligne.(cf. Bertrand

(1 .

Put E=E+K . Then, by the isomorphisms 6/0 = R/K =f/E and E/R =
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E/K, wé have the folléwing

Proposition 1. The irregularity of P 1is also equal to
xP.E)>-xP.E), x®@.E)-x®.K), xP.E/E), xP.E/K) and xP,E).

In particular, the dimension of the formal Laurent series solution
space to the differential equation Pu=0 is not less than the
irregularity of P at the origin. (cf. Dwork [(4) ).

Notice that x(P,E) is equal to —x(P,K) if x(P,E)=x(P,K)=0.

Let P* be the adjoint operator of P, i.e.

P*=) o (-1) (d/de) (ai @)+ ) .
Then, by the form of P* and Theorem I, we have.

Proposition 2. x(P,0)=x(P*,8) and x(P,0)=x(P*,0). In paticular,
X (P,0)-x(P,0) =x(P*,0)—x(P*,0) and i(P)=i(P*) .

By using the fact that E/0 is the dual sSpace of'O and that K/0 is
the dual space of 6, we have ‘

Proposition 3. x®,0)=—x®P*,K/0) and xP,0)=—x(P*,E/0). In

particular x(P,0)-xP,0) =xP*.E/0)-xP*.K/0).

By the above results, all the following numbers are equal‘to the
irregularity of P at the origin: x®,0)-x®P,0), x(P*,@)—k(P*,O),
x(P.E)-xP,K), xP*".E)>xP*"K), x(P.E/0)-xP,K/0), x(P*.E/0)-xP* K/0),
X (PE/EY, PP R/E), x®R)-2 P, 2P R P KD 2 PK)s (P K,
xP.R/AKY, 2P R/K), xP.E/K), xPE/K), dim H (or (0),Xei(P,G))
dim H' (pr 1 (0),Xen (P*,8y)), (1/2)(the total variation of the function: 6
€ prii©) - dim Xea(P,8)¢) and (1/2)(the total variation of the
function: 6 ¢ pr'(0) — dim Ken (P*,G)e).

‘Malgrange (18] proved also that the irregularity is equal.to dim

Ker (?,6,0) and to din Ker (P,E/K).
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2. Holonomic Differential Modules.

We shall summarize some results on holonomic differential modules
which will be used in the latter section. The results are due ﬁo
Kashiwara [7-10) , Kashiwara-Kawai (11] , Brilinski-Kashiwara (2] .
Mebkhout [1'9—23] (cf. Le-Mebkhout [12) ), Ramis [25-26) -and Noumi
(24]

Let Dy be ‘the sheaf of germs of holomorphic linear differential
operators of finite order over a complex analytic manifold X of
dimension n. Let Q' be the sheaf of germs of holomorphic i-forms over X
for i=0,1,...,n. We write 0y for Q°. Let M be a holonomic Dy-module,
namely a coherent ﬁx—module such that M has a projective resolution of
the form

0—-ofr - o+ - Dp-m~0,
and that R'¥omp, (,Dy) = &h M,Dy) = 0 (ixn) . Denote by W the
adjoint  Dy-module ¥owg (',&«tf M,Dy)) of WM. Then, we have the
relations W™ = M and ©* = 0.

Theorem II. For two holonomic Dy-modules WM and T,

RiCongp, (N, M) = RiComp, (W, ")

Iﬁ particular,

Ritonp, (0x, M) = Ritonp, (I, 0x).

-Let Y be an analytic suﬁset of X and 9y be the defining ideal.
Denote by Oxty the Zariski formal completion of Ox along Y: Oxyy =
proj lim Ox(sf) .

Put

"TuyniM = ind '%33 Komo, (955 ,

Fen® = ind lim Yomg, (0x/9%;70),
and denote by Rl (x-y; and RI(y; the right derived fungtor of I'x-yy - and

Ty » repectively, in the derived category.
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RTorn® = ¥ xn @) = ind Lim 82§, (8550
RTm® = Xm @) = ind lim 82§, (Or/94:7),
are called the g-th algebraic lééal cohomology sheaf of M. Then, we
have the following triangles
RC WM
+17 N
R tx-yy MM,
R (x-v,ny, 3 W
+17 N
R (x-v,) MORL (x-v,) M=R (x-v,urpy M
and we have the relations
RU x-vp R tx-vp M = R (x-v,uv) M,
RO R = ROy Rl = 0,
R (x-ypRC vy M = R (v) R (x-yp MW
RT vy RT vy MO = R v,y M
If Y is a hypersurface defined by f=0 with a holomorphic function f,
then R (x-»)M = MW O (*Y) , R (nM = M, 0 xY)M(-1] , i.e.,
RTayW = Mo 0GY), RTxnW = 0 (gx0),
RT M = Mo, 0 (+Y)/ M, RT W = 0 (g=1) ,
where ©O(xY) denotes the sheaf of germs of meromorphic functions which
are holomorphic in X-Y and have poles on Y.
Theorem III. For a coherent Dy-module I,
Rilony, (M, 0x7y) = Ritomp, (RI" (vy M, 0x) .
Theorem IV. For a holonomic Dy-module M,
Ritomy, (LRT ix-ny 1) = Ritomp, (R on 0,7
Ritoop, (,RT () M) = RiCowp, (RC vy I )™, 7).

Denote by I'r.y and 'y the sheaves of sections of M with support in

X-Y and Y, respectively. Denote by Rlx.y . and Ry the right derived
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functors of I'y.y and I'y, respectively. Ryl = ¢y M) RIYM = XM
are callled the transcendental local cohomology sheaves. Then, we have
the following triangle |
RI'YM

+17 N

Ry yM-—-30.
If Y is a hypersurface defined by f=0 with a holomorphic function f,
then Ryl = M®q i '0x » ROYN = Mo juj ' OxM(-1) , i.e.,
| Ry /M = M®0,j+i '0x , RTxy = 0 (g=0),

RTYN = Moo jj 0x/M, R = 0 (g1)
vhere j is the inclusion of X-Y to X and j.j'6y is the sheaf of germs
holomorphic funétions in X-Y eventually with essential singularities on

Y.

Theorem V. For two holonomic Dy-modules M and N, RWomp M;N) =
&«t§ M;N) are constructible, i.e., dim&«tf M;N), is finite for any
point x in X and there exists a stratification on X on each of uhose
stratum &« M;N) 1is locally constant.

By this theorerﬁ, the character of the complex Riowp (W;N) at x in
X,

% R¥onp, M, T)); = 20 (-1)9dimesntf, MGN);
is defined as a finite number.

Theorem VI. For a holonomic Dy-modules W and a point y in X,
8«2 M;0x.,) and &uztf M;8,) are the dual wvector spaces of
& LB (W87 oy x) and 8B 98y (x) » respectively, uhere &y, is the
réng of formal power-series at y, ® .y x = Xy©Ox) and By x.
Iy Ox) . Therefore, |

X (R¥onp, M;0x) )y = —X(RJCOIKDXGW;RFyOx>>y ’

x Rioap, M5 0x1y ) )y = —x Ronp, (MR ) Ox) )y -
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Theorem VII. For a holonomic Dy-module M,
Rouwp, M,0) and RJCquX(m*,O) are mutually Verdier dual, i.e.
Ricouc, (Rtowp, (O°,0)),Cx ) = Ritowp, (L,0) ,
Riome, (Ritonp, (M,0)),Cx ) = Rilonp, (M°,0) .
Moreover, we have
X (Riomp, (M, 0¢))z = x (Riowp, AT, 0x) ) .

Theorem VIII. For a holonomic Dy-module T,

Ritowp, M,RTy (0x)) and R%meX@W,Qx)my , are mutually Verdier dual,

Ritomc, (R¥owp, (" ,RTy (0x)),Cx) = R}COMDX(WaO)XjY )
Riowe, (R¥onp, (M, 0x)x17)>,Cx ) = R¥onp, M,RTy (0x)).
Moreover,/we have

x (RiConp, (,RTy (0x)))r = x (Rionp, (W, 0% x|y )z -

3. Irregularities of Holonomic Dy-modules.
For a holonomic Dy-module with singular points on Y, by using the
derived functors RKom , RIy, Rlx-y » Rl (yy and R[ (x-yy , we define the

irregularities of M at x in X as follow:

e @My = x Ronp, N, 0077))e — x Rionp, O, 0% )x1v s
il M)y = % (Riowp, ,RCy-yOx )z — x (Riowp, (MLRT cxoy) 0% ) e »
il @, = — x (Riowp, (WLRTYOx)): + x (Riowp, (WLRT (v Ox))z .

By the triangles, we have
x (R¥omp, MR (x-v1 0x ) )x  + X (RKomp, J,RL vy Ox ) )z >
x (Rionp, (M, RTx-yOx ) )z + x (Rioup, (M,RTyOx ) )z

x (Rionp, (M, 0) )z

11

x (Rionp, (M, 0) )z

It

and so
d M)y = il @),.
Lemma 1.

x (R¥omp, (M ,RT vy Ox ) )z - = x R¥owp, (W, 0x7y) )z
Proof of Lemma 1. By Theorem III,

—7-
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Ritomp, W, 6x7y) = Ritowp, (RT M, 0x)
and“by 'i‘heorem Iv, |
Ritonp, M ,RT (v) 0x) = R¥omp, ((RT n T*,0x) .
On the other hand, by Theorem VII,
x (R¥onp, RT () M, 0x) ) = x (Rony, ((RT ry M*,0x) )z .
Hence, we obtain the equality mentioned above. Q.E.D.
Lemma 2. For a holonomic Dy-module M with singular points at. most
on Y, ife@)y = ifa@) and ife @), = ifja@,.
Proof of Lemma 2. By Theorem VIII and Lemma 1, we obtain the

equalities. Q.E.D.

For a holonomic Dx-module M = Dyx/DyP defined by a linear ordinary
differential operator P, the irregularities coincides with the
irregularity defined in the first section. Moreover, we have

Theorem 1. For a holonomic Dy-module M with singular points on Y
in the complex analytic manifold X of dimension 1, i}'/c M iﬁ/d MWz »
iZ/,,, M., i}//c(i!lf*)x, ig/,,. @), and i}ﬁ/d W), are equal for any point x in
X.

In ordel; to prove this theorem, we use the following facts:

Lemma 3. For a holonomic Dy-module M = Dy/DyP defined by a linear
ordinary differential operator P, W = Dy/DyP* . Therefore, i}//c‘(iﬂl‘)x,
ilyg My b MWs il M), il @), and iy @), are equal for any
point x in X, where singular‘points of P dm included in Y.

Proof of Lemma 3. As M = Dyx/DyxP, &th (W.D) = Dyx/PDy , i.e.

0—-Dx — Dx — D¢PDx — O,
is dan exact sequence of right Dy-modules, From this sequence and
8«2}, (@', %) = 0, we obtain ' = Dy/DxP* . Q.E.D.

Lemma 4. A holonomic Dy-module M iin the one-dimensional complex

analytic manifold X, is locally generated by one element, and for any
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point x in X énd a neighborhood U of x, there exist 'a linear ordihary
differential operator P and a positive number [ such that
0~ 6f - DDy — M — 0,
is an exact sequence of holonomic Dy-modules in U.
Proof of Lemma 4. See Kashiwara-Kawai [11)] , Lemma 6.4.2.
Proof of Theorem 1. By Lemma 4 and iﬁ@(ﬁi)x 0o,
ife Mz = i}/ Dx/DeP )z -
Again, by Lemma 4,
0 — &th (M, Dy) — &xth (D/DP,Dy) — &b (0!, D) — O,
is an exact sequence of right Dy-modules. Therefore,
0~ W — @®FP) - (O, |
is exact. Hence,
ife ()2 = e (Dx/DYPY s
By Lemma 3,
if7c Dy/DP): = /e (Dx/DP)Y ) -
And so, we have
ife M) = /e @

Combining the equalities in Lemma 2, we complete the proof. Q.E.D.

Then, we propose the following
Conjecture. For a holonomic Dyx—-module M with singularities along Y

in the complex analytic manifold X of any dimension, iY@z, if/aM)s,

W My, ife M), il, @), and il/a ). are equal for any point x in

X.

By rthe equélities in Lemmas 1-2, and Theorem‘VII, the conjecture
is equivalent toAthe validity of the following equality:

(oo, RC 1y T, 05))s = 2 (Rtowo, (RE T ,00))s

Proposition 4. If M = RF[quml and T = Rr[x4qmﬁ,',the conjecture

15
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1S Udiid. Ih, barticular, If Yis a hypersurface‘and if M and W are
meromorphic integrable connections with singularities along 'Y, the
equality holds.

Proof of Proposition 4. By the relations,‘RF[f]RF[x4q3R = 0 and
RC mRC - M = 0, the equality is obviously valid.

If M and M are meromorphic integrable connections and if ¥ is a
hypersurface, by the results in [11) , the hypothesis is satisfied.
Q.E.D.

Remark 1. In general, the following is not valid:

Ritonp, (R (v M, 0x) = Riowp, (RT vy M, 0x) »

RCnM = RO .

For exemple, take ©(xY) and ©, respectively, for M. However, the

" characters coincide with each other.

Remark 2. At a generic boint x in X the equality is valid.
Because, in the case where dim X=1, the equality is valid, and for a
generic point there exists a non—charécteristic submanifold with
respect to Ml and we have a isomorbhism theorem analogous to the theorem
of Cauchy-Kowalewsky (cf. [11) , Lemma 6.4.4.).

Moreover, if W is a meromorphic integrable connection, then wé can
calculate ’the irregularity by useing asymptotic ~method. (cf.

(13-15) ).
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