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Well-posedness of the Cauchy problem for sYstems
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1. 1Introduction and results. C. Wagchal [11] showed that

various formulations of the Cauchy problems are possible for a
non-characteristic hypersurface for a given%system of linear
partial differential equations. We shall show that such Cauchy
problems are all reduced to the one's for systems of normal type
in the time derivative. Moreover, we éhall give the necessity
of the non—charactetistichess of the initial hypersurface for
the well-posed Cauchy problem. In the’proof, ‘we need some
results on the invertibility of matrices of linear partial
differential operators which are obtained by appiying the
determinant theory over the ring of linear partial differential
operators dﬁe to Sato and Késhiwara [9].

'We first give a list of notations.

Let x=(x .,xn) = (xl,x') G(En, D= (D‘l,...,Dn) = (Dl,D')

17 -
(Dj==3/an) and Q be a domain of-Cn.
D) ; the rihg of 1l.p.d.op. with holomorphic coefficients
‘in 2, |
MN"'($(Q))‘; the set of NxN-matrices with entries in 2 () ’

GLN (@(Q) ); the set of invertible matrices in MN(.D(Q)) .
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Cauchy problem (A,u) : Let A= (A;, (x,D)) € M (D(2)), 1=

(Myseenrtiy) ezz+N (z ,=10,1,2,3,...}) and p= (p,,p') €. Then

the Cauchy problem (A,u)p is defined by

) Aij(x,D)uj(x) =fi(x)eOp, 1<igN,

N
2
, 52
(A,u)p

pXu | = u., (x")e& 0<k<uyu 1<j<N
1 "3ixy=p; T3k p'’ = 3’ =-=""

where (}b denotes the germs of holomorphic functions at x=p.
def.
Well-posedness : (l)‘(A,u)p is well-posed &—> (A,u)p

has a unique solution (uj(x))e(?;q for any given (fi(x))€C7;q

and (ujk(x'))eogvl, where |u15;§%+...+pN.
(2) (A,u) is well-posed in Q§ <—— (A,u)p is well-posed at every

point pe Q.
We begin with examples to make clear our problem.
(c)
Example 1. Let A = |[D -1|¢€ Mz( , where D=d/dx. Then
0 D

the‘associated system to this matrix is
Du—v=f(x)6(}o, Dv=g(x)€(.9’o.

We ask that what kind of the Cauchy data are possible.

(a) The case of p=(1,1), i.e., {u(0), v(0)} are given as
a Cauchy data. In this case the Cauchy problem is trivially
well-posed.

(b) The case of u=(2,0), i.e., {u(0), u'(0)}. 1In this
case also the Cauchy problem is well-posed. We interpret it as
D2 0].

-1 0

follows. Let P= [.D 1} € aL, (D(€)). Then we have PA=
-D 1

(c) The case of u=(0,2),i.e., {v(0), v'(0)}. In this cae

the Cauchy problem is not well-posed. In fact, the Cauchy data
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Should sétisfy’a compatibiiity éondition v'(0) =g(0), and also
u(oj can not be determined from the Cauchy data.

This_example shows that various types of the Cauchy data
are possible for a system. The next example shows that we can
not give the Cauchy data even if . the initial hypersurface is
not characteristic if we consider the Cauchy problem in our
sense. |

€M, (D(c?)).

2 2
D1 +D2 D1

Then det0A==€f —-xlglgz , and hence the hyperplane x1==0 is not

Example 2. Let A(x,D) ={X1D1 ¢ xyD; -1

characteristic to this matrix, where detGZk denotes the deter-
minant of A(x,D) in the sense of Sato and Kashiwara [2]. To show
this, it is sufficient to see

0

[Dl N R S RS )
A= 5 2
0 1 b’ +D, D

We can easily see that the Cauchy problem for syétem associated
to this matrix is wéll—pbsed only when we give the Cauchy data
by -(u(O,xz), (av/axl)(o,xz))eCz?, when we consider the
Cauchy problem at the origin. We note that such a Cauchy problem
is the one excluded. On the other hand, when we consiaer the
Cauchy problem at p==(pl,0) (;ﬁ.#O), the Cauchy problem (A,u)p
is well-posed if and only if p=(1,1). It will be easily proved,
so we omit it.

Now the following,result due to C. Wagschal is the

starting point of our research.

THEOREM (Wagschal [11]) Let A(x,D)€ M, (D(%)) be a non-
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degenerate matrix with order A=m . If the hyperplane X =Py is

D
not characteristic for A at p==(p1,p'), then there is at least
one y with |p|=m such that the Cauchy problem (A,u)p is well-

posed.

We remark that Wagschal proved the existence of such u that
the Cauchy problem (A,u) is well-posed in a neighboﬁrhood of p.
We have to note that the well-posedness of (A,u)p does not imply
the well-posedness of (A,u) in any neighbourhood of p , even if
the assumptions of the theorem are satisfiéd (see an example in
54) .

We give here definitions of terminology used in -the above

theorem.

Definition. Let A==(Aij(x,D))€ MN(gﬂ(Q)) and put mij==

A,.==- if A.. =0. Then the total order
1] 1]

of A which is denoted by ordersz is defined by

order Aij' where order

D D

N ‘
(1.1) order_ A= max ) m, ., € Z U{-=},
D ce Sy i=1 io(1) +

where we define -« + ¢ =-o, and (EN denotes the permutation

group of {1,2,;..,N}. Let order A=m>0 . Then A is said to be

D

non-degenerate if

(1.2) deg, detA(x,f) =m (gech).

In this case, the characteristic polynomial a(x,&) of A is’

defined by
(1.3) a(x,&) = homogeneous part of degree m in & of
det A(x,&),

and a hyperplane,xl==p1 is called to be non-characteristic at

p=(py,p') if a(p,(1,0,...,0)) #0.

-4~
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Now our first purpose is to give a relation between A éhd

y for the well-posed Cauchy problem, which is stated as follows.

THEdREle. Let A(EMN(ﬁ(Q)) be a nbn—degenérate matrix with
non-characteristic hyperplane X =Py at p==(p1,p'). Then the
Cauchy problem (A,u) is'well—posed in a neighboufhood of p if
and only if the following conditions are satisfied:

1) [u|=orderDA, |
2) There is a unique P(x,D)E’GLN(iop) such that PA is of

u~-normal type in Dl’ that is,

+ bij(x’D))’, orderleij < u

where éﬁp denotes the germs of 1l.p.d.op. with holomorphic coeff-

M3
PA = (Dl (‘Si.

j j’

icients at p.

In the above theorem the initial hyperplane is assumed to
be noh-characteristic, but in some cases we can prove'its ne-

cessity.

THEQREM 2. Let AGMN(ﬁ(Q)) be a non-degenerate matrix with
ordery A=m. Then the Cauchy problem (A,u) with |[y| =m is well-
posed in a neighbourhood of p==(p1,p') only if the hyperplane

X, =Py is not characteristic at p.

In seétion 2, Qe shall give a brief summary of the deter-
minant theory and givé characﬁerizationS'of the invertible maf?
rices which play important role in the proof of our theorems.
Our theorems will be proved in section 3 following the funda-

mental idea due to Kitagawa and Sadamatsu [4].
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In section 4, we shall give an example Qf non-degenerate matrix,i
A with non-characteristic hyperplane Xy =Pq at p==(p1,p') such .i
that the well—posedness Qf (A,u)p does nét imply the well-posed-
ness.of (A,1) in any neighbourhood of p.

In this note we shall study matrices of non-degenerate type;
but my preprint [7] treats more general matrices and obtains the‘
similar results under the assumption that n==2.‘

At the end we note that Sadamatsu [8] proved similar result

to Theorem 1 under more restricted situation.

2. Review of the determinant theory. The determinant thebry

over non-commutative field was first studied by Dieudonné [31,
and then the determinant for matrices of differential operators
was defined by Hufford [12] by embedding the ring of differenti-
al operators into the non-commutative field which is a field of
quotients. After that Sato and Kashiwara {[9] studied the deter-
minant theory over the ring of micro-differential operators

(the detailed proof of their results can be found in [1] by
Andronikov) .

Let ((Q) [E] be the set of polynomialsjiléecn with coeffi-
cients in J(Q), where @(Q) is the set of holomorphic functions
in Q. We denote by (?(Q)[ghn @i;O) the set of polynomials of
degree at nwst.m in €. Then we define gr (J(Q) [E] by
(2.1) gr () [E] = {0} @ C@ el /@i,

‘ m=0
where C?GU [£]1_;=1{0}. Then the determinantbfor matrices in .

MN(zNQ)),whiCh is denoted by det;-, is defined as a homomorph- .

-6



ism,
det, : M WD) ——> gr O() [£],
so that the following properties are satisfied:
1) For two matrices AGMN(.'D(Q)) and BeMN‘ (D)), we have
detO(AQB) =detGA -detOB .
2) For matrices A, B in MN(Q(Q)), we have det_(AB) =
deto A -det(7 B.
3) 1If AEMN(:D(Q)) is non-degenerate, then
det02§= the characteristic polynomial of A.
4) AeGLN(i/)(Q)) if and only if det A Za(x) #0 in 2, i.e.
det A is a unit element in gr Q) [&].
In a sense, the determinant is nothing but the character-
istc polynomial of a matrix.
In the foundation of the determinant theory, the following

property of @p called Ore property plays an essential role.

Ore property. For any non-zero elements A and B in ;Dp,

we have Z)pA{\,@pB # {0} ( A,@p N B %p #.{0}), where o@pA

is a left ideal of @p generated by A. That is, A and B have

commom left (right) multiples. (see Schapira [10, Remark 1.3.8]).
We note that the Ore property asserts that we can construct

left (right) quotient field of o@p, and hence the determinant

theory due td‘Dieudonné can be applied in our case. By.this

property, the determinant is calculated as follows.

We introduce the following three matrices.

(-

i
A\

-5
e.,.

P=(e1,..-.,J ey i,.‘..,eN), det0P=1,

where - Ei =%*w0,...,0,1,0,...,0) and ~(3’i~,.‘..,3N) €M (D(2)) denotes

-7



a matrix with the j-th column vector a:.I .

J .
o —r\_:—r - det _i
Q_(e11~--rej ?i'.."eN)’ evaQ_ I4
)
R=diag(l1,...,1,a(x,D),1,...,1), detOR= o(a) (x,8),
where diag(al,...,aN) denotes a .diagonal matrix with the j-th

diagonal component aj and o (a) denotes the principal symbol of af
Let AGMN(Z)(Q)). Then by using the Ore‘property for ‘Dp"k

we obtain a matrix S € MN(,‘DP) which is obtained by multiplying

matrices of above types such that '
SAﬁ=triang(a1(x,D),...;aN(x,D)),

(triangular matrix with the j-th diagonal component aj). Then

N

detgA= ( jz

1

0(a3) (x,6)) - (det; S) 7" € gr O [E].

1
Next, we give results on characterization of invertible

matrices, which play crucial role in the proof of our results.

PROPOSITION 2.1 (Andronikov[2]) -Let A(x,D) be a matrix of
N'XN type with entries in QD (). Then the mapping
A(x,D) : O)) ——— O
is bijective at every point p in @ if and only if N' =N and

A(x,D) € GLN(Z)(Q)).

PROPOSITION 2.2. Let 0=, x Q', where gzlc (I:X and Q'cC

1
czjl. Then A(x,D') € GL, (D(?)) if and only if A(p,,x',D') € GLy

1

(D(Q')) at every Py € 9.

For the proof, the following lemma is essential.

LEMMA 2.3. Let 2 be as above. Let A(x,D')€ MN(ﬂ(SZ)) and
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put détdA(x,D')==a(x,£‘). Thén we have

1) If a(x,&') =0, then detO,A(pl,x',D')EEO for every pletnl,

where detG, » denotes the determinant for matrices in MN(D(Q')).

2) If a(py,x',€') 0, then det_,A(p;,x',D') =al(py,x',E"). |

3) If a(x,&') 20 and a(pl,x',E') EO, then we have ' |
ordergzx3>OrderG,A(p1,x',D'),

where ordefgzx denotes the degree of detgl\‘as“a polynomial in

£'.

For the proof of above lemma and proposition, see [7].

3. Proof of theorems. The proof 'is done by following the

argument in Kitagawa and Sadamatsu [4].

Let A= (Aij)GMN(fZ)(Q)) and put Rij = order Aij‘ Then we

Py
define
Ny N’ o
(3.1) orderDlA :=(?:%§ﬁ izl zio(i)e Z+ﬁJ{—m}.
Let assume orderD1A==A£;(). Then‘by Volevil's lemma, there is a

system of integers {si, tj} satisfying

(3.2) 35 S 585 and %= |[t]| - |s],
where [t|=t,+...+t , etc. We set
| ’tﬁ_si \ | tysy-k
Aij = kEO aijk(x,D ) Dy ,
and set
(3.3j AO(X,D')==(aijO(X,D')).

We remark that if the assumptions in Theorem 1 are satis-

D A=0ﬂkr

fied, then order D
' 1

A and we can choose {si,tj} so

-9~
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that

orderpA;s < ty-s; and orderpA=|[t]|-|s].

Hence in th;s case we may put aijo = aijo(x)
We introduce two matrices A(\)) and -t(\)) for v= (vl,...,vN)

and detA,(p) #0 .

N
em,” .
V v
3.4y 4" = aiago,t,...,0," (NxN-matrix) ,
rl 0 3
Dy ;
v.-1
v ol :
(3.5) L7 = |"1. : (|v|xN-matrix) .
0 .0
: 1
: Dy
: v -1
N
(0 Dl J

We note that we may choose {si, tj} so that
(3.6) tj>uj and si>0 (i,j=1,...,N).

Now applying ,C(S) (s=(sy,...,8)) to the system Au=f from
the left, we get ¢L(S)Au==lf8)f. By the above choice of {si,ﬁj},
in ,t(s)Au, only (le uyi 0<k< €y 1<3z N) appear. By this

reason, this relation can be rewritten as follows.
(1)
(3.7) QUx,DD | o u+@3x,0) LMWy = L8)g
: ! oﬁ,(t-u-l)A(“ﬂ) . ! !

where Ol(x,D') is an |s|x(|t|-]|u|)-matrix and {3(x,D') is an
|s|x|u|-matrix. Here t—u—l=(t1—u1'-1,'...,tN—uN-1), etc.

We note

(u) _ . : _ M
LM xymp, = (Wy(x') 0sk<uy, 1:3smeC,

~10-
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is a known vector from the Caﬁchy data.
| Next, by applying £8) o the system Au=f from the left,
we get | ' |
(3.8) Ao(x,D')A(t)h + Cx,p) LB u = al8)g,
where £(x,D') is an N x |t|-matrix.
- We note that the well-posednéss of (A,u)p implies the ex-

istence of the formal solution of (A,p)p,

(F) ‘~ u(x) =
P | k

I ~18

u (k) (%) (xl—pl)k/ ki, u®(xn eC?pN R
0 «

This implies the surjectivity of the mapping,
[t ]=lul s

#,  Olpy,x',0" : O, — O .

Now the following proposition is easily obtained from the

Ore property of¢Z% and the definition of thé determinant.

PROPOSITION 3.1. The surjectivity of the mapping (#)p
implies the following properties. ’

1) |s] < |t] - |u], that is,|u| <order_ A,

Dq
2) rank UL(pi,X',D') = |s|, that is,O'L(pl,x',D') has at least one

minor of degree |s| with non-vanishing determinant.

The following proposition plays a crucial role in the proof

of Theorem 1.

- PROPOSITION 3.2. Let Q=0, xQ', and assume A, (x,D') € GLy
(D(Q)) . Then the Cauchy problem (A;u)q has a unique formal solu-
tion (F)q at every g€ @ if and only if the following conditions

are satisfied: 1) |s|=|t| - |u], 2) OL(X,D')GGLISl(D(Q)).

-11-
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Proof. The if par£ isvobvious,' since Ol(x,D'k) GGL]S} |
(D(2)) implies Ol(qy,x',D') €GL| D(R")) for every q, €@ (Pro-
position 2.2). The assumption that Ao(x,D')EIGLN(D(Q)) and the -
unique existence of the formal solution (F)q (g € Q) implies that
the mapping (#)q is bijective, which implies

|s|=|t] - [u| and Ol(q,x',D") €GL 4 (D(2")) (q,€ )
by Ptoposition 2.1. Hence by Proposition2.2, we have the asser-

tion.

Proof of Theorem 1. First of all, we note that the Cauchy

problem (A,u)p is well-posed if and only if (A,u)p(has a unique
formal solution (F)p under the assumptions in the théorem. To
see this, it is sufficient to show that every formal solution
(F)p of (A,u)p converges, which will be easily proved.

The if part is now 6bvious, since hyperplanes X =g, are
non-characteristic at q==(q1,q') when q varies in a neighbour-
hood of 'p. The only if part is also obvious except the exist-
ence of P€EGLN(§DP) such that PA is of py-normal type in Dl’ by
Proposition 3.2. By Proposition 3.2, we know that OUx,D') €
GL|SI($UM), where w 1is a small‘neighbourhood of p. We put

1

p(x,0) =ooU £, o= 2

0", C) (Nx |s|-matrix) .

eseceee

Then obviously we see that PA is of u-normal type in Dl‘ There-
fore we have only to prove that PEiGLN(JDp). We note that
Kitagawa and Sadamatsu [4, Prop. 4] proved this fact, but we

give here our proof. Since PA is of u-normal type, we put

~ ‘ = (W) % - Pan
(3.9) _PA-—A + (Cij(x,D)), orderchij<‘uj.

-12-
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By the above observations, we.see that the Cauchy problems for
two systems

Au=f»€(}qN and PAu=Pf (qEw)

with the same p-Cauchy data have the same formal solution (F)q.
We note that .ﬁ(t—U)PAu= ,f,(t_U)P f is written in the similar
form to (3.7),

A(u)

(3.10)  OUx,D') Lt(t_u—l) (p+1)] u + (B(X,D'),C(U)u=°t(t_1l)p £,
A :

-~
where &VLGMlS‘ D(w)) and B is an [s|x|u|-matrix. Since PA is of

yu—-normal type in Dl’ we can easily see that the mapping
| |s] |s| |

Cniqlrx'D') :C}é| —_f“> C}q|

is bijective at every point g€w . This implies that (l(x,D')€

GLIS! (D(w)). Thus we have following two systems,

(1) \ _ _
S st @£ =t L8,
Lof,(t““'l) A(u+1)J

(1) 3 —1 ~ ~m -
A u+gl il g Mu =gt g W e

£(t-u—1) A(u+l)J
These two systems determine the same coefficients {ujk'(x');
uj <k< tj’ 1<3j <N} in the formal solution (F)q. By choosing
~ -1 =l
=0, we have (g B)IX —q, L™ €B) lx —q for any dq - Hence
1 71 171
we have O’L_IB =&_1g. Therefore we have
-1 p(s) ~=1 5 (t-u)
@ L 0|, g = @ en |,
L S| : *17%
for any fe(ﬁ‘;\] (g€w ). This implies O'L_l,f(s) ¥EC1L(t‘_U)P, i.e.

ot(s) =0l ﬁ*li(t_P)P. Hence we have

-13-
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T = re!S) cra gt £EH) p,

where s S cee g
’ 1 2 N

NN Y

10..00.....00.....0

R = [Qe++010cceQesccceeQ

0.....0-0.0.010.--0

(Nx |s|-matrix) .

This proves that P € GLy (D(w)) and P Y=reo gt g (t"W)
At the end, we note that we can prove the unique existence of P

by the same way. The proof of Theorem 1 is now completed.

Proof of Theorem 2. First we note that from Proposition

3.1- 1) and the assumption thatlu!==orderDZx imply that

A, i.e., (Ux,D)€EM D)) .
1

Hence we can take {si, tj} so that

|u| = ordery

(3.11)
: detc;miql,x',D') # 0 for any g, near pg,

(see Proposition 3.1- 2)). Again by Proposition 3.1- 1), we can

prove that
(3.12) det Ao(x) Z 0 in Q.

In fact, let assume det Ao(x)EEO and take a left null-vec-

tor (ql(x),...,qN(x))GC%f\JO} of A,(x). Without loss of gen-

erality we may assume that

S;<8,% ... S8y ’and ql(x);o.
We define a matrix{Q(x,Dl) by

( S"S‘ ‘ SM"-S(W

% %,D% ' ... %D
Q(x,D,) = ) , .

1 0 i N )

e

0 Sy

~ . J

-14-
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Then Q(x,Dl) is invertible at a point where'qlabo. By this con-
struction of Q, we see that

orderDl«QA~<orderDlA =|ul,

which is a contradiction.
At a point q; such that det Ao(ql,x')¥ 0, the hyperplane
X1 =44 is not characteristic almost every where. Therefore the

well-posedness of the Cauchy problem implies that the mapping

(#)q is bijective at a dense point gq' on Xl==q1, which proves

(3.13)  det, Ollgy,x',D") zuqi(x') %‘0-

Hence by (3.11) and (3.13) we can prove

(3.14) ’detg OUx,D') =a(x) 20 and u(qi,x') 20 for any d;

' near py,
(see Lemma 2.3). If there is a point g such that a(g) =0, then
an inverse matrix (]:l(ql,x;,D') of OUlay,x',D') (a=(qy,9"))
has singular coefficients at gq'. Therefore the mapping (#)q is
not surjective, which contradicts the well-posedness of (A,u)q

for any g near p. Thus we have provéd
(3.15) det0 OlLx,D') Za(x) #0 in a néighbourhood‘ of p.

Now it is obvious that Cﬂ(x,D')E‘GL‘Si(&ap) implies det Ao(pn #
0, which asserts that the hyperplane X1 =Py is not character-

istic at p. This completes the proof.

-15~-
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4. An example. Let n=2 and consider the following matrix.
D1 a(x,D2) : ,
(4.1) A(x,D) = (order a + order b=2),
' b(x,D2) Dl ‘ :

where a and b are p.d.op. with holomorphic coefficients in a
neighbourhood of the origin. Obviously, A is non-degenerate of
orderD1;=2 and hyperplanes X, =p, are all non—characteristic.k
We consider the Cauchy ?roblem‘(A,u)p with uv= (2,0). In this

case, we take {si, tj} as follows.

Then we have

0 a 0
1 a
A -

0 1o 1

JGGLz(ﬂ(Q)), OL(X’D2)= 1 Dy(a) a

0 0 1

Obviously, depUCQ==—c(a)(x,£2). Therefore, the Cauchy problem
(A,u) is well-posed in a neighbourhood of the origin if and only
if aza(x) #0 in-a neighbourhood of the origin. |
Next, we consider the Cauchy problem (A,u)b at a fixed
ponit p==(pi,p2). As mentioned in the proof of Theorem 1, the
Cauchy p;oblem (A,u)p is well-posed if and only if the mapping
(#)p is bijective, and it is equivalent to the bijectiveness of

the mapping,

#))  alpy,xydy) : O —> 0 .

2 2
We consider the following three cases of a, in each case the
Cauchy problem (A,u)o is well-posed.

1) a==xlD2-+l. In this case, thg Caﬁchy‘problem (A,u)p

is well-posed if and only if p1==0, and at p1#:0 the Cauchy

-16-



problem has infinitely many solutions.

2) ’a==x2D2-F1."In this case, (A,u)p is well-posed if and
only if p, =0, and at pzaéo the Cauchy problem has infinitely
many solutions. We note that the bijectivity of the mapping |
(#)é is qbvious, since x2==0 is a regular siﬁgular point as an
ordinary differential operator.

3)v’a==x2 D2 -D2-+1.AIn this case also the Cauchy problem
is well-posed if and only if p2==0. We note that a has an irre-
gular singular point x2==0 as an ordinary‘differential operator.
By Komatsu [5] or Malgrange [6], we know for the mapping (#)é

dlmc Ker a - codlmc Im a=20.

On the other hand, by the construction of a, we easily see that
dimC Ker a =0 . Therefore we obtain the bijectiveness of (#)é.
We remark that we know by Malgrange [6] theVmapping

~ A N ' o
a: 0 —— (&> ((> is the set of formal power series)
has an index

dimC Ker a - codim¢ Ima =1 ( Ker a=C).

Therefore we see that the Cauchy problem (A;u)o has infinitely
many formal power series solutions, but has a unique holomorphic

solution.
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