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Uniform distribution and means of distances on spheres

_ Gerold Wagner (Stuttgart)

1.Introduction. In the following wé shall study a problem of irregu-

larities of point distributions.on spheres. Given an N point set Wy =
= {xl,x2, ...',xN} on the surface S = Sd_1 of the unit sphere in
d-dimensional (422) Euclidean space Ed, we are interested in the rela-
tions which hold between the distribytion of Wy on S , and bounds for

certain distance functions and distance functionals (“"potentials" and

"energies") generated by the set wN in a natural way.

We begin by introducing a basic concept. Denote by K = K{x,Y) < S
the spherical cap with "center" x:ES and "angle" v, i.e. K(x,Y) =
= {y €s:{x,y) = cosy}, where 0< y <7, and <g, » denotes the scalar
product in Ed. Let AK(wN) be the number of points xj, 1 <j<N, which are
contained in K, and let 0 be the normalized surface measure on S,

0(S) = 1. Then we call

D(w,) = sup |AK(wN) - N-o(x) |
K S

the discrepancy of Wys and

A(x,Y;wN) = (wN) - N-o(k(x,v)) (x€S, O<y<m)

A
K(x IY)
the discrepancy function of Wy e

The following two important results should be mentioned.

Theorem A. ([S1],[B1]) For any point set w_ c Sd_1 the following lower

2

estimate is true: };d—Z
2d-1

>

(1) | D(wN) = cd N .

Here C4 is a positive constant depending on the dimension d.
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We remark that W.M.Schmidt [Si1]proved the slightly weaker result

D(w.) =c (E)qu_e, € >0 arbitrary, q = 1-913-, whereas J.Beck [B1]
N d i : 2:4-1
proved the relation

14-2

‘]T — ——e
(2) ‘ J I AZ(X,Y;w ) sind_zy do(x) dy = c¢ G2 a1 ,
Y=0 S N a

from which (1) ciearly follows. J.Beck [B2] also proved that the bound (1)

is essentially best possible.

Theorem B. (see [B2]) For each N21 there exists an N point set w;:: S

1d-2

D(Awﬁ) < cé-]t\l2 d-1 -Viog N

such that

is true. Here cé is a positive constant depending on d only.

Note that Theorem A and B are trivial in the case d=2.

We may describe the irregularity of the distribution of wN in still an-

other way! Given the point set W, = {xl,x e ,xN} c S, and a fixed

2'
parameter 0, 1-d <o <, we define on S a distance function Ua(x,wN)

és follows:

(3)‘Ua(X,wN) =

‘ v : . . d - :
Here I...I denotes the Euclidean distance in E ; and m(a,d) 'is the mean

value of the kernel ]x - y]u on Sd_l, i.e.

J lx-yl%0w (a40,2,4, ...)
n(o,d) = S

[ 1x = y|%10g |x - y|do(y) (@ =0,2,4, ... ) .

S

The following observation is of basic importance. We may consider Ua(x'wN)

as the convolution of the kernel ix - yld with the discrete measure which

assigns weight 1 to each of the points ijUHV'if we replace the summation

N
T |x - xj‘uloglx - Xj‘ - N-m(a,d) (o = 0,2,4,..

2 [x - x| - wema xes®™, a4 0,2,4,...)
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in (3) by an integration with respeét to the uniform disﬁribution measure
N-0, the corresponding expreséibnAvanishes identically. Due to thé fact
that uniform distribution can be approximated by an N point distribution
to a certain degree of accuracy only, we have certain "natural" lower.

bounds for, say, the integral norm "Uaul = f IUa(x,wN)ldo(x) .
' "8

Similar to (3), we define a distance functional E (W) by setting

N N
z Z {Ix - xkla - m(o&,d)) (o >0)
j=1 k=1 J
(4) A N N ‘
 Z [k.—-ﬁJG —mULdJ (1-d<a<0) ,
j=1 k=1 J -
jxk

again with the agreement that a factor loglxj - X is added if a€{0,2,...}.

|
Here we also note that if we replace the summation in (4) by a double inte-
gration with respect to the uniform distribution measure N-0, the integral
Vanishes. Approximating uniform distribution by a discrete distribution

will lead, as before, to certain natural bounds for the "energy sums" Ea(wN)'

We shall always refer to these natural bounds as to "lower bounds", although

they may actually be upper bounds in certain cases.

Our aim is to prove analogues of Theorem A and B for the functions Ua(x,wN)
and the functionals Eain). Moreover, we'will give some quantitative relat-
ions between the discrepancy D(wN) and the numbers gIUa(x,wN)ldo(x), Ea(wN).
Many of our results are trivial in the case d=2, i.e. for the unit circle.

On the other hand, there are some more detailed questions concerning the

logarithmic case =0 on the unit circle, and we shall devote the next section

to give a brief account on this topic.

2. Products of distances on the unit circle.

2.1. Polynomials. With the point set w {21'22’ vee 42} , 2, =€ ,

N

jun -

we associate the polynomial’ p(z,wN) = (z - Zk)' z=e '.

k=1
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-4 =
; . 1
Clearly maxllp(z,wN)| = exp( max1 Uo(z,wN) ) = expl( E-Hu(m,mN)Hl),
- zZ€5° X €S o
- ig .
where u(@rwN) u_l(e ,wN) and Ilu(q),wN)l!1 = o7 g !u(qth)ldw .

Hence lower bounds for Hu(q),wN)ll1 vield also lower bounds for the maximum \

modulus of the polynomial p(z,wN) on the unit circle. Note the "natural"
lower bound

(5) ”u((DrwN) ”1 = c¢c > 0 ,

which is essentially best possible by the choice z = exp(2mik/N), k=1,2,..

k

The concept of a discrepancy function on S1 will be slightly modified

as follows: Put N
* =
A (cp,wN) z f((p—npk) '
k=1
where f(@) is the saw-tooth function £(¢) = —L'(ﬂ - @, 0 @ <2m,

21
27-periodically continued over the real axis.
We have

1
=D(w.) < sup |A*(w,w )I < D(w.) ,
2 N o< o< 2 N N

hence A*(m,wN) is a perfect substitute for the discrepancy function‘A(Y,z;wN)

introduced in Section 1.
Relations between max Ip(Z,wN)] and the distribution of the root set wN

are expressed by the following

Theorem 1. The following inequalities are true:
2
>
(a) Ilu((.p,‘wl\])ll1 D (wN)/N

1
log N

(®) Mule,u ), Il A% (@ro My

Remarks. 1.) Assertion (a) was first proved by P.Erdds and P.Turan in 1940
. ( see[E-T]) in the slightly weaker form

maxllp(z,m = exp(c-Dz(wN)/bJ) .

) |
Z€S N

using the theory of orthogonal polynomials. T.Ganelius [G] in 1959 and
E.Hlawka [H] in 1968 gave simpler proofs. Assertion (b) is due to the

author [W6] .
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2.) In view of the natural bound (5) the assertion (a) is nontrivial only
if D(wN) > KW' with K sufficiently large. In the following sense
assertion (a) is best possible:

mi ‘ _ .
Choose e Z[Vﬁ] = exp( N [V ) z, = exp (2mik/N)

for k= [VN] +1, ... ,N. For such point sets Wy we have

but still

<
o)y C,

where c1 >0, c23>0 are absolute constants.
3.) Assertion (b) is probably true without the factor (1/ logN) , but this

seems rather difficult to prove. Note the striking but useless relation

Ilu(tp,u)l\l)ll2 = lIA*((p,mN)ll2 .

P.Erdds [E] asked the following question: let w = (zl,zz, ... ) be an
infinite sequence of points on the unit circle. For each section w, =
= (zl,zz, .o ,zn) of w consider the maximum un(w) = maxllp(z,wnjl.

z€S
Can (un(w)) be bounded in n?

It is known that there are infinite sequences w ( f.e. the famous van der
Corput-sequence, see JK-N] ) satisfying the relations

D(wn) < c-logn and IIA*((p,mn)ll1 < c'-yIog o
for all n=2. Hence neither (a) nor (b) can be used to settle this question.
Using a method introduced by W.M.Schmidt [S2] , the author [Wl1] was able

to prove the following'result:

Theorem 2. There are absolute constants ¢ >0 and § >0 such that for any
infinite sequence w on S1 the inequality
(6) un(m) > c-(logn)6

holds for an infinite number of indices n.
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Using a reduction method to be found in [T-W] it is even possible to show
that (6) holds for "almost all" n.
It is believed that (6) holds in the stronger form
L (w) = c‘.n(S
n .
for infinitely many n. The van der Corput sequence shows that un(w) < n+l < 2n
for all n is possible. This is not the "best" sequence, however. C.N.Linden [L]

gave an example of a sequence ®w' for which
¥
un(w') < c'-n6

holds for each n and constants c' >0 and O0<¢8'<1.

. .’ )
2.2. Mutual distances. It is known that for each mN on S the natural bound

= X Z 3 < .
EO(U)N) . log{zj z,l S N logN
itk
is true, with equality holding if and only if the points 21'22’ ,zN are

the vertices of a regular N-gon. The folloWing result is a counterpart to

Theorem 1(a), see [W6].

Theorem 3. With certain numerical constants c1> O and c2> O, the following

inequality is true:
2
c,'D (wN)
(7) Eo(u)N) < N-log N +c1-N - : .
Co » log (2N/D (wN) )

Note that relation (7) is nontrivial as soon as‘ D(wN) > Km holds
with K sufficiently large. |

There is some contrast in the behaviour of “u((D,CUN)Hl and Eo(wN) with respect
to irregularities of the distributioh of the point set wN: If only two points
Zj'zk coincide, the sum EO(wN) completely breaks down, whereas llu(cp,(A)N)"1 < c,
may still hold. On the other hand, distributing [g -/N] points equidistantly

on the upper half circle, and doing so with N —[% -/N] over the lower half

E () } > N * l() N - C N
N = g ’
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whereas by Theorem 1(b) the values of the corresponding polynomial "explode":

we have "u((D,U)N)Hl > \W/ logN.

As in the case of polynomials wé may ask the following question: given an

infinite sequence w = (21’22’ ce. ) ON Sl, what can be said about the behaviour
of the sequence (en(w)), where En(w) = > z logiz, - zk ?
, 1<j,k<n J

34k

The followihg result is proved in .[Wé].

Theorem 4. Let w = (zl,z ... ) be an infinite sequence on the unit circle.

2!
Then for infinitely many n the following inequality holds:
(8) En(w) < n-logn - c°n .

Hexre ¢ >0 is a numerical constant.

We remark (8) is best possible, apart from the value of the constant c.
If w denotes the van der Corput sequence, then the reverse inequality
€n(w) > nelogn - c'-n

holds for all n and some numerical constant c'> O.

3. Lower bounds for distance functions on spheres.

We recall the notation introduced in Section 1. Then the following counter-

parts to Theorem A and the Erdds-Turan inequality Theorem 1(a) are true.

Theorem 5. ([w3],[W2]) For any point set wN = {xl, - ,xN} c Sd_1 we have

the natural bound —a/ (G-1)
”Ua(xle)” 1 > C(dlu) -N .

Theorem 6. ([W6]) For any point set wN c Sd—1 with discrepancy D(wN) we have

‘ A+op~
the inequality D(wN) ro-1

”Ua(x'wN)ui > C'(d,a)'D(wN)‘ .

N

Remarks. 1.) In the special case o = 2-d (the classical "Newtonian case") §
|
Theorem 5 and 6 are implicitely contained in a more general result of P.Sjdgren

§
)
[sj] . In fact, Sjdgren proves such inequalities for a whole class of '%
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3.)

4.)
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sufficiently smooth closed surfaces.

In threedimensional space Theorem 5 has the following physical interpre-
tation: Suppose we distribute N electrons, each endowed with unit charge,

o1t ,XN on a conducting sphére of radius 1. They
N
generate the potential p) X - Xj ! which has mean value N on Sz.
, j=1 ,
By Theorem 5 there are points on S2 at which the actual potential is by

at the places x,,x

1

at least c-VN below the mean value. It can be proved (see Theorem 9 in

Section 5) that this result is essentially best possible.

Theorem 6 can be strengthened slightly for dimensions d=>3. Suppose that
for some spherical cap K = K(x,Y) we have
1
- . = =
|AK(wN) N-O(K) | > 5 D(wy)

m .
We may assume O<<Y~\§- (otherwise take the complementary cap). Put

Y, = max [y, D(wN)/NJl/(dql)} .
Then the stronger inequality
{ D(mN) d-1+a
o, x,wdll, = C(d,a)-D(wN)-LN. =)
Yo

holds true.

The proof of Theorem 5 as given in [W3] uses the method of "test functions".
A remarkable variant of this method was introduced by T.Ganelius [G] (see
also [Sj]) into potential theory, allowing a unified approach to both

Theorem 5 and 6 (see [W6]).

4. Lower bounds for distance functionals.

In the case of distance functionals Ea(wN) our results are less complete.

We restrict ourselves to values of o satisfying 1-d‘<u<52, and we obtain

essentially best possible natural bounds for 0<da <2 in all dimensions,

and for -2<a<0O in dimension d=3 (see also the remarks following Theorem 9

in Section 5). We have
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Theorem 7. (see [W3])  The following inequalities are true:

(@)  -E_(u) > c(a,q) -nt7 0/ (@-1)) for 0<a<2,
(b) E, () > —c(u,d)-Nl"(“/(d‘l)) for 1-d <o <min(0,3-d) ,
(c) E (0) > —c(a,d) -n2 (1~ / (2-a) for 3-d<q<O ,
N .
| (d)‘ EO(wN) < 5 logN + O(N) for d=3.

In all cases the constants c(o,d) are positive, and independent of wN'

Remarks.
1.) The case 0=1 deserves special mentioning. K.B.Stolarsky [St] proved the

following remarkable ‘identity for dimensions d>3:

” 2 -2
(9) E (w) = g [ [ A(x,¥) sin “y dy do(x) ,
N a
Y=0 (d-1

where cd3>0, and A(x,Y) denotes the discrepancy‘function introduced
in Section 1. J.Beck [Bl] used the identity (9) and his version of Theorem
to derive Theorem 7(a) in the special case o = 1. Before K.B.Stolareky [st],
using W.M.Schmidt's version of Theorem A, gave nontrivial bounds for El(wN)
for dimensions d=25. On the other hand, there is a direct potential theoreti

proof of Theorem 7(a) (see the remark below), from which the Beck-Schmidt

result Theorem A follows via Stolarsky's identity (9).

2.) The proof of Theorem 7(a) uses a device which is well-known in potential

theory: In order to prove that certain energy integrals are positive

definite, we express them as a quadratic norm of a potential, generated
by the same distribution, but with respect to a different kernel.
In our case we have the identity
2 .
-E_(w) = c(d;a)- [ ¢ “(x,w) do(x) (0<a<2) ,
o0 N S o N
where ¢h is a potential, generated by a kernel ka which is essentially "

given by (1+a-d) /2
|x - y]

k - v .
L= -y
It can be shown that Theorem 5 remains true for this modified kernel ka'

hence
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- 10 =

. 2 ' 2
- = . : = o) -l 1 >
Eu.(wN) c(d,o) Ilcpoc(x,wN)ll2 = c(d;q) HchL(x,ml\])ll1 =
, _ 1ta-d |2 ,
> C'(d,O{,)' N 2(d"1) - C'(d,O{,) -Nl_(u/(d—l)) .
3.) The proofs of the assertions (b) - (d) -in Theorem 7 are of elementary

nature. In particular, there is a short and elegant proof of (d) for the
2 3 |
sphere S in E , and this result is essentially best possible, see [W2].
For dimensions d 24, one expects the sharper inequality
E (W) < =2 logN + O(N)
o N a-1 !

but we have not been able to prove it.

There afe also inequaiities for Ea(wN) of the Erdés-Turan type. For values
of o satisfying O<a <2 or o = 2-d they are as follows:
Theorem 8. (a) For 0<a <2 and d22 we have the inequality

2 D(wN) d+o-2
_Ea(wN) = g(d,u)'D»(wN)-

N

(b) For d=3 we have the inequality

- 2
1+ — DT (w.)
(wN) > -c.(d)°N a-t + o {d)- N .

log(ZNZD(mN))

By a

The constants c(d,q), Cl(d) and cz(d) are positive.

Note that in the case d=2 the inequality which corresponds to Theorem 8 (b)

is given by Theorem 3.

5. Constructing good point sets.

The natural lower bounds in Theorem 5 and Theorem 7(a) are best possible,

apart from the values of the constants. We first state the result (see [W4]).

Theorem 9. (a) For each 0 >1-d and each N2 1 there exists a point set w;

(depending on o) such that

o ' L0/ (d-1)
o, Gerw )i (@ = ¢'(d,)N
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- 11 -
holds with some positive constant c¢' = c¢'(4,0) >0.
Here |l H(m) denotes the "one-sided" maximum norm, defined
by "Uaﬂ(m) = max IUafif a>0, HUOH(W) = mgx U, , and

U = -min U if 1-d<o<0.
Il oa" (o) m;n o i d<a <0

(b) For each o, 0<0. <2, and each N22 there exists a set w;
(depending on ¢) such that
o ‘ 1-(a/ (d-1)
- g 1 .
Ea(wN) c¢'(d,0) "N

holds with some positive constant c'(d,oa) >O0.

Remarks.
1.) Note first that assertion (b) is an immediate consequence of assertion (a).

For o = 1, (b) was already proved by K.B.Stolarsky [St] .

2,) Theorem 9 corresponds to Theorem B in Section 1. J.Beck's"construction"of
good point sets (see [B2]) is based on an ingenious variant of the probabi-
listic method. In contrast} our method is constructive, making use of
the e#istence of so-called "quadrature formulas with equal weights".

It should be‘noted, however, that this latter method does not provide

an alternative proof of Theorem B.

3.) The problem concerning energy sums in the case 1-d <0 <0 is not settled
by Theorem 9. Here the construction of good point sets requires a completely'
different approach. For dimension d=3 a highly computational proof
([W] , unpublished) shows that Theorem 7(b) (for the logarithmic case (d)
see [W2]) is in fact also best possible, but for d>4 the situation is

not clear.

Let us briefly describe our method of how to construct the "good" point sets.

‘ d-1 . . :
First, we divide the sphere S into mutually disjoint domains Bl’BZ’ .o 'Bm'f

subject to the following conditions:
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(1) Each BU is-approximately a "square", i.e. for certain constants cl(d)> o,
cz(d) >0 we have

a-1 '
. < i < . = ee. oM.
Cl(d) O(BU) (diam BU) c2(d) O(BU) ;s U 1,2, m

(2) For certain positive constants q1= ql(d,a), q2= qz(d,a) we have the

inequalities
: q1< N‘O—(Bu)< a, , v =12, ... ,m ,

hence the subdomains BU are neither too small nor too big in size.

(3) The numbers SU := N-O(Bu) (p=1,2, ... ,m) are positive integers.

Now we distribute s]J points x{u), e ,X;U) on each Bu in such a way that
u

the relation’ <

s il
(10) Lo fpw g = = p&M)

u N

holds for each polynomial p = p(xl,x2, ... ,xd) of degree < r, r=r(4,qa).

s

! (W (o »
We consider the sum Z ]x - X, i as an approximation of the integral
j=1 J :
s

0(;1) f lx - y|d do(y). In order to estimate the error, we expand the integrand

B
[T

(for fixed x) [x - y]a into a Taylor polynomial- with remainder term about some
point.z:EBu. Such an expansion is possible for all but a bounded number of BU'S

in the neighbourhood of the point x.

Using the averaging property (10) of the sets {x{u), N ,xéu)}, we find that
the total (onesided for 0.<0O) error
s
m M
. Qo o
N flx - yl do (y) - z Z [x - x{u)l
S p=1 j=1 J

is of the same order as the maximal "local" (onesided) error

S
v

(v) o
=[x - y|%0w - = x-xV %,
O(Bv) Bv j=1 J

where BV is the subdomain containing the point x. This maximal local error

in turn is obtained by simply inserting the diameter diam BV n N—l/(d—l)

into the kernel !x - ylu, yielding Theorem 9(a).
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,...,S

u
with the property (10). By choosing the subdomains BU as coordinate boxes with

(W) (w
1 X

The main problem consists in proving the existence of points x

respect to the spherical coordinates 61,62, ... 46 , and by separating

a-2'%
coordinates, this crucial part may be derived from the following effective

result, concerning the existence of quadrature formulas with equal weights.

Theorem 10. ([W5]). Let w(x)2 O be an integrable weight function on the inter-

1
val[-1,1], satisfying the conditions f wi(x) dx = 1 and
‘ -1
L, (1 —|ﬂ)6<vﬂm <L, (B>o,o<L2<1<L1).

Let & = {fl’f e ,fs} c c®[-1,1] be a set of functions such

2'
that the derivatives fi,fé, .o ,f; form an orthonormal system

with respect to w(x).

Set K := max max [If'l,lf"l JEED [ } .
V V
pov [-tap VR H . ‘
2 B+2 . ,
Then for each n > no := (24.s-K -Ll/Lz) there exist points

-1 <'£1 <. . .Kx En < 1 such that

1
f £,(x) wix) ax

]

n™B

1
o £ ()
nj 1 H J -

. holds true for all fUEEQ simultaneously.

Remarks. §

1.) The mere existence of the bound n_ was proved ( under much more general
assumptions ) by P.D.Seymour and T.Zaslavsky [S-Z] in 1984. Their result, |

however, cannot be used for our purpose, as it does not include any

effective bounds for n_. What we need for the proof of Theorem 9 is a

bound ng which is independent of certain parameters implicit in the size

and location of<the subdomains Bu.

2.) The proof of Theorem 10 is constructive, and is based on a variant of

Newton's iteration method. It is suitable for numerical calculations.
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Theorem 10 has other interesting applications, we mention two of them.

3.) P.Tschebyschew (Collected Works 1873) considered the following problem:

For each n=1, find points -1 < El <... <& <1 such that

n
n 1
(11) 238 = [xax
j=1 J -1

is true for v .= 1,2, ... ,n. As there are n variables 51,52, .. ,En
for the n conditions (11), this problem is likely to have a solution.
P.Tschebyschew and others gave examples for n = 1,...,7 and 9.
Surprisingly, S.N.Bernstein [Bs] showed in 1937 that (11) has no solution
fdr n >9. More pfecisely, he provéd that in 6rder to have a relation of
the form n

1
% EE\) = IX\) dx (\)= 1,2, « oo IS) 4
3=1 7 -1

|

(12)
2, , . 2

we need at least n > const-s interpolation points Ej. Whether c+s such

points are sufficient is not known yet. By using a more direct variant of

Theorem 10 it can be shown, however, that (12) is solvable for any

7
n > no = const-s

4.) One main purpose of Seymour and Zaslavsky's paper [S-Z] was to prove the
existence of so-called spherical designs. By a d-dimensional spherical
destign of size n and strength t we mean a set of n points 51,52, oo 4&

. + .
on the sphere Sd L Ed 1 with the property that

M

L2 pE) = f pto @
3=1 J o

holds for each polynomial p(xl,x2, cee X +1) of degree not exceeding t.

e!
Applying Theorem 10 to sets of ultraspherical polynomials yields the

: 4
existence of such designs for all sizes n > n = ¢ -t12d , see [wW5].

o le}

n
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