
15

A Parallel Algorithm for Inheritance Hierarchies
with Constraints

Satoshi Menju, Hidenori Itoh and Yukihiro Morita

ICOT Research Center
21F, Mita Kokusai Bldg.,

1-4-28, Mita, Minato-ku, Tokyo, 108, Japan

Abstract

This paper introduces the concept of constraints in multiple inher-
itance hierarchies with exceptions. We add constraints to the links of
inheritance networks, then consider links with satisfied constraints only,
ignoring links with unsatisfied constraints. This method can increase
the expressive power.

This paper also describes a parallel algorithm for inheritance hi-
erarchies with constraints. It terminates in $O(n)$-time, where n is the
length of the longest path of an inheritance network including con-
straints. The algorithm obtains one of the solutions produced by the
credulous reasoners of Touretzky and Etherington. We also implement
the algorithm in a parallel logic programming language, Guarded Horn
Clauses (GHC).

1. Introduction

Algorithms to process multiple inheritance with exceptions have been discussed in
[1,2,3,4]. In these algorithms, the property inheritance between two objects is rep-

resented statically by a link. This paper introduces the idea of constraints to the
representation of more complex multiple inheritance problems. The idea of constraints
has been argued in logic programming languages $[5,6]$ to solve more complex logical
problems. Constraint logic programming languages are also knowledge representation

languages using constraints.

1

数理解析研究所講究録
第 709巻 1989年 15-32

16

From the point of view of constraints and their processing in parallel, the parallel

algorithm presented in this paper is more powerful than the previous ones. It is ex-
pected to be a new paradigm of knowledge representation or knowledge management
language.

In this research area, both representation power and processing efficiency are im-
portant. This paper explains firstly, the usual inheritance network model, secondly,
our model whose link contains added constraint information, and thirdly, an efficient
parallel algorithm to process it. The algorithm is written in Guarded Horn Clauses
(GHC) [7], a parallel logic programming language defined as the kernel language of the
Fifth Generation Computer System project in Japan.

2. Inheritance Network

This section lists some basic preparations for the following discussion. First, a usual
multiple inheritance network is defined. Suppose that there are a set of individuals
and a set of predicates.

Definition 2.1 $<x,$ $+y>$ and $<x,$ $-y>$ are inheritance links (or, more simply,
links), where x is an individual or a predicate and y is a predicate.

$<x,$ $+y>$ is called an is-a link, and describes that x is y . Similarly, $<x,$ $-y>$ is
called an is-not-a link, and describes x is not y .

Definition 2.2 When there is a link from x to $y,$ y is called a parent of x and x is
called a child of y .

Definition 2.3 An inheritance network consists of a set of individuals, a set of pred-
icates, and a set of links.

In this paper, we assume that an inheritance network includes at least one link
from any node to another node.

Graphically, an individual is denoted by a white node, a predicate is denoted by a
black node, an is-a link is denoted by an arrow and an is-not-a link is denoted by a
crosshatched arrow.

2

17

Definition 2.4 If there are links $<x_{i},$ $+x_{i+1}>$ or $<x_{i)}-x_{i+1}>$ for $1\leq i\leq n-1$,

then $[x_{1}, \ldots, x_{n}]$ is called a path. When there are links $<x_{i},$ $+x_{i+1}>for1\leq i\leq n-1$,
$1\leq n$, if there is a link $<x_{n},$ $+y>$ then the path $[x_{1}, x_{2}, \ldots, x_{n}, y]$ is called a positive

path, if there is a link $<x_{n},$ $-z>$ then the path $[x_{1}, x_{2}, \ldots, x_{n}, z]$ is called a negative

path. Any other path is a meaningless path.

Definition 2.5 An is-a link is a positive reasoning path, and an is-not-a link is a

negative reasoning path. When there is a positive reasoning path from x_{1} to x_{n} and

an is-a (is-not-a) link from x_{n} to y , if there is no possibility of a negative (positive)

path from x_{1} to y , then the positive (negative) path from x_{1} to y is called a positive

(negative) reasoning path. If both a positive path and a negative path are possible, then

we use the inferential distance ordering by Touretzky (see [1]) to choose the reasoning

path.

Touretzky’s ordering is essentially that if there is a path from x to z through y ,

then y is considered nearer to x than z is to x . If both a positive path and a negative
path are possible, then the path whose last link leaves the child node nearer to the

starting node of paths, is preferred, and is considered as a reasoning path.

Now we assume two restrictions on our model as follows.

(1) Every pair of nodes has at most one link.

(2) No path makes a loop.

These restrictions are reasonable, because to have the same kind of links between
a pair of nodes is redundant, and to have both kind of links between a pair of nodes
would lead to contradiction between the links. In inheritance hierarchies, a link means
(including’, so it is not necessary to consider any loops.

Here, a positive node set, a negative node set and a non-conclusion node set are
defined.

Definition 2.6 A positive node set of the node s is a set of nodes to which there is a

positive reasoning path from s . A negative node set of the node s is a set of nodes to
which there is a negative reasoning path from s . A non-conclusive node set of the node
s is a set of nodes that belong to neither the positive node set nor the negative node
set of the node s .

3

18

Drab thing

Gray-thing

Elephant

Royal elephant

Circus elephant

Clyde

Figure 1 Description of Clyde

Definition 2.7 A triplet (positive node set of s , negative node set of s , non-conclusive

node set of s) is a resolution for s .

In this paper, we consider the problem that given an inheritance network and a
question node s , we obtain the resolution for s .

Here is an example [1]. In Fig. 1, $P_{1}=$ [Clyde, Elephant, Gray-thing] is a positive
path, $P_{2}=$ [Clyde, Circus-elephant, Royal -elephant, Gray-thing] is a negative path,
and [Clyde, Circus-elephant, Royal-elephant, Gray-thing, Drab-thing] is a meaningless
path. The node Royal-elephant is nearer to Clyde than Elephant. So P_{2} is a reasoning
path, and P_{1} is not. The resolution for Clyde is ({ $Circus$-elephant, RoyaLelephant,
Elephant}, {Gray-thing}, {Drab-thing}).

The inferential distance ordering is not tatally order. So there are cases in which
there are many resolutions for a node in an inheritance network. Then there are $\{wo$

ways to present the resolutions. One is credulous reasoning which gathers all possible
resolutions. The other is skeptical reasoning in which, if after using the inferential
distance ordering both a positive reasoning path and a negative reasoning path to x

are possible, no path to a node x is considered as a reasoning path $[1,2]$.
We have already shown a parallel reasoning algorithm to find one of the resolutions

using credulous reasoning, and have also shown that its time complexity is $O(n)$, where

4

19

n is the length of the longest path in the inheritance network [4].

In the next section, we extend inheritance network by introducing constraints.

3. Inheritance Network with Constraints

This section discusses an inheritance network with constraints.
Suppose that conditions such as times and places are decided to be true, false or

unknown. A link with constraints is defined as follows.

Definition 3.1 Let c be a condition. A constraint is the form $(+, c)$ or $($ -, $c)$. $(+, c)$

is satisfied when c is true, while (-, c) is satisfied when c is false or unknown.

Definition 3.2 An is-a (is-not-a) link from p to q with a set, C_{f} of constraints is

represented by $<p,$ $+q,$ $C>(<p, -q, C>)$. When all constraints in C are satisfied, p

can be reasoned to be (not to be) q . When at least one of the constraints in C are not
satisfied, p cannot be reasoned to be (not to be) q using this link.

We represent predicates by nodes in inheritance networks. Conditions are predi-

cates, so we identify conditions by nodes that correspond to the conditions. In inher-

itance networks, we represent constraints by links from nodes that correspond to the

conditions to inheritance links with the constraints.

Definition 3.3 We call links, representing constraints, constraint links. $(+, c)$ is rep-

resented by a positive constraint $hnk—>from$ node c . (-, c) is represented by a

negative constraint $link+++>from$ node c .

Definition 3.4 Paths are physical paths. When a link from node a to node b has
a constraint from node c , if there are physical paths $P1=[x_{1}, \ldots, x_{n}(=c)]$ and $P2=$

$[y_{1}(=b), \ldots, y_{m}]$, we consider that there is a physical path from x_{1} to y_{m} through $P1$, the

constraint link and $P2$, and we represent the physical path by $[x_{1}, \ldots, x_{n}, (a), y_{1}, \ldots, y_{m}]$.

The length of the physical path is $m+n-1$.

When we want to discover the nodes from which a question node inherits properties,

we must give some information for constraints in addition to a question node.

5

20

Winter Summer

$\ovalbox{\tt\small REJECT}^{\backslash }AugustJapan\backslash \backslash \backslash \backslash \bullet$

is given, we call the node

$|$

Figure 2 Simple example

Definition 3.5 If the information “a node is true (false)” is given, we call the node a

designated node as true (false, respectively). Moreover, if a node is a question node or $|$

a designated node as true or false, then we call the node a starting node.

Fig. 2 shows a simple example. The link from the node August to the node Sum-

mer has a positive constraint from the node Northernhemisphere. When a question

node August and an information “northernhemisphere is true” are given, the positive

constraint is satisfied, and (August is Summer” is reasoned. There is a physical path

[Northernhemisphere, (August),Summer], and its length is 1.

To give all conditions that are true is inefficient and redundant. It is better to

reason whether some conditions are true or not.

Definition 3.6 If a node (predicate) belongs to the positive node set of a question

node or of a designated node as true, and if it is not a designated node as false, then

it is regarded as true.

Here, the previous example is extended (Fig. 3). Suppose that August is given as

the question node, and Japan as the designated node as true. Since the positive node

set of the node Japan is {Japan, Northernhemisphere}, Northernhemisphere is true.
Then the constraint of the link from August to Summer is satisfied, and the constraint

of the link from August to Winter is not satisfied. So only “August is Summer” is

reasoned.
Next, some functions that can be represented by using constraints are shown.

6

21

$ag:August$ $sm:Summer$ $w:Winter$
j : Japan nh : Northernhemisphere
as : Australia sh : Southernhemisphere

Figure 3 Extended example

(1) Priority

When there are $<a,$ $+c,$ $\{(-, b)\}>$ and $<a,$ $+b$, $\{\}$ $>$ (Fig.4-a), you can generally

reason that a thing belonging to a belongs. to b . But if you know that one thing
belonging to a does not belong to b , you can reason that it belongs to c .

(2) Exclusive

$<a,$ $+b,$ $\{(-, c)\}>and<a,$ $+c,$ $\{(-, b)\}>mean$ that a can be reasoned to be b or
c exclusively. This is shown in Fig. 4-b.

(3) Default (Etherington and Reiter [3])

Etherington and Reiter’s example [3] is written by the following links with con-
straints (Fig. 4-c).

$<n,$ $+s,$ $\{\}>$, $<n,$ $+c,$ $\{\}>$, $<c,$ $+m,$ $\{\}>$,

$<c,$ $-s,$ $\{(-, n)\}>$, $<m,$ $+s,$ $\{(-, c)\}>$

4. $Parall\dot{e}l$ Algorithm

This section shows a parallel algorithm to find one of the resolutions by credulous

reasoning. Before showing it, we impose the following restriction on the inheritance

networks.

7

22

(a) Priority (b) Exclusive

s : Shell-bearer
m : Mollusk
c : Cephalopod
n : Nautilus

(c) Default

Figure 4 Functions

8

23

No physical path makes a cycle.

The example in Fig. 4-b has a cycle of paths $[b, (a), c, (a), b]$. Our parallel algorithm

treats only acyclic inheritance networks. The algorithm can be easily improved to treat

some inheritance networks with cycles.

The algorithm puts one of three kinds of markers on each node in the inheritance

network. This resolves the resolution. Next we define markers.

Definition 4.1 Markers we use in the algorithm are $tm,$ fm and mm. Nodes with tm

(fm, mm) belong to the positive (negative, non-conclusive, respectively) node set.

Given a question node and a set of designated nodes as true or false, first we put

appropriate markers on them and propagate markers to other nodes through links. At

that time, the algorithm also propagates the logical path lengths and priorities together
markers.

Definition 4.2 The logical path length of a starting node is 0 . The logical path length

of another node is the maximum length of paths through which tm or fm is propagated
from a starting node to the node.

The priority is given with a marker, and propagated with the marker. When
markers propagated from different starting nodes to a node conflict with each other,

the preferred marker is decided by using their priorities.

We use natural numbers greater than 0 to represent priorities. The lower the
number, the higher the priority.

The algorithm actually puts a triplet (mark, $p,$
l) on each node, where mark is a

marker, p is a priority, and l is a logical path length.
Next, the marker propagation rule is defined as follows.
Suppose that node x has a triplet (tm,p, l) , and there is an is-a (is-not-a) link from x

to node y . If all constraints of the link are satisfied, the triplet $(tm,p, l+1)((fm,p,$ $l+$

1), respectively) is propagated from x to y . Otherwise the triplet (mm, $\infty,$ ∞) is
propagated from x to y . See Fig. 5.

In this way, these triplets are propagated in parallel to every parent of the node
whose triplet is known. Note that if a triplet has an mm, then both the logical path

length and the priority are ∞ .

9

24

Figure 5 Propagation rule

$prio^{Next_{i},weshowthe_{i}a1gorithmitse1f.Thein_{i}putisalistoftrip1ets(nod,mark_{y_{i}^{i}}}rity),wherenodeisastartingnode,markisamarkerputonnode_{i},and^{e_{i}}priorit|$

Step 1. Put the triplet $(mark_{i},priority_{i}, 0)$ on every $node_{i}$ in the input list.

Step 2. For every node that has a triplet $(m,p)l)$, and that has a link to node b

which does not have a triplet, in parallel, the following are executed.

$ithepy.\cdot..Thequestionno,d_{10}isdistinguishedfromdesignate.dnodesb_{-}y_{||^{1^{1}}}t^{S}heirpr^{rioritofmark,\ovalbox{\tt\small REJECT}_{\gamma}^{1}}iorities:the.ma^{i}r..ke.ront.h.equestion^{e}nodegenera11yhas.the.highestpriority,1\ovalbox{\tt\small REJECT}^{1}$

(1) If the link is zs-a, all constraints of the link are satisfied, and $m1Stm$,

then send the triplet $(tm,p, l+1)$ to b .

(2) If the link is is-not-a, all constraints of the link are satisfied, and $m1S$

tm , then send the triplet $(fm,p, l+1)$ to b .

(3) If some constraints of the link are unsatisfied, or if m is not tm, then

send the triplet (mm, $\infty,$ ∞) to b .

Step 3. For every node that receives triplets (m_{i},p_{i}, l_{i}) from all child nodes, In

parallel, the triplet (M, P, L) is put, where $M,$ P , and L are defined as

follows.

$P=p’$, where $p1S$ a minimum value of p_{i} .

$L=l’$, where $l’$ is a maximum value of l_{i} whose priority $1sp’$.

$M=m’$, where the triplet $(m’,p^{u}, l’’)$ exists, and lu is a minimum value of
$l_{i}’$ whose priority is $p’$. m Is a marker propagated through the path of

the minimum logical path length.

25

$ag:August$ $sm:Summer$ $w:Winter$
j : Japan nh: Northernhemisphere
as : Australia sh : Southernhemisphere

Figure 6 Example of a parallel algorithm

Step 4. If there are nodes on which triplets are put newly in Step 3, then go to
Step 2. If not, put a triplet (mm, $\infty,$ ∞) on each node that has no triplet,
then terminate.

Note that there are cases in which M can be both tm and fm. In these cases,

whichever marker is selected, the solution by our algorithm is one of the resolutions by

credulous reasoning. At the beginning of processing, the user can decide which marker,
tm or fm, is selected in those cases, according to the property of the given problem.

The extended example explained in section 3 is shown in Fig. 6 again. We want to
find an answer to the following question.

Is it summer in August in Japan?

In this example, August is a question node and Japan is a designated node as true.
Initially, the node August has a triplet, $(tm, 1,0)$, and Japan has a triplet, $(tm, 2,0)$.
Using the parallel algorithm, we can find the answer node, Summer, with $(tm, 1,-)$

attached.

11

26

d

. ...
ab . . ac..

\bullet

a

Figure 7 Preference of Path

number of nodes, the following theorems are obvious.

Theorem 1 Our parallel algorithm obtains one of the resolutions by credulous rea-

sonlng.

$d^{n_{oa^{our}}}s^{n_{k^{Because}t}}\cdot iinheritance_{i}networkis_{g}restricted_{u^{a}}toiap^{1n_{12}}$

being

$d^{acyclic_{S}and}thast$

a

$finite\Vert$

By using the example (see Fig. 7), we show the main idea of the proof. Suppose

that there are a positive path ab from a node a to a node b , a positive path ac from a

to a node c , a positive path bc from b to c , an is-a link from b to d , and an is-not-a link

from c to d . In credulous reasoning, the positive path abd from a to d through the is-a

link from b to d is preferred to the negative path acd from a to d through the is-not-a
link from c to d . Let the logical path length of a path P be denoted by $lpl(P)$. Then

$lpl(abd)=lpl(ab)+1$,

$lpl(acd)= \max\{lpl(ac), lpl(ab)+lpl(bc)\}+1$.
Hence,

$lpl(acd)\geq lpl(abd)$.

So, in our algorithm, the marker propagated through the path abd is put on the node

27

Theorem 2 The time complexity of our parallel algorithm is $O(n)$, where n is the

maximum length of the physical paths in the inheritance network.

It is obvious, because Step 2 through Step 4 are executed n times.

5. Programs in Parallel Logic Programming Language GHC

This section shows programs in parallel logic programming language Guarded Horn

Clauses (GHC) [7] according to the parallel algorithm given in the previous section.

The structure of Fig. 3 is written as shown in Fig. 8 (b) in GHC. For comparison,

a program with neither constraints nor priorities is shown in Fig. 8 (a). It cannot find

a correct solution in this case. gen and node are processes defined in GHC. Ms , which

is the input ,of the gen process, is a list of the triplets $(node_{i}, mark_{i}, priority_{i})$ N ,

which is the output of the gen process is a list of pairs of the marker and priority of

each node.

The first argument of the node process is the name of the node in Fig. 3. The

second argument is an input list of the gen process. The third argument is the marker

given at the node. The fourth argument is the priority given at the node. The fifth

argument is a list of pairs of markers and constraints at the node. The sixth argument
is a common variable defined in GHC; it is used for the communication with the parent

nodes connected by is-a links. The seventh argument is also a common variable; it is

used for communication with the parent nodes connected by is-not-a links.

Each process node receives a triplet (marker, priority, logical path length) from the

process node connected with the common variable, calculates its own triplet, and then

sends them through the common variable in the sixth and the seventh arguments.
The appendix gives the whole program in GHC.

6. Conclusion

This paper introduced the idea of inheritance network with constraints and a

method of representation. This method of representation is expected to become a

useful knowledge representation language, because, in many cases, the relations be-

tween objects represent constraints.

13

28

gen(Ms,N) :-true $|$

node (ag,Ms , Na, [] , TMa,
-

) ,
node(sm Ms , Nb, [TMa] , - ,

-
).

node (w , Ms , Nc, [TMa]) ,
node (j , Ms , Nd, [] , TMd, FMd) ,
node (nh, Ms , Ne, [TMd, FMf] , - ,

-
) ,

node (as, Ms , Nf, [] , TMf, FMf) ,
node (sh Ms , Ng, [TMf, FMd],

-
),

$N=$ [Na , Nb, Nc, Nd, Ne, Nf , Ng].

(a) Program for Fig. 3 without constraints

gen(Ms,N) :-true $|$

node (ag,Ms, Na, Pa, [] , TMa,
-

).
node (sm, Ms ,Nb, Pb, [($TMa,$ $[(+$, Ne)])] ,- , -).

node (w , Ms, Nc, Pc, [($TMa,$ $[(+$, Ng)])] , - ,
-

) 2

node (j , Ms , Nd, Pd, [] , TMd, FMd),

node (nh Ms , Ne Pe, [(TMd , []), (FMf, [])] , - ,
-

) ,
node (as Ms , Nf , Pf, [] , TMf, FMf) ,
node (sh, Ms , Ng, Pg, [(TMf , []) , (FMd, [])] , - , -) ,
$N=$ [(Na , Pa) , (Nb, Pb) , (Nc, Pc) , (Nd, Pd) , (Ne, Pe) , (Nf , Pf) , (Ng, Pg)].

(b) Program for Fig. 3

Figure 8 Sample program in GHC

14

29

A parallel algorithm for inheritance networks with constraints is also shown. This

algorithm seems to be an expansion of Touretzky’s algorithm for static multiple inher-

itance without constraints.

This algorithm terminates in $O(n)$-time, where n is the maximum length of the

physical paths in the inheritance network, because our inheritance networks have no

cycle.
This paper discussed the model and approaches to parallel processing, co-operative

problem solving and logic programming with constraints. The feasibility and flexibility

of the parallel algorithm must be verified by applying it to larger real applications.

References

[1] Touretzky, D. S., The Mathematics of Inheritance Systems, Morgan Kaufmann
Publishers, Los Altos, CA, 1986.

[2] Horty, J. F., Thomason, R. H. and Touretzky, D. S., A Skeptical Theory of In-

heritance in Nonmonotonic Semantic Networks, Proceedings of AAAI-87, 1987,
pp.358-363.

[3] Etherington, D. W. and Reiter, R., On Inheritance Hierarchies With Exceptions,

Proceedings of AAAI-83, 1983, pp.104-108.

[4] Menju, S., Morita, Y. and Itoh, H., A Parallel Algorithm for Inheritance Hierarchies

with Exceptions, Proceedings of $3\theta th$ IPSJ Conference 6P-8, 1988, pp.1491-1492 (in

Japanese).

[5] Colmerauer, A., Opening the Prolog III Universe: A New Generation of Prolog
Promises Some Powerful Capabilities, B YTE, August 1987, pp.177-182.

[6] Jaffar, J. and Lassez, J-L., Constraint Logic Programming, In 4th IEEE Symposium
on Logic Programming, 1987.

[7] Ueda, K., Guarded Horn Clauses, Proceedings of Logic Programming ’85, Lecture

Notes in Computer Science 221, Springer-Verlag, Berlin, Heidelberg, 1986, pp.168-

179.

15

30

APPENDICES

A. GHC Program

The GHC program of our algorithm is represented below. The initial goal of the

program is go(Ms), where Ms is a stream variable of lists of triplets, (NodeName,

Marker, Priority). In this program, the priority of the mm is 0 for convenience.

/. gen(Ms,N) represents the structure of a network.
/. Ms is the input, a list of triplets, (NodeName, Marker, Priority).
/. N is the output, a list of pairs, (Marker, Priority), of each node.

gen(Ms, N) :– true $|$

node (ag, Ms, Na, Pa, [] , TMa, -),
node (sm, Ms, Nb, Pb, [($TMa,$ $[(+$, Ne)])] , - , -),
node(w . Ms, Nc, Pc, [($TMa,$ $[(+$, Ng)])] , - ,

-
),

node (j . Ms, Nd, Pd, [] , TMd, FMd),
node (nh, Ms, Ne, Pe, [(TMd , []), (FMf, [])].

-
,
-

).
node (as, Ms, Nf, Pf, [] , TMf, FMf),
node (sh, Ms, Ng, Pg, [(TMf . []), (FMd, [])],

-
,
-

),
$N=$ [(Na , Pa), (Nb, Pb), (Nc, Pc), (Nd, Pd), (Ne, Pe), (Nf, Pf), (Ng, Pg)].

/. go(Ms) is the initial goal of the program.
/. Ms is the input, a stream of lists of triplets, (NodeName, Marker, Priority).

go (Ms) :-true $|$ gol (Ms, Os) , outstream(Os).

gol ($[M1|Ms]$, Os) :-true $|$ gen (Ml, N) $Os=$ [nl , write (M1), nl,write (N), $n1|$ Os 1],

gol (Ms, $0s1$).

gol ($[]$, Os) :-true $|$ $Os=$ [$write$ (‘ terminat ed. ’),nl].

/. node(Name,Ms, N,P,Xs,TM,FM) computes a marker, N , and a priority, P , of a
/. node corresponding to Name, and markers propagated from the node, using
/. input Ms, which is a list of triplets, (NodeName, Marker, Priority), and
$|/$ Xs, which is a list of links to the node. TM (FM) is a marker to be
/. propagated through is-a links ($is-not-a$ links, respectively) from the node.

node (Name, $[(N1,$ $-,-)|$ Cs], N,P , Xs, TM, FM) $:-Nl\backslash =Name|$ node (Name, Cs, N,P , Xs, TM, FM).

node (Name, [], $N,$ P , Xs, TM, FM) : - true $|$

search (mm, 0,1,1, Xs, $N,P,MaxC$) prop (N , TMI, FMI) , $C;=MaxC+1$ $TM=(TM1,P,C)$,
$FM=(FM1,P,C)$.

node (Name, $[(Name,M,$ $P)|_{-}]N$, Pl, Xs, TM, FM) :-true $|$ search (M,P , $0,0$, Xs, N , Pl.-),
prop (N , TMI, FM1) , $TM=$ ($TM1$, Pl, 1) , $FM=$ ($FM1$, Pl, 1).

/. prop(M,TM,FM) chooses the types of markers that a node with marker M

/. propagates.

prop(tm,TM,FM) $;-true$ $|TM=tm$, $FM=fm$.

16

31

prop $(M ,TM.FM)$ $:-M\backslash =tm|TM=mm$ $FM=mm$.

/. search(TM,TP,TMax,TMin, Xs,N,P.C) computes a marker, N , a priority, P ,
’/. and a logical path length, C. TM, TP, TMax and TMin are a temporary
/. marker, a temporary priority, a temporary maximum logical path length, and

/. a temporary minimum logical path length, respectively. Xs is a list of

/. ((marker, priority, logical path length), constraint).

search (TM, TP, TMax, TMin, $[((mm,$ $-,$ $-),$ $-)|Xs]$, $N,P,$ C) :–true $|$

search (TM, TP , TMax, TMin, Xs, N , $P,$ C).

search $(mm,- - - , [((Ml,Pl, Cl),Cons)[Ks],N,P,C);-Ml\backslash =mm$ { con(Cons,CM),

check(CM,mm, Ml, NM, $O,$ $C1,NC,$ $-,$ $-,$ $-,$ $O,$ $P1,$ NP) , search(NM, NP, NC, NC, Xs, $N,P,$ C).

search (TM, TP, TMax, TMin, $[((-$, Pi,-), Cons) $|Xs]N,$ $P,$ C) :– $TM\backslash =mm,$ $TP<P1$ $|$

search (TM, TP, TMax, TMin, Xs, N , $P,$ C).

search (TM, TP, TMax, TMin, [(($M1$, Pl, Cl) , Cons) $|Xs]N,$ $P,$ C) :– $Ml\backslash =mm,$ $P1<TP$ $|$

con (Cons, CM) , check (CM, TM, Ml, NM, TMin, Cl, NMin, TMax, Cl, NMax, TP, Pl , NP),

search (NM, NP, NMax, NMin, Xs, $N,P,$ C).

search (TM, TP , TMax, TMin, [(($M1$, Pl, Cl), Cons) Xs], N. $P,$ C) $:-TM\backslash =mm,$ $P1=TP$, TMin$=<C1$ $|$

\max (TMax, Cl, NMax) search (TM, TP, NMax, TMin, Xs, $N,$ $P,$ C).

search (TM, TP, TMax, TMin, [(($M1$, Pi, Cl), Cons) Xs], $N,$ $P,$ C) :– $Ml\backslash =mm,$ $P1=TP$, TMin$>C1$ $|$

con (Cons , CM) , check (CM, TM, Ml, NM, TMin, Cl, NMin,-,-,-,-,-,-),

search (NM, TP, TMax, NMin, Xs, $N,P,$ C).

search (TM, TP, TMax,-, [], $N,$ $P,$ C) :–true $|$ $C=TMax$ $N=TM$ $P=TP$.

$\max(X_{t}Y, Z)$: - $X>=Y$ $|$ $Z=X$.
$\max(X, Y, Z)$: - $X<Y$ $|$ $Z=Y$.

$|/$ con(Cons, CM) checks whether the constraint, Cons, is satisfied.

con ($[]$, CM) :-true $|CM=tm$.
con ($[(+,$ $N)$ Xs], CM) $:-N=tm$ $|$ con (Xs, CM).

con ([(-, N) $|Xs]$, CM) $:-N\backslash =tm|$ con (Xs, CM).

con ($[(+,N)|Xs]$, CM) $:-N\backslash =tm|CN=fm$.
con ([(-, N) [Xsl, CM) $:-N=tm$ $|CM=fm$.

/. check(CM, . . .) chooses a temporary marker, a temporary minimum logical path
/. length, a temporary maximum logical path length and a temporary priority.

check $(tm,- N2.M3,- MinC2,MinC3,- MaxC2,MaxC3, - P2,P3)$:-true $|$

$M3=M2$, $MinC3=MinC2$ $NaxC3=MaxC2$. $P3=P2$.
check(fm,Mi,- $M3,MinCl,$ $-$

$MinC3,MaxCl,-$ $MaxC3,Pl,-$ $P3$) :-true $|$

$M3=M1$ $NinC3=MinCl$ $MaxC3=MaxCl$ $P3=P1$.

B. Example

Suppose that we want to know, first, whether August is in the summer or in the

winter in Japan, and second, whether August is in the summer or in the winter in

17

32

Australia. For the first question, we set a marker, tm , with priority 1 on node ag ,

corresponding to August, a marker, tm, with priority 2 on node j , corresponding to

Japan. For the second question, we set a marker, tm , with priority 1 on node ag , a

marker, tm , with priority 2 on node as , corresponding to Australia. Then our program
runs as follows. Note that the two questions are also processed in parallel.

$|$?-ghc go ($[[$ (ag , tm, 1), $(j$, tm, 2)], $[(ag$, tm, 1) , (as, tm, 2)]]).

[(ag , tm, 1) , $(j$, tm, 2)]

[$(tm,$ $1)$, (tm, 1), (mm,O), (tm,2) , (tm,2), (mm, $0)$, (fm,2)]

[(ag , tm, 1) , (as, $tm,2)$]

[$(tm,$ $1)$, (mm, $0)$, (tm, 1) , (mm, $0)$, (fm,2), (tm, 2), (tm, 2)]

terminated.

In the first solution list, the second pair is $(tm,1)$ and the second node, sm , means
summer, so August is in the summer in Japan. Similarly, in the second solution list,

the third pair is $(tm,1)$ and the third node, w , means winter, so August is in the winter
in Australia.

18

