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0. Background Information

In the first century A.D. the chinese scholar Sun-Tzu authored a book
which contained an obscure verse called t'ai-yen (great generalization) to
determine a number having remainder 2, 3 and 2 when divided by 3, 5 and 7,
respectively.

This result was apparently first stated as a theorem and proved in its
proper generality by L. Euler in 1734, although a description of most of the
necessary principTes was given in China by Chhin Chiu-Shao in his Shu Shu
Chiu Chang in 1247) [1],[2],[3].

The Chinese Rémainder Theorem. Let Mys Mo, ooy My be positive
integers which are relatively prime in pairs. Then there exists a ‘uniqu‘e
integer x mod M satisfying the system of congruences:

r

X = a, (mod ﬁl) s

[y

X = a, (mod mz) ,

X = ak' (mod mk) s
where M = mm, e m .

Proof. We prove first the uniqueness of the solution of (0.1) mod M .

Suppose x and y to be solutions of (0.1). That is, for i =1, 2, ***, k,

X = a, (mod mi),’



and\
y = a (mod mi) .

]

Then, for i =1, 2, ee-, k .

X

1]

y (mod m.) ,

from which we derive

X -y=0 (mod mi)

for i =1, 2, eee, k. Thus x -y 1is a multiple of m; for a]] i,

so the pairwise coprime moduli asserts that x - y is a multiple of

M= MMy eeem which signifies the uniqueness of the solution of (0.1).
.To complete the proof, we must only show the existence of at least one

solution.

The first proof of the existence can be done by nonconstructive way.
There exist exactly M k-tuples (ul, Ups =+, uk) of integers with
0su; =me-1, for i=1,2, «+, k. Asan integral variable x runs
through the M distinnct values 0 < x < M-1 , the k-tuples

(x mod my, X mod my, +e<, X mod mk)

- must also run through M distinct values, since (0.1) has at most one
solution mod M . Therefore each k-tuple must occur exactly once, and
there must be some value of x for which

(0.2) (x mod my, X mod Mps o+, X mod mk) = (al, Qs oo, ak) .

The. second proof of the existence is constructive. Let us define, for

Mi = M/mi
=Mttt MiogMier 7t Mo
dnd put
0.3) y, - Miﬁ”(mi) ,



for i =1, 2, ++, k . Then the Fermat's little theorem shows

Y3 1 (mod mi) y

" since Mi and m, are coprime. We have also
y; = 0 (mod mj) s

for all j =i . Now the number
X =y Fayy Tt ayy
is a solution of the system of congruences (0.1).
<Q. E. D.>
Remark 0-1. In order to check whether (0.2) holds or not for a

special value of x , we need one time tuple-wise subtraction. The number

of necessary tuple-wise subtraction is at most Mk/(qu mi) .
i

Remark 0-2. Instead of putting y; as in (0.3), we can find a

unique solution z; mod m, satisfying the congruence

(0.4) M.z, =1 ~(mod mi) ,

for i =1, 2, **+, k . In order to obtain a particular solution of (0.4),
we consider the linear diophantine equation

(0.5) M.x - msy = 1.

Since Mi and m, are relatively prime, the Euclidean algorithm to find the
greatest common divisor gives a solution of (0.5). The number of divisions
needed to find the greatest common divisors of two positive integers using
the Euclidean algorithm does not exceed five times the number of digits in
the smaller of the two integers, which is known as a Lamé's theorem [2].

Thus we need at most 5 1oglo{m1n(M., mi)} times divisions. Then at most

1
3

2x5 ]oglo{min(Mi, mi)} times multiplications and 5 10910{mi"(Mi’ m;

times additions give the solution of (0.5).



1. Fast Algorithm of ;he Chinese Remainder Theorem ‘

In this Section, we state our theorem with full proof and show the
efficiency of it.

Theorem 1. Under the same aésuﬁptions as in the Chinese Remaindef

Theorem, the system of congruences (0.1) is equivalent to the following single

Linear congruence

k k
(1.1) (1] b.M.)x = ) a.b.M. (mod M) ,
i=1 =g ' 17 »
where bi's are arbitrary integers coprime to mi{s , respectively, and
k
M. =M/m, for i=1,2, s+, k with M= m; .
Lemma 1. The system of congruences (0.1) is equivalent to the
following system of congruences:
Mlx = alM1 (mod M)
M2x = a2M2 (mod M)
(1.2) 3 ’ T
Mk-lx = ak=1Mk—1 (mod M)
% g‘ : .
() b.M.) x = a.b.M; (mod M) ,
jop 1 j2p T

N

Mwebiiswwﬁw@pﬁmtomiﬁw i=1,2, ***, k.
Proof of Lemma 1. We show the necessity. Suppose x to be a solution

of (0.1). Then, for i =1, 2, **+, k,

with ankinteger i - Mu1t1p1ying Mi with the above identity, we get, for

i=1,2, o, k.

Mix - Miai = C'miMi

-M
i C;M s

which is rewritten to the congruence



(1.3) Mix = Mia, (mod M)

for i=1,2, s+, k . .The first k - 1 congruences in (1.2) are identical
with those of (1.3) for i =1, 2, *«+, k-1 . The last congruence of (1.2)
can be obtained as a linear combination of (1.3).

Conversely, we assume that x 1is a solution of fhe system of congruences.

Since Mi and m, are coprime, (1.3) can be reduced to

X = a, (mod mi) s

for i =1, 2, «oe, k-1,
Subtracting the linear combination of the first k - 1 congruences in

(1.2), we have

bkka = akbkMk (mod M) .

Since Mk and bk are relatively prime to me > we conclude that

X = ay (mod mk) .
<Q. E. D. of Lemma 1>

Lemma 2. Under the same assumptions as in Theorem 1 and in Lemma 1,
: k
M is relatively prime to ) bjM]. .
i=1
k
Proof of Lemma 2. Let g be the greatest common divisior of biMi
21
. . k 1
and M and let p be a prime factor of g . Then p divides ) biMi and
i=1
k .
M= 1 m . The divisibility of M by p asserts that p divides only one
i=1

of m. , say mj , Since (mi; mj) =1 if i# j . Then p divides all Mi

. : k
but Mj , Since Mj = M/mj . Together with the divisivility of ) biMi by
, , i=1

p , we derive that p divides bij and consequently divides bj'. Hence
p divides the greatest common divisor of mj and bj which is equal to

one from the assumption. ‘
<Q. E. D. of Lemma 2>



Proof of Theorem‘l. By Lemma 1, we know that the system of congruences
(0.1) is equivalent to the:system (1.2). From Lemma 2, the last congruence
has a unique solution, say Xg mod M . Thus the system (1.2) has a unique
solution Xg which implies that Xq is the unique solution of the system
~of congruences (0.1), since the chinese remainder theorem assures the unique
existence of the system (0.1) mod M .

<Q. E. D. of Theorem 1>

‘Now we can roughly estimate the number of arithmetical operations as in
the arguments of Remark 0-2. We may assume that the moduli mi's are d
digits positive fntegers; so that the number of digits of Mi is roughly
(k - 1)d and obviously min(Mi, mi) =m o, for i=1,2, «««, k. To get

the final solution mod M of (0.1), we need at most 5kd times divisions,

(10d + 1)k multiplications and (5d + 1)k additions.

k
L bsMs can be small
i=1

of the order of one Mi , if k 1is odd. In this case, to get the solution

Since we can set bi's in Theorem 1 to be 1 ,

mod M of (1.1), we need at most 5kd - 5d times divisions, (10d + 1)k - 10d
multiplications and (5d + 2)k - d additions. '

As we will see in the next Section, the choice of mi's and the number

k
) b.M; can be small, which gives the
'i::l . .

advantage of the methods based on oUr Theorem 1.

of moduli are fairly arbitrary. Thus

2. Application of the Chinese Remainder Theorem

The chinese remainder theorem provides a way for doing arithmetic on
~ large integers. Let Mys My, **%, M be positive integers which are
relatively prime in pairs. Instead of doing arithmetics directly to an
integer x , we consider the k-tuple of residues of x mod ms . That fs,

for an integer x mod M , we can correspond the k-tuple of residues:



(x mod mys X modAmz, se+, x mod mk) .
k

where M= 1T m. . This correspondence is one to one due to the chinese
i=1

remainder theorem. For convenience, we write this correspondence as follows:

(2.1) X < (X1s X5 o005 X )

where x; = X (mod mi) , for i=1,2, =+, k. We call (xl, Xos ***, xk)
in (2.1) a modular representation of the integer x .

A modular representation allows us to do arithmetic of large integers
with computers of small word-size. Addition, subtraction and multiplication

of a modular represéntation are defined by:

n

(xgs =**s X ) + (ygs ==os ¥ ) = ((xg*+ y) mod my, +==, (x,*+y,) modm) ,
(xl, see, Xk) - (yls s yk)_= ((xl- yl) qu mys ==, (xk- yk) mod mk) .
(Xl’ % Xk) X (‘yl’ %y .yk) = ((Xlx ‘y].) mod m]_: °*% (ka ‘yk)vad mk) .

The process of addition, subtraction and multiplication using the above

definitions is called residue arithmtic or modular arithmetic and the chinese

remainder theorem affords, the usual values of X +y , X -y , X x Y

mod M[2].
The range of integers that can be handled by modular arithmetic is
k
equal to M= 1 m. and the multiplication of n-digit numbers by modular
i=1

arithmetic is essentially proportional to n (not counting the time to

convert in and out of representation). On the contrary the conventional multi-

precision multiplication requires an execution time proportional to n2 [2].
Furthermore the operations with respect to different moduli can all be

done at the same time by using pararell computers, which gives a significant

advantage of modular arithmetic also for addition and subtraction.

On most computers the word size is a large power of 2 , with a



common value. We pick 6 moduli, m = 235- 1, m, = 234- 1, my = 233- 1,
my = 231- 1, mg = 229- 1, and me = 225; 1 . Since the exponents of 2
in the expressions for the mi's are relatively prime, then mi's are
reiative]ykprime. Then we can do arithmetic with integers as large as 2186 R
6 ' :
since M= I m, > 2186 . We have also
i=1

_ 525, 34 -
my = my - Mg + my + Mg - Mg = 2 175‘< 2°'- 1= My

which shows an advantage of our Theorem 1 explained at the end of the last
Section for getting the solution of the system of congruencés (0.1) via the

only single linear congruence (1.1).'

3. Generalizations and Concluding Remarks

We recall the generalized chinese remainder theorem [3].

The Generalized Chinese Remainder Theorem. A necessary and sufficient
- condition that the system of congruences (0.1) be solvable is that, for each
1si<jsk,

a; - aj =0 (mod (mi, mj)) .

Any two solutions are congruent mod[ml, My, *=, mk] , where [a, b] denotes

the least common multiple of two positive integers a and b .

Proof. - We show first the necessity. If the system of congruences
with i=Jj,
X = aj (mod mi)
X = a; (mod mj)

has a solution, say Xg - Then Xg = a; = c;m; w1§h some integer cqy -

Substituting this into the second congruence, we get a; +cqmy - aj = com,

for some integer Cy .



Then
8y = 3y = -¢qmy + cpmp = rlmy, mp)

for éome integer r . Thus 2y - a, is congruent to the greafest common
divisor of m, and ms . |

Now we proceed the uniqueness of the solution of the system ofr
congruences (0.1) mod[ml, Mys *o, mk] . Suppose that x and y are
solutions of the system (0.1). Repeating exactly the same argument as in
the proof of the ordinary chinese remainder theorem, we have, for
i=1,2, ¢¢c5 k,

X -y =0 (mod mi) .

Then obviously
x 2y (mod[my, my, <, m1) .
Finally we prove the sufficiency. Here we put M = [ml, Moy =22y mk]

the least common multiple of mi's . Then we can express M in the form

n = x

(3.1) ' M =
| y

TP
11

of relatively prime factors, including unity, such that My divides m, for
i=1,2, **+, k. Then we can find Y; ~satisfying, for i =1, 2, ***, k ,
y; 51 (mod “i)
and
y; =0 (mod M/uj)
for all j # i . Now the number
X 22y Ty Ty
is a solution of the system (0.1).

<Q. E. D.>
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By using the expression (3.1) and tracing the argument in the proof of
Theorem 1, we get the following:

Theorem 2. Under the same assumptions as in the generalized chinese
remainder theorem, the system of congruences (0.1) is equivalent to the
following single linear congruence

(L bM)x =

iM; a.b.M.  (mod M) ,
i=1 i

1111

[ > g

where bi's are arbitrary integers coprime to Ui's » respectively, and

n ==

Mi = M/ui s for i =1, 2, *°°, k with M= My o= [ml, Mps %, mk] .

i=1
Remark 3.1. The chinese remainder theorem can be proved in an
arbitrary principal ideal ring instead of the ring of rational integers.
Thus our Theorem 1 can be generalized in an arbitrary principal ideal ring,
and especially in every ring of polynomials of coefficients in an arbitrary
field.
Remarks 3.2. Theorem 1 provides a simple procedure for the

construction of confounding plans in mixed factorials. The details of these

two Remarks will be discussed e]séwhere;
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