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0. Introduction.

Let Rn(x) (n=1,2,*°+) be the nth Rademacher function, that is,
Rn(x) =1 - 28n(x), where Sn(x) is the nth digit of the (finite)
binary_expansibn of x € [0,1). In this note we will deal with the

the Rademacher series

= S° N :
f.(x) = 2 TR (X) (0 <r < 1),

1> The distribution of fr‘

Let f be a real function defined on [0,1]. We will consider

f as a random variable on the probability space ([0,1),dx) and
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define its probability distribution by
e (E) = | {x€10,1); f(X)EE}| for E € 3R,

where |-| denotes the one-dimensional Lebesgue measure. If uf is
absolutely continuous with respect to the Lebésgue measure, we denote
the density by af.

Theorem (Jessen and Wintner (1935)). The distribution u

fy

either absolutely continuous or singular with respect to the Lebesgue

measure.

It is well-known that Mo is singular for O < r <-1/2 - and that

r

uf is absolutely continuous for r = 2-1/d witH a positive integer
r .

d,
Theorem (Erdés (1939)). Let 1/2 < r < 1. 1f r ' is a Pisot

number, that is, an algebraic number whose other conjugates lie

inside the unit circle, then uf is singular.
: r v

Theorem (Salem (1943)). Let 1/2 < r <1. Then r ! is a Pisot

number if and only if the Fourier-Stieltjes transform ﬁf(ﬁ) of
r

My does not tend to zero as |&]|—w=.
r ' ' ‘

~“It'is.unknOWn for which values of r the distribution 'uf";is
o . r
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absolutely continuous. - Garsia (1962) gave several sufficient

conditions for uf to be absolutely continuous or to be singular,

r

2) Hausdorff dimension of level sets of fr'

The following result is referred in Mandelbrot's (1982) book.

Theorem (Beyer (1962)). 1f r = 2 1/d

with a positive integer

d, then the Hausdorff dimension of the levelyset of fr is equal

1-(1/d).

3) Fat baker’s transformation.
Alexénder and Yorke (1984) introduced the notion of the fat
baker's transformation and point out its connection to our

Rademacher series.

1. Self-affine functions and Dimensions.

Definition (Kono (1986)). Let m be a positive integer > 1.
real function g defined on [0,11 is said to be a self-affine
function with the scale parameter 0 < H 1 to base m 1if the

relation

g((G+on N - giin ™ = Ty jm'N“{g<x> - 2(0))

holds for any Jm N (j=0,1,-*-,m"=1, N=1,2,+--> and x € [0,1),

-
{
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We denote the graph of a function f' by G(f), the Hausdorff

dimension of a set E by dimH(E) and the packing dimension (Taylor

and Tricot (1985)) of a set . E by dimP(E). We note that dimH(E)

¢ dim,(E) - for any set E.

P

Theorem (XKono (1986)). Let g be a self—af%ine function with the

‘scale parameter O < H < 1. Assume that the distribution ug is

z
‘absolutely continuous with respect to the Lebesgue measure and that

; the density ag belongs 1 Lp(—w,w) for every 1 < p ¢ ., Then we

have dim,(G(g)) 2 2-H.

Theorem. Let g be a bounded self-affine function with the scale

ju)

' parameter O <

¢ 1. Then we have dim,(G(g)) ¢ 2-H.

Proposition. The function fr (0 < r < 1) is a bounded self-affine

function with the scale parameter H = logg(l/r) to base 2. Here

- wWe se fr(l) = fr(l-).

Theorem. Let 1/2 < r < 1. Assume that the distribution Hy is
, r

absblutely continuous with respect to the Lebesgue measure and tha;

the density « belongs to Lp(—w,w) for any 1 < p < ., Then we

fr

~have dimH(G(fr)) = dim (G(fr));= 2-log,(1/1).

P

Corollary. If r = p-1/d

with a positive integer d, then we
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have dimH(G(fr)) = dimP(G(fr)) = 2-(1/4).

Remark. 1) Przytycki and Urbanski proved that if Mg is

r

absolutely continuous, then we have dimH(G(fr)) = 2-logo(1/r). We

note that their result requires no assumption on the density af
‘ r
Indeed, it is remarked in their paper that the absolute continuity of

My implies the boundedness of CPEE Furthermore, by the use of

r r

Erdos's result, they obtained the following: I£f r-l is a Pisot

number, then 1 < dimH(G(fr)) < 2-logy(l/T).
2) For a continuous self-affine function, Kono (1988) gave a
necessary and sufficient condition for the distribution to be
absolutely continuous and then, by the use of Kono's result, Urbanski
obtained the exact formula of the Hausdorff dimension of the graph of
a self-affine function. On the other hand, Bertoin computed the

Hausdorff dimension of the level set of a continuous self-affine

function.

2. Self-affine functions and Functional equations.

-

et (X,d)> e a complete metric

|

Theorem (Hutchinson (1981)).

2 < m < =,

lcr
®

a set of the contractions on X.

space and {fj)lgjgm’

-,f ) of X

1) There is a unigue compact subsét K = K(fl,f2,~° m

such that the equality K = UL_ f.(K) holds.

2) For any compact subset E .o0f X, we have 1lim Fn(E) = K in the
: : e
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jausdorff metric, where F is defined by F(E) = \)T_ifj(E).'

In the following we suppose that a function G may take two

yalues a(im™Yy and aim M-y at x = jm N (N=1,2,--+).

S

Theorem (de Rham (1957), Hata (1984)). Suppose that {fj)

!is the same as in the above theorem.

AR =l R NR 2N 2ss

1) The functional egquation

fl(G(mx)) . for 0 g X

HA
-

1 G(x)

i

fm(G(mx—(m~1))) for

HA
¥

1 N
—t
-

i

ghas a unique continuous solution G: [0,1] — X if and only if

y
i

fj+1(FiX(f1)) = fj(FiX(fm))

"holds for every 1 ¢ j ¢ m-1. In this case the graph G([0,11) is

compact.

~2) Suppose that the above functional equation has a solution

‘G: [0,1] — X, whose range G([0,11) 1is compact in X. Then we have

EG([O,IJ) = K(fl,f ~fm). Furthermore, if X 1is a vector space in

..
2)

addition, we can approximate G([0,1]) by broken-linés: Define

6“0 = (Fix(f )=Fix(£,))x + Fix(i)



and, for n = 1,2, ’
£ onxy for 0 < x ( ——,
1 = = m
¢ xy =
£ M) (mx-m-1)))  for 2l ¢ x ¢ 1
m m = 2
Then we have K(f,,%,,---,f ) = lim ¢‘" (10,11 in the Hausdorff
n-oo
metric.

We now consider a characterization of self-affine function by a
functional equation. We suppose that é self-affine function g
satisfies the equality-

g+ Ny - gan T = 1y 0 gy - goon

for any jm—N (j=0,1,"',mN-1, N=1,2,:+*).

Theorem. A real fqnction g defined on [0,1]1 with g(0) = 0 is

a self-affine function with the scale parameter 0 < H 1 to base

m if and only if it satisfies the following functional equations:

p

-H 1
alm g(mx) for 0 g X g n°
azm_Hg(mx—l) + b, for —%—ug X g —%—,

g{x) = o ‘ _ .

-H S , m-1
\amm gimx-(m-1)) + bm for = g X g 1,
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where a.i =-1 or -1 an bj -is a costant for each j.

[t is also possible to treat the self-affine function as a curve

in the plane.

Corollary. Define

for j = 1,2,<+-+-,m, Where aj = 1 or -1 and bj is a constant for
each except for bO = 0. Then g(x) 1is a self-affine function

with the scale parameter O < H ¢ 1 10 bas

[¢]

m if and only if G(x)

= (x,8(x)) satisfies the functional equation

fl(G(mX)) ) for O { X

[[ 7N
-

G(x) =

fm(G(mx-(m—l))) for

H~
»
A
p—

If G(f0,11), which is the graph of g, is compact, then it coincides

with the unigque compact subset K = K(fl,f9,°-',fm) satisfying K =
n :

Uil E 0.

We normalize fr by setting

= (1/2) - ((1- = ((1- © n
gr(X) = (1/2) (1 r)/2r}fr(x) = ((1 r)/r)zn:lr 8n(x).
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Then g, is also a self-affine function with the scale parameter H -
= logo(1/r1) to base 2 and satisfies the following functional

equation:

1A
»
A

1
2

[y

rgr(ZX) for O
gr(x) =

rgr(zx-l) +(1-1r) for

o
A
»
||
oy

[f we define

-

fz: ( v

< X
N’
N
et
O N
no
O
Ne——r’
/N
< X
SN——’

»
Ne—’
N

[y

O N

N
= o
SN—r

N
< ™
~—
+
TN
[
[ BN
=N
SN—r

then G _(x) (x, g.(x)) satisfies the functional equation

nA
e

[ Za¥

o]

1
1
fz(Gr(2X 1)) for 5

£,(G(2%)) for O
G (x)

A
»

un
—

Since fl and f2 are contractions; there is a unique compact
subset . K =‘K(f1,f2) of R2 Satisfying K = fl(K) ¥, fz(K). In
this case, flCFix(fz)) = fz(Fix(fl)) and hence the functional
equation has no continuous solution Gr: [0,1] — R2. However, it is
easily seen that Gr([O,ll) is compact. Hence we have K = Gr(EO,ll)

and lim G;n)([O,I])-= K in the Hausdorff metric.

n-oe

We nextbbonSider the relation between hr and Lebesgue’s Singular
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function. Define

Since fl and f, are contractions, theére is a unique compact

subset K = K(f,,f,) of R? satisfying K = i@ v E,@®. In

2
this case, since fz(Fix(fl)) = fl(Fix(fz)), the functional
equation
TG 2N for 0 ¢ x ¢ —i—,
= 1 7r = = 2
Gr(X) = 1_" _ 1
fz(Gr(2x—1)) for -5 ¢ x £ 1

has a unique continuous solution Gr: [0,1] — R2 (de Rham (1957),

Hata and Yamaguti (1984)). If we set Gr(x) = (x,ér(x)), the above

functional équation is equivalent to

HA
>
[{ ¥aN

g (X)) =

_ ‘ {rér(2x) for 0 ¢ x ¢ —
r

(1—r)§r(2x—l) +r for —%—

A
»

nA
—

The function gr is so-called Lebesgue's singular function. Since
G_(10,11) is compact, lim G."’([0,11) = K in the Hausdorff metric.
_ \ e : Sl .

This is nothing but a Salem's (1943) geometric construction of

Lebesgue's singular function.
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We finally remark that the distribution function Fr(X) =

“g ((-»,x]) satisfies the functional equation
r _

Fr(X)

et
=

X 1-r. ..
{Fr( ) + Fr( " T )}

1
(o]

Fr(X) for x

] FaN

0; Fr(X) =1 for x 2 1.
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