
48

Negation Technique for Context-Free Grammars

Yoshiyuki YAMASHITA, Doctoral Program in Engineering,
(kougaku-kenkyuu-ka)

and
Ikuo NAKATA, Institute ofInformation Sciences and Electronics,

(densi-jyouhou-kougaku-kei)

University ofTsukuba,
(tsukuba-daigaku)

Tsukuba-shi, Ibaraki-ken 305.

1 Introduction
Negation in logic programs has been studied by many reseachers well [Cla] [L1] [Na] $[SaTa]$

[Sch]. The authors are studying a new programming paradigm called grammatical programming
$[YaNa1]$, which is based on context-free grammars and has the close with logic programming
$[YaNa2]$. Therefore the study for negation in context-free grammars may contribute to the
grammatical programming. This is our motivation to write this paper. Of course, the well known
theory of CFGs $[AhU1]$ [Sal] has no concept of negation. Therefore we have to extend the theory of

CFGs.
There are four hints about this topics from the view point of the symbolic logic and logic

programming $[ChLe]$ [L1].

Firstly, the naive idea of negation is that it expresses the complementary set of a given set

when we discuss on sets of some kind of objects. For example, we suppose that the predicate
even(n) is true if n is a member of the set of even numbers. Then $\sim even(n)$ is true if n is a member
of the complementary set of even numbers, where \sim is the negative symbol. If the universe of
discourse is only limited to the set of natural numbers, the complementary set means the set of all

the odd numbers. This naive discussion gives us the first idea of an extension of CFGs. The
following is the context-free production rules which express even numbers,

$Evenarrow 0$,

$Evenarrow s(s(Even))$,

where Even is a nonterninal symbol, 0 is a constant, and s is the successor function. We can say
that Even means the set of even numbers. Then it is natural to say that $\sim Even$ means the

$–$ 1

数理解析研究所講究録
第 709巻 1989年 48-67

49
complementary set of even numbers because we regard the negative symbol \sim as a kind of
complementary operator. If the universe is the set of natural numbers, it is the set of odd numbers.
Therefore the production rule

$Oddarrow$-Even,

can be interpreted that Odd means odd numbers. This interpretation is simple. However, we can
think of another use of the negative symbol as follows,

$Whatarrow 0$,

$Whatarrow s$(-What).

which can not be understood with the above naive interpretation of negation. We need the complete
formulation of negation.

Secondly, one of the formal systems which can treat negation is the symbolic logic. In this
system so called De Morgan’s law holds, namely

$\sim(pvq)=\sim p\wedge\sim q$,

for any propositions p and $q,$ $where\wedge is$ the conjunctive symbol $and\vee is$ the disjunctive symbol.
This law suggests that the formal system which can treat negation and disjunction in the sense of the
symbolic logic should also treat conjunction. We can easily introduce a disjunctive symbol $1’$

‘ into
CFGs in the sense of Backus normal form, and interpret $Xarrow\alpha$ I β as the pair of $Xarrow\alpha$ and $Xarrow\beta$.
If we introduce the negative symbol, we should also have a conjunctive symbol “&, and the
following rule

$Parrow\sim(\alpha 1\beta)$

should have the same meaning as that of

P\rightarrow -cx&-\beta .

Furthermore, the negative, conjunctive and the disjunctive operations in our extended CFGs should
have the same features as those in the symbolic logic.

Thirdly, it has been known that every definite clause program can be automatically
transformed into the equivalent Coupled Context-Free Grammar (CCFG) and vice versa
$[YaNa1][YaNa2]$. By this transformation rule, a set of definite clause program, for example

even(0),

even $(s(s(X)))$:-even(X),

can be transformed into the equivalent CFG, that is, in this case into

$Evenarrow 0$,

$–$ 2 $–$

50
$Evenarrow s(s(Even))$.

This relation between definite clauses and production rules leads us to the declarative interpretation
of production rules. Because the implication $p:$ -q is equivalent to the disjunction $p\vee\sim q$ in the
symbolic logic, the production rule $Parrow Q$ should be interpreted as P I-Q if we are going to establish
our extended CFGs as an analogy of the symbolic logic.

And fourthly, there is the program transformation technique, caUed the negation
technique $[SaTa]$ [Sat], which automatically transforms the definite clause program L which
defnes a predicate symbol p into the negated program Not-L which defines the predicate not-p.
Here an atomic fornula $p(a)$ can not be proven in L if $not_{-}p(a)$ can be proven in Not L. For
example, the following program

even(0),

even$(s(s(X)))$:-even(X),

is transformed into
$not_{-}even(s(O))$,

$not_{-}even(s(s(X)))$:-not even(X).

Because every definite clause program can be automatically transforned into CFGs, we expect that
there is the similar technique, which transforms a CFG: G into the negated grammars Not-G (see

below).

L \Rightarrow negation technique \Rightarrow Not-L
\Uparrow \Uparrow

\Downarrow \Downarrow

G \Rightarrow negation $technique?\Rightarrow$ Not-G

L is a definite clause program, and Not-L is its ncgation. G is a CFG equivalent to L , and Not-G is equivalent to

Not-.L. Can we define such a negation technique for CFGs 7

The Relations between Several Transformations

If we can define the negation technique for CFGs, the above three suggestions:
(1) The negative operation in our grammar system is the complementary operation,
(2) Our system has the negative, conjunctive and disjunctive operations as the symbolic

logic has.
(3) A production rule in our system is interpreted in the same way as an implication in

the symbolic logic,
should play important roles in the negation technique without any contradictions. The negation
technique for logic programs gives us more suggestions about the features of negation in CFGs.

In this paper we try to reply to the above suggestions by defining the formal system, called

$–$ 3 $–$

51
term logic, which covers the whole theory of CFGs with negations. The term logic is a formal
system for terms composed of constants, functors (function symbols), nonterninal symbols, two

special $symbols\perp andT$, the conjunctive symbol&, the disjunctive symbol 1 and the negative
symbol \sim . Every term has its interpretations and models similar to Herbrand interpretations and
Herbrand models in the first-order logic, respectively. The concepts of equivalence, satisfiability,
unsatisfiability and logical consequence are defined in the same way as in the frst-order logic.
Context-ffee production rules are interpreted as a special form of terms according to the above
suggestion (3), and a CFG is defined as a set of such terms, called a general Context-Free
Grammar (general CFG). In the same way as in a general logic program with negations [L1], the
semantics of a general CFG are defined by using its completed definition. For example, the
following general logic program

what(0),

what$(s(X))$:–what(X).

is completed as
what(X)eX $=0\vee\exists Y(X=s(Y)\wedge\sim what(Y))$,

and the general CFG
$Whatarrow 0$,

$Whatarrow s$(-What).

is completed as
$Whatrightarrow 0$ I $s(\sim What)$.

For the completed definition, we define two kinds of semantics. One is the declarative one, the set

of logical consequences from the model semantics for the term logic, and the other is the operational
one like the derivation procedure in the usual sense.

Based on the term logic, the negation technique for general CFGs is also defined in the same
way as for logic programs. By using this technique, for example, we can automatically transform
the CFG which defines even numbers into the negated one which defines odd numbers.

The authors are studying CCFGs as general purpose programs $[YaNa3]$. We call such a
programming methodology grammatical programming or CCFG programming. From this point of
view, the introduction of the negation into CFGs becomes the basis of introducing negations into
CCFG programming. This will consequently increases the expressive power of CCFGs. However
it is difficult to treat negations correctly as we have already learnt in the case of logic programs. For
example, the built-in predicate not in Edinburgh Prolog [ClMe] can not deliver the positive binding
information a goal not(\ldots) produces into the other goals. By applying the negation technique, such
not’s can be eliminated from a logic program. The transforned program can produce positive
bindings. The similar effects are also expected in CCFG programming, though we do not discuss
about it here any more. We study its theoretical basis here. The introduction of negation into CCFG
programming will be our advanced work.

In section two, we show an example of negation techniques for CFGs. There the CFG which
defines even numbers is transformed into the CFG which defines odd numbers. We see that each

$–$ 4 $–$

52
step of transformation is based on the above suggestions. The discussion in this section leads us to

the definition in section three.
In section three, we define the syntax and semantics of the $teml$ logic, especially the model

semantics smilar to that in the first-order logic.
In section four, we define the syntax and semantics of CFGs. As we have already shown

above without notice, the CFGs defined here treat terms, whereas they treat strings in usual. The
reason is because strings are more difficult to treat than terns theoretically.

In section four, the negation technique informally introduced in section two is precisely
defined. Two kind of transformation rules which preserve the semantics of grammars are given.
One is to eliminate negative symbols, and the other is to purge redundant $infomlation$ from the
grammars. The negation technique is defined over the rules. Complementarity and duality are also
defined in the same way as in logic programs.

2 An example of negation technique
In this section we show a simple example of the negation technique informally as an analogy

of the negation technique for logic programs [Sata 1] $[Sat]$. From the negation technique for logic
programs, we can automatically transform the following logic program which defines even number

even(0).

even(s(s(X))):-even(X).

into the logic program which defines odd numbers as follows (see [Sat] for the details of this
transformation).

odd$(s(0))$.
odd$(s(s(X)))$:-odd(X).

In the same way as this technique we can show the transformation technique by which the CFG
defining even numbers is transfomaed into the CFG defining odd numbers.

The following is the CFG which defines even numbers,

$Evenarrow 0$,

$Evenarrow s(s(Even))$.

where Even is a nonteIminal symbol, 0 a constant, and $s(\ldots)$ a successor function symbol. First of
all these two production rules are completed as follows in the same sense as in logic programs

$Evenrightarrow 01s(s(Even))$.

Here the symbol $rightarrow$ expresses the equality between the left-hand side and the right-hand side, and
the symbol $1|^{\prime 1}$ means the disjunction as in the BNF notation. The precise meanings of these

$–$ 5 $–$

53
symbols are described in the following sections. Therefore the above rule can be read as “Even is
equivalent to 0 or $s(s(Even))$ intuitively. The above rule is negated as follows

$\sim Evenrightarrow\sim(01s(s(Even)))$.

As the analogy of the logic, it is natural to assume that $\sim(0|s(s(Even)))$ is equivalent to \sim 0&

$\sim s(s(Even))$ by using the conjunctive symbol&. Thus we transform the above rule into the
following one,

-Even\leftrightarrow \tilde O&\tilde s(s(Even)).

Since we treat only integers which are expressed as terms by using a constant 0 and a functor s , the
term-O means one of $s(O),$ $s(s(O)),$ $s(s(s(O))),$ \ldots Therefore if we define T as the special symbol
which denotes an arbitrary term composed of 0 and s , the term ~ 0 in the above rule can be replaced
by $s(T)$ as follows,

-Even\leftrightarrow s(T)&-s(s(Even)).

In the same way, $\sim s(s(Even))$ in the above rule can be replaced by the disjunction $01s(O)1$

$s(s(\sim Even))$ because $-s(s(Even))$ is equivalent to $0|s(-s(Even))$ and further $s(\sim s(Even))$ is
equivalent to $s(O)$ I $s(s(\sim Even))$.

-Even\leftrightarrow s(T)&(O 1 $s(O)|s(s$(-Even))).

Here we assume that the distributive law holds for&and . Then

$\sim Evenrightarrow s(T)\ 0$ s(T)&s(O) $|$ s(T)&s(s(-Even)).

There is no number which satisfies s(T)&O, because $s(T)$ means more than zero. Therefore if we
introduce the special $symbol\perp which$ does not express any integer, s(T)&O can be replaced $by\perp$.
In the same sense, s(T)&s(0) is equivalent to $s(O)$, and $s(T)\ s(s(\sim Even))$ is equivalent to
s (s (-Even)). Hence the above rule is transformed into the following one,

$\sim Evenrightarrow\perp Is(O)\mathfrak{l}s(s(\sim Even))$.

From the meaning $of\perp$, the above rule can be further transformed into the following one,

$-Evenrightarrow s(O)1s$(s (-Even)).

Now we replace every $\sim Even$ by the new nonterninal symbol Notven.

$Not_{-}Evenrightarrow s(O)\mathfrak{l}s(s(No\iota_{-}Even))$.

Transforming the above completed rule into two context-free production rules as follows,

$–$ 6 $–$

54

$Not_{-}Evenarrow s(O)$,

$No\llcorner Evenarrow s(s(Not_{-}Even))$,

we fmd that these rules define odd numbers. Namely we can derive the CFG which defines odd
numbers from the CFG which defines even numbers.

The above transformation is rather informal. Therefore our next work is to formalize this
negation technique under a certain formai system.

3 Term logic
In order to formally explain the negation technique, a formal system for CFGs is defined

here. Because the formal system treats terms and it should have the same features as those of the
frst-order logic, we call it as the term logic for convenience. In this section, we define the syntax

and semantics of the tern logic.

Definition Given a finite set F of functors (function symbols) and a finite set N of
nonterminal symbols, terms are defined as follows.

(1) A nonterminal symbol $X(\in N)$ is a term.
(2) A O-ary functor $c(\in F)$ is a term, called a constant.
(3) If $t_{1},$

$\ldots,$
t_{n} are terms and$f(\in F)$ is an n-ary functor, then $f(t_{l}, \ldots, t_{n})$ is a term.

Every $t_{i}(i=l, \ldots, n)$ is a subterm of$f(t_{1}, \ldots, t_{l}j)$.
(4) A $symbol\perp is$ a term, called the bottom.
(5) AsymbolT isaterm, called the top.
(6) If s and t are terms, then s&t is a term, where&is called the conjunctive

symbol. The terms s and t are subterms of s&t.
(7) If s and t are terms, then $s|t$ is a term, where 1 is called the disjunctive symbol.

The termss andt are subterms ofslt.
(8) If t is a term, then $\sim t$ is a term, where \sim is called the negative symbol. The term t

is a subterm $of\sim t$.

Here we assume that the arity of every functor is fixed as its own. A term which has no
nonterminal symbol is called a ground term. A nonterminal symbol which is directly negated by
\sim , just like $\sim X$, is said to be a negative one, and a non-negative nonterminal symbol is a positive
one. $\bullet’$

Note that we implicitly assume the existence of the sets N and F in the following discussions, and
does not take any attention if no confusions occur.

In usual sense, for example in term-rewriting systems, terms are composed of variables and
functors whereas they are composed of nonterminal symbols and functors here. In our term logic,

$–$ 7 $–$

55
variables are needles s .

For convenience, we assume the operator precedence of symbols as follows,

$\sim>$ & $>$.

If necessaIy the parentheses $()$, $\{\}$, ... are used to eliminate the ambiguities of term expressions.
Now we define the interpretation for terms.

Definition The universe, denoted by $U(F)$, is the set of all the ground terns which
contains neither $T,$ $\perp,$ &, $|$ nor \sim . We assume that $U(F)$ is not empty. \bullet

The set $U(F)$ is the same as the Herbrand universe in the first-order logic $[ChLe]$ [L1].

Definition An interpretation i of each nonterminal symbol $X(\in N\gamma$ is an assignment $i(X)$

of a subset of $U(F)$ to X. Under this inteIpretation, the value of a term t, denoted by $[t]_{j}$ or simply
$[t]$, is the subset defined as follows,

(1) $[X]_{i}=i(X)$ if $X(\in N)$ is a nonterminal symbol.
(2) $[c]_{j}=\{c\}$ if $c(\in F)$ is a constant.

(3) $[f(t_{l}, \ldots, t_{l}iJ]_{i}=$ {$f(b_{l},$
$\ldots,$

$b_{n})|b_{j}\in[t_{j}]_{i}$ for $j=l,$ $\ldots,$
n }.

(4) $[T]_{j}=U(F)$.
(5) $[\perp]_{j}=\emptyset$.
(6) $[s\ t]_{j}=[s]_{i}\cap[t\rfloor_{i}$.
(7) $[s|t]_{i}=[s]_{i}\cup[t]_{i}$.
(8) $[\sim t]_{j}=U(F)-[t]_{j}$.

If the values of the terms s and t are the same under any interpretation, it is said that s and t are
equivalent, denoted by $s=t$. l

This interpretation is similar to the Herbrand interpretation in the first-order logic $[ChLe]$ [L1].

It is clear that the above equivalence relation satisfies the reflexive law, the symmetric law
and transitive law. From the above definition we can derive some equivalence relations as follows,

that is, for arbitrary terms $s,$ $t,$ $u,$ \ldots

(1) s&t=t&s
(2) $sIt=tIs$

(3) (s&t)&u=s&(t&u)

(4) $(s\mathfrak{l}t)|u=s|(t|u)$

(5) s&(tlu)=s&tls&u
(6) (tlu)&s=t&slu&s

(7) $s|$ (t&u)=(slt)&(slu)

(8) (t&u) $|s=(t|s)\ (u|s)$

$–$ 8 $–$

56
(9) $t\ T=t$

(10) $t\ t=t$

(11) $t\ \perp=\perp$

(12) t1T $=T$

(13) $t|t=t$

(14) $t1\perp=t$

(15) $-t=t$
(16) $\sim T=\perp$

(17) $\sim\perp=T$

(18) $t\ \sim t=\perp$

(19) $tl-t=T$

(20) -(s&t) $=-s|\sim t$

(21) $-(s|t)=\sim s\ \sim t$

The equivalences (1) and (2) are the commutative laws, (3) and (4) are the associative laws, (5)...

(8) are the distributive laws, (15) is the discharge of double negation, and (20) and (21) are the

similar to DeMorgan’s laws in the symbolic logic. And for arbitrary distinct functors f and g ,

(22) f(\ldots , s&r, $...$) $=f$(\ldots , s, ...)&f$($..., $t,$ $\ldots)$

(23) $f(\ldots, s|t, \ldots)=f(\ldots, s, \ldots)|f(\ldots, r, \ldots)$

(24) f$($... $)$ &g $($... $)=\perp$

(25) $f(\ldots, \perp, \ldots)=\perp$

(26) $\sim f(t_{l}, \ldots, t_{n})=$ { $g(T,$
$\ldots,$

$T)$ I $g\in F-U]$ } $|f(\sim t_{l}, T, \ldots, T)|\ldots|f(T, \ldots, T, \sim t_{n})$

The equivalences (22) and (23) are the distributive laws. The equivalence (26) is important to bring

negative symbols to inner positions of a term. And further we easily see the following proposition.

Proposition Let $t[u]$ be the term t which has the subterm u , and $t[v]$ be the term in which the

subtermu in t[u]is replaced by the term v. Here ifu $=v,$ $thent[u]=t[v]$. 6

Example By using above relations , we can prove that

$\sim s(s(Even))=0\mathfrak{l}s(\sim s(Even))$ by rule (26)

$=0|s$ ($0|s$(-Even)) by rule (26)

$=0|s(0)$ I s (s (-Even)) by rule (23)

and that
s(T)&(OI $s(O)$ I $s(s(\sim Even))$)

=s(T)&O 1 s(T)&s(O) 1 s(T)&s(s(-Even)) by rule (5)

$=\perp|$ s(T)&s(O) 1 $s(T)\ s(s(\sim Even))$ by rule (24)

$=\perp|$ s(T&O) 1 $s(T\ s(\sim Even))$ by rule (22)

$=\perp|s(0)1s(s(\sim Even))$ by rule (9)

$=s(0)\mathfrak{l}s(s(\sim Even))$ by rule (14)

$–$ 9 $–$

57

We have shown these equivalences informally in the previous section. \bullet

Proposition For every ground term which contains negative symbols, there is an equivalent
ground tern which has no negative symbols. 8

Proposition For every term which contains negative symbols, there is an equivalent term in
which negative symbols appear only in negative nonterminal symbols. l

These proposition can be easily proved by using the rule(26).

Using the above equivalence relations, we can transform every term into the equivalent one
of the simpler form. Because the above equivalence relations are similar to those in the symbolic
logic, we can consider terms of special forms in the same way as in the symbolic logic.

Definition The term t is said to be in a conjunctive normal form if and only if t has the
form t_{1} $\ \ldots\ t_{n}(n\geq l)$, where each $t_{j}(l\leq j\leq n)$ is a disjunction of one or more terns. The term t is
said to be in a disjunctive normal form if and only if t has the form t_{l} } $\ldots|t_{n}$, where each t_{j} is
a conjunction of one or more terms. 8

Proposition Every term can be transformed into the equivalent term of the conjunctive
normal form and of the disjunctive normal form. 1

The transformation algorithms are the same as the well-known algorithms in the symbolic logic
$[ChLe]$. First we move negative symbols from outer positions to inner positions by the rule (26)

and De Morgan’s laws (20) and (21), then we arrange the positions of conjunctive and disjunctive
symbols by the distribute laws (5) $\sim(8)$.

Now we define the model semantics of the term logic.

Definition If the value of a term t is equal to $U(F)$ under the interpretation $M,$ M is said to be
a model of t. If M is a model of every elements in a set P of terms, M is said to be a model of P .
Atermt(Ora SetP Of termS)iS Said tO be SatiSfiable if and only ift(Or P)has at least one model.
Otherwise, it is said to be unsatisfiable or to contain contradiction. Ct

Example Let X and Y be nonterminal symbols in N. The term X has only one model M

$suchas[X]_{M}=U(F)foranyF$. $ThetermX1\sim Yhasmanymode1sMsuchas[X]_{M}\supseteq[Y]_{M}$. \bullet

Another semantics, the operational one, is the proof procedure. The term logic has the
proof procedure, especially the refutation procedure. That is, for every unsatisfiable set P of terms it
can be automatically proved that P is unsatisfiable. This is based on the resolution principle of our
term logic similar to that of the frst-order logic. Briefly speaking, by applying this principle to the
pair of terns $s|t$ and $\sim s|u$ in P , the term $t|u$ is derived. This is the similar to Robinson‘s
resolution principle $[ChLe]$. If the value of a derived term is not equal to $U(F)$ under any

– 10 –

58
interpretation, we say that the contradiction has been found. Namely P is unsatisfiable. We can
prove the completeness of our resolution principle in the term logic. However we omit the precise
discussion because of the space limitation (we will show it in the separate paper). In the next section
, a special form of our resolution principle is presented as the derivation procedure of CFGs.

4 General context-free grammars
I_{J1} thi s section, CFGs are regarded as a finite set of a special subclass of terms in the term

logic. We defme the syntax and semantics of CFGs from the view point of the term logic.
From the study of the relationship between logic programs and CCFGs $[YaNa2]$, we have

already known that the definite clause $\forall X.p(X):- q(X)$ can be transformed into the production rule
$Parrow Q$ preserving the meaning. In the symbolic logic, the implication $\forall X.p(X):- q(X)$ is equivalent
to $\forall X.p(X)\vee-q(X)$. These two facts lead us to the following definition.

Definition For arbitrary terms s and t, the term of the form

$sI-t$

is abbreviated as
$sarrow t$,

and called a production rule, especially a context-free production rule if s is a nonterminal
symbol. $-$

,

We assume that the operator precedence $ofarrow is$ weaker than&, 1 and \sim .

Proposition It holds that $[s]_{M}\supseteq[t]_{M}$ if and only if M is a model of $sarrow t$. \bullet

If there is the production rule $sarrow t$ in G , it holds that

{ x I $s\Rightarrow^{*}G^{\gamma\}\supseteq\{X}|t\Rightarrow^{*}G^{\chi\}}$.

This inclusion relation is similar to $[s]_{M}\supseteq[t]_{M}$.

Definition A general Context-Free Grammar (general CFG): G is defined by the
quadruple (N, F, S, P) , where N is a finite set of nonterminal symbols, F a finite set of functors, S

a start symbol $(\in N)$ and P a finite set of context-free production rules. 6

If the right-hand side of every production rule in P has neither any negative symbol, conjunctive
symbol nor disjunctive symbol, the grammar is in (term-based). CFGs in usual sense. If the

right-hand side has no negative symbol but has several conjunctive and disjunctive symbols, the
grammar is in a subclass of CCFG s [?], and we can define the least model and the leastfixpoint of

11 –

59
the general CFG in the similar way to those of a definite clause program. Since our main interest in

this paper is the property of negation, we do not discuss such topics here any more.

Example The followings are general CFGs .

$G_{1}=$ ({Even}, $[0,$ $s\}$, Even, P_{G1}),

$P_{G1}=\{Evenarrow 0$,

$Evenarrow s$(-Even) }.

$G_{2}=$ ($\{Mu16$, Mu12, Mu13}, $\{0,$ $s\}$, Mu16, P_{G2}),

$P_{G2}=$ {Mu16\rightarrow Mu12&Mu13,

$Mu12arrow 0$,

$Mul2arrow s(s(Mul2))$,

$Mu13arrow 0$,

$Mul3arrow s(s(s(Mul3)))$ }.

The precise meanings of the above grammars are given below. Roughly speaking, G_{1} defines even

numbers and G_{2} defines multiple numbers of six. .
Definition For arbitrary terms s and t, the term of the form

(s\rightarrow t)&(t\rightarrow s)

is abbreviated as
$srightarrow t$,

and call an equation, especially a context-free equation if the left-hand side s is a nonterminal

symbol.
$\bullet’$

Note that the equation $srightarrow t$ is not the same as the equivalence relation $s=t$. The former is a term

whereas the latter expresses a relation.

Definition Let P be a set of production rules. For all the production rules in P which have

the same left-hand nonterminal symbol X as follows,

$Xarrow\alpha_{l},$ $Xarrow\alpha_{2},$
$\ldots,$

$Xarrow\alpha_{n}$, $(n\geq l)$

the following is said to be the completed definition of them,

$Xrightarrow\alpha_{l^{1}}\alpha_{2}$... $|\alpha_{n}$.

For a general CFG: $G=(N, F, S, P)$, let comp(P) be a collection of completed definitions of

P for all nonterminal symbols. If a nonterminal symbol $X(\in N)$ does not appear in the left-hand

– 12 –

60
side of any completed definitions, add $Xrightarrow\perp tocomp(P)$. The quadruple $(N, F, S, comp(P))$ is
called the completion of G , denoted by comp(G). If an interpretation is a model for comp(P) , it is
also said to be a model for comp(G). 8

Now we define the declarative and operational semantics of general CFGs. First we discuss
the declarative one, and then the operational one. In the end of this section we discuss the

identicalness of these two kinds of semantics.

Definition For the set P of terms and the term t over N and $F,$ t is said to be a logical
consequence of P if and only if M is a model for P implies that M is a model for t. l

Lemma If the set P is unsatisfiable, every term t is a logical consequence ofP. 1

Thuis is clear ffom the definition.

Proposition Let P be the set of terms, t be a term, and a be a ground term in $U(F)$. The
production rule $tarrow a$ is a logical consequence of P if and only if $P\cup\{-tarrow a\}$ is unsatisfiable.

Proof If $tarrow a$ is alogical consequence of P, it holds that $a\in[t]_{M}$ for every model M for P .
Hence

$a\not\in U(F)-[t]_{M}=[\sim t]_{M}$,

and then
$a\not\in[-t]_{M}\cup(U(F)-\{a\})=[\sim t1\sim a]_{M}=[\sim tarrow a]_{M}\neq U(F)$,

for every model M for P . Therefor $P\cup t\sim tarrow a$ } is unsatisfiable.
If $P\cup\{-tarrow a\}$ is unsatisfable, it holds that P is unsatisfiable or that $[\sim tarrow a]_{M}\neq U(F)$ for

every model M for P . In the former case, $-tarrow a$ is a logical consequence of P from the lemma. In
the latter case,it holds that

$[\sim t]_{A}\mu(U(F)-\{a\})\neq U(F)$.
Therefore it holds that

$a\not\in[\sim t]_{M}$,

and then
$a\in[t]_{M}$.

for every model M for P . This means that every model M for P is a model for $tarrow a$. \bullet

Definition The declarative semantics of general CFG: $G=(N, F, S, P)$ is defined as a
subset of $U(F)$ such as $Sarrow a$ is alogical consequence of comp(G) for every a in the subset. $\bullet’$

Example(continued) The completion of G_{1} is as follows.

comp$(G_{1})=$ ($\{Even\},$ $\{0,$ $s\}$, Even, comp(P_{G1})),

comp$(P_{G1})=$ { EveneO 1 $s(\sim Even)$ }.

$–$ 13 $–$

61

The completed definition comp (G_{ι}) has a unique $mode1M_{l}$ such as $IEven]_{Ml}is$ the set of all the
even numbers. Hence the term $Evenarrow s^{2n}(0)(n\geq 0)$ is a logical consequence and the set

comp$(P_{G1})u\{\sim Evenarrow s^{2n}(0)\}$ is unsatisfiable. We say that G_{1} defines even numbers.
The completion of G_{2} is as follows,

comp$(G_{2})=$ ($\{Mu16$, Mu12, Mu13}, $\{0,$ $s\}$, Mu16, comp(P_{G2})),

comp$(P_{G2})=$ { Mu16\leftrightarrow Mu12&Mu13,

$Mu12rightarrow 0\}s(s(Mul2))$,
$Mu13rightarrow 0$ I $s(s(s(Mul3)))$ }.

This also has a unique model M_{2} such as $[Mu12]_{M2}$ is the set of all the even numbers, $[Mu13]_{M2}$ is
the set of all the multiple numbers of three, and $[Mu16]_{M2}$ is the set of all the multiple numbers of
six. This grammar define the multiple numbers of six by using the even numbers and the multiple
numbers of three. Of course, $Mu16arrow s^{6n}(0)$ is alogical consequence and
comp$(P_{G2})u\{\sim Mu16arrow s^{6n}(0)\}$ is unsatisfiable. \bullet

Example The following grammar has only a tautology.

comp$(G_{3})=(\{X\}, F, X, \{Xrightarrow X \})$.

Because the set $\{Xrightarrow X, -Xarrow a\}$ is satisfiable for every ground term a in $U(F)$ under the
interpretation such as $a\in[\sim X]$, the semantics of G3 is defined by the empty set \emptyset . \bullet

Example The following is an interesting grammar whose rule is unsatisfiable.

comp$(G_{4})=(\{X\}, F, X, \{Xrightarrow\sim X \})$.

From the lemma, the term $Xarrow a$ is a logical consequence of $Xrightarrow\sim X$ for every a in $U(F)$. 1

The above proposition suggests the existence of the refutation procedure in the term logic just
like the resolution principles in the symbolic logic. Now we define a subclass of such a procedure
as an operational semantics of general CFG. We see that it is an extension of the derivation
procedure of CFGs.

Defmition For general CFG: comp(G) $=(N, F, S, comp(P))$, the sentential forms are
defined as follows,

(1) The start symbol S is a sentential form.
(2) If α is a sentential form and the derivation relation $\alpha\Rightarrow_{comp(G)}\alpha’$ holds, then $\alpha’$ is a

sentential form.
Here the derivation relation is defined as follows. If the sentential forn is a ground term, it is called
a sentence. The following sequence of sentential forms

$–$ 14 $–$

62

$s\Rightarrow\alpha\Rightarrow\alpha\Rightarrow\Rightarrow\alpha_{n}\infty mp(c)1\infty mp(c)2c\circ mp(c)\cdots comp(c)$ $(n\geq 1)$

is called a derivation sequence. \bullet

Definition For general CFG: comp(G) $=(N, F, S, comp(P))$, let $\alpha(X)$ be the term which has

a nonterminal symbol X as a subterm. If comp(P) has a context-free equation $Xrightarrow\beta$, we can
substitute β for X in $\alpha(X)$ and obtain $\alpha(\beta$. We express the relation between $\alpha(X)$ and $\alpha(\beta)$ as

$\alpha(X)\Leftrightarrow_{\omega mp(G)}\alpha(\beta)$.

, Next if the disjunctive normal form of $\alpha(\beta)$ is α_{1} ... $\mathfrak{l}\alpha_{n}(n\geq l)$, we say that $\alpha(X)$ derives α_{j}

$(n\geq J\geq l)$ and express this derivation relation as

$\alpha(X)\Rightarrow_{comp(G)}\alpha_{j}$.

The reflective and transitive closure of $\Leftrightarrow_{comp(G)}and\Rightarrow_{comp(G)}$ is expressed $as\Leftrightarrow_{comp(G)^{*}}$ and
$\Rightarrow_{\infty mp(G)^{*}}$, respectively. If no confusions occur, we $write\Leftrightarrow_{comp(G)}and\Rightarrow_{comp(G)}as\Leftrightarrow and\Rightarrow.\iota$

Definition The union of the values of all the sentences derived by general CFG: comp(G) is
called a General Context-Free Language (GCFL), denoted by $L(comp(G))$. The
operational semantics of G is defined by $L(comp(G))$.

Example(continued) We consider the derivation procedure for G_{1} . First of all, we see that

$Even\Leftrightarrow 01s(\sim Even)$

for the start symbol Even. Hence

$Even\Rightarrow 0$,

and
$Even\Rightarrow s$ \langle -Even).

The constant 0 is a sentence and s(-Even) is a sentential forn of G_{1} . Next it holds that for
$s(\sim Even)$,

$s(\sim Even)\Leftrightarrow s(s(Even)$,

because
s($\sim(0$ I $s(\sim Even))$) $=s$($\sim 0\ \sim s($-Even))

=s(s(T)&(O I $s(Even))$)

$=s(s(Even))$.
And further for $s(s(Even))$,

$–$ 15 $–$

63
$s(s(Even))\Rightarrow s(s(O))$,

and that
$s(s(Even))\Rightarrow s$ ($s(s$(-Even)))

because
$s(s(Even)\Leftrightarrow s$ ($s(O$ I $s(\sim Even))$) $=s(s(0))\mathfrak{l}s$ ($s(s($-Even))).

In this way, the language $L(comp(G_{1}))$ is the set of all the even numbers. \bullet

In the end we describe about the identicalness of the declarative and operational semantics of
general CFG.

Theorem For every consistent general CFG: $G=(N, F, S, P)$, let a be a ground term in
$U(F)$. Here it holds that $Sarrow a$ is a logical consequence of comp(P) if $L(comp(G))$ contains a

(soundness), and that $L(comp(G))$ contains a if $Sarrow a$ is a logical consequence of comp(P)

(completeness). \bullet

The proof of soundness is clear because $Sarrow t$ is a logical consequence if $S\Rightarrow^{*}t$ for any t. The proof
of completeness is omitted because this is difficult without describing the completeness of the
refutation procedure in the term logic, which has been discussed in the end of the previous section.

5 Negation technique
Through the discussions in the previous sections the basis has been established to formalize

the negation technique described in section two.

First we introduce two kinds of transformations of general CFGs. One is to eliminate
negative symbols from a general CFG, and the other is to purge the completed definitions which
can be never applied to any sentential forms from a general CFG. The negation technique is the
composition of these two transformations with replacing a start symbol S by the negative start

symbol $\sim S$. In the following discussions, without the loss of generality we assume that all the
negation symbols appear only in negative nonterminal symbols in a term.

Transformation rule For a general CFG: comp(G) $=(N, F, S, comp(P))$, if an equation in
comp(P) contains a negative nonterminal symbol $\sim X$ and comp(P) contains the equation $Xrightarrow\alpha$, add
$\sim Xrightarrow\alpha’$ to comp(P) and replace every $\sim X$ in comp(P) by the new nonterminal $symbo1Not_{-}X$,

where $\sim\alpha$ is equivalent to $\alpha’$ in which all the negative symbols appear only in negative nonterminal
symbols. The obtained set of equations is denoted by comp $(P)/\sim X$. The quadruple $(N\cup\{Not_{-}X\}$,

$F,$ $S,$ $comp(P)/\sim X)$ is the transformed general CFG, denoted by comp$(G)/\sim X$. If comp(G) has
several negative nonterminal symbols $\sim X,$ $\sim Y,$

$\ldots,$

$\sim Z$, obtain comp$(G)/\sim X/\sim Y/../\sim Z$ until there
appears no negative nonterminal symbol in the transformed grammar. $\bullet’$

Proposition For the above grammar, it holds that

$–$ 16 $–$

64

$L(comp(G))=L(comp(G)/\sim X)$.

Proof There is the following derivation sequence

$S\Rightarrow_{\infty mp(G)}\alpha_{1}\Rightarrow_{\omega mp(G)}\alpha_{2^{\Rightarrow}comp(G)}\ldots\Rightarrow_{comp\langle G)}\alpha_{n}$, $(n\geq 1)$

in which no $\sim X$ appears if and only if there is the same derivation sequence as follows

$s\Rightarrow\alpha\Rightarrow\alpha\infty mp(G)/\sim Xl\omega mp(G)/\sim X2^{\Rightarrow}comp(G)/\sim X\cdots\Rightarrow_{comp(G)/-X}\alpha_{n}$,

in which no $Not_{-}X$ appears. The sentential form α_{n} can derive $\alpha_{n+1}(\sim X, \sim X, \ldots, -X)$ which
contains at least one $\sim X$ by comp(G) if and only if α_{n} can derive $\alpha_{n+l}(Not_{-}X,$ $Not_{-}X,$ \ldots ,

$Not_{-}X)$. which contains at least one $Not_{-}X$ by comp$(G)/-X$ because comp(P) contains the equation
$Yrightarrow\beta(\sim X, \sim X, \ldots, \sim X)$ if and only if comp$(P)/\sim X$ contains $Yrightarrow\beta(Not_{-}X, Not_{-}X, \ldots, Not_{-}X)$ for
a certain nonterminal symbol Y. The sentential form $\alpha_{n+1}(\sim X, -X, \ldots, \sim X)$ can derive $\alpha_{n+2}(-X$,

$\gamma(-X, \ldots, \sim X),$
$\ldots,$

$\sim X$) by $Xrightarrow\gamma in$ comp(G), $where-\gamma is$ equivalent to $\gamma(\sim X, \ldots, \sim X)$, if and
only if $\alpha_{n+1}(Not_{-}X, Not_{-}X, \ldots, Not_{-}X)$ can derive $\alpha_{n+2}(Not_{-}X,$ $\gamma(Not_{-}X, \ldots, Not_{-}X),$

\ldots ,

$Not_{-}X)$ by $Not_{-}Xrightarrow\gamma(Not_{-}X, \ldots, Not_{-}X)$ in comp$(G)/\sim X$.
In this way, the sentential form $\alpha_{k}(\sim X, \ldots, \sim X)(k\geq 1)$ can be derived by comp(G) if and

only if the sentential form $\alpha_{k}(Not_{-}X, \ldots, Not_{-}X)$ can be derived by comp$(G)/\sim X$. Here if $\alpha_{k}(\sim X$,

$...,$
$\sim X)$ has no $\sim X$, it is a sentence s whose value is unique under any interpretation, and

$\alpha_{k}(Not_{-}X, Not_{-}X, \ldots, Not_{-}X)$ is also the same sentence s if so. Therefore $L(comp(G))$ is equal to

$L(comp(G)/\sim X)$. I

By applying this transformation to a general CFG, the equivalent general CFG which contains no
negative symbols can be obtained.

Example(continued) For general CFG: comp(G_{1}) has the negative nontemlinal symbol
-Even in the equation EveneO 1 s(-Even). Then

comp$(P_{1})/-Even=\{Evenrightarrow 0$ [s(Not-Even),

$Not_{-}Evenrightarrow s(Even)$ },

because
\tilde (01s(\tilde Even))=-0&-s(\tilde Even)=s(T)&(Ols(Even)) $=s(Even)$. 1

Transformation rule For a general CFG: comp(G) $=(N, F, S, comp(P))$, if a nonterminal
symbol X can never be derived from the start symbol S, purge the equation $Xrightarrow\alpha$ from comp(P) ,

and purge X from N. The purged grammar $(N-\{X\}, F, S, comp(P)-\{Xrightarrow\alpha\})$ is denoted by
comp$(G)/X$. If comp(G) has such $nontemlinal$ symbols $X,$ $Y,$

$\ldots,$
Z , obtain comp$(G)/X1Y/..JZ$. \bullet

Proposition For the above grammar, it holds that

$–$ 17 $–$

65

$L(comp(G))=L(comp(G)/X)$. \bullet

The proof is trivial.
Now we define negation technique.

Transformation rule Suppose that a general CFG: comp(G) $=(N, F, S, comp(P))$ has the
equation $Srightarrow\alpha$. Transform the general CFG: $(N\cup\{Not_{-}S\}, F, Not_{-}S, comp(P)u\{\sim Srightarrow\alpha’\})/\sim S$

by applying the above two transformation rules, where $\sim\alpha$ is equivalent to $\alpha’$ in which aU the
negative symbol appears only in negative nontenminal symbols. The obtained general CFG is
denoted by comp(Not-G). \bullet

Defnition For a general CFG: comp(G) and comp(H), if it holds that

$U(F)-L(comp(G))\supseteq L(comp(H))$,

comp(H) is said to be dual to comp(G). If it further holds that

$U(F)-L(comp(G))=L(comp(H))$,

comp(H) is said to be complementary to comp(G) [Sat]. .
Proposition For the above transformation, comp(Not G) is dual to comp(G).

Proof It is sufficient to prove that

$U(F)-L(comp(G))\supseteq L$($(N\cup\{Not_{-}S\},$ $F,$ $Not_{-}S$, comp $(P)\cup\{\sim Srightarrow\alpha’\})/\sim S$),

because
$L((N\cup\{Not_{-}S\}, F, Not_{-}S, comp(P)u\{\sim Srightarrow\alpha’\})/\sim S)=L(comp(Not_{-}G))$.

In the same way as the proof of,.., it holds that $Not_{-}S\Rightarrow^{*}t$ by applying the equations in
(comp$(P)u\{\sim Srightarrow\alpha’\}$)$/\sim S$ if and only $if-S\Rightarrow^{*}t$ by applying the equations in comp(P) for any
ground term t . Because $\sim S\Rightarrow^{*}t$ implies $that-Sarrow a$ is a logical consequence of comp(P) for any
$a\in[t],$ $Sarrow a$ is not a logical consequence of comp(P) for any $a\in[t]$ if $Not_{-}S\Rightarrow^{*}t$. Namely
$a\not\in L(comp(G))$ for any $a\in[t]$ if $Not_{-}S\Rightarrow^{*}t$, and then $a\in U(F)-L(comp(G))$ for any $a\in[t]$ if
$Not_{-}S\Rightarrow^{*}t$. Therefore the proposition holds. a

In general, comp(Not-G) is not a complementary grammar as we can show the following
counter-exmaple.

Example(continued) The following general CFG: comp(G_{3}) has only one equation. This is
negated as $\sim Xrightarrow\sim X$. Therefore comp $(Not_{-}G_{3})$ is as follows,

$–$ 18 $–$

66
$C\circ \mathfrak{m}P(Not_{-}G_{3})=$ ($\{Not_{-}X\},$ F , Not-X, $\{Not_{-}Xrightarrow Not_{-}X$ }).

It holds that
$L(comp(G_{3}))=\emptyset$,

and that
$L(comp(Not_{-}G_{3}))=\emptyset$.

Therefore we see that

$U(F)-L(comp(G_{3}))=U(F)-\emptyset\neq\emptyset=L(comp(Not_{-}G_{3}))$,

for any non-empty $U(F)$. \bullet

6 Discussions
In this paper, we have discussed about the questions what is the concept of negation and how

can we establish the negation technique for context-free grammars. We have replied to these
questions by establishing the formal system for term, called the term logic,and by giving a new
interpretation of context-free production rules as a special $foml$ of terms. We see that the semantics
of the term logic has the similar mathematical structure to that of the first-order logic, though their
syntaxes are quite different to each other.

There are many advanced subjects of the term logic, general CFGs and the negation
technique for general CFGs which we do not discuss here. Some of them, which we have already
done or we will try soon, are as follows:

(1) to define the resolution principle in the term logic, and to prove its completeness.
(2) to prove the completeness of the derivation procedure for general CFGs.
(3) to improve the negation technique for general CFGs in order to obtain

complementary grammars.
(4) to introduce negation into CCFGs, and to reforn it from the view point of practical

programming methodology.

references
$[AhU1]$ Aho, A. V. and Ullman, J. D. : The theory ofParsing, Translation, and Compiling,

$Vol1$: Parsing, Prentice-Hall (1972).

$[ChLe]$ Chan, C. and Lee, R. C. : Symbollc logic and Mechanical Theorem Proving,
Academic Press (1973).

[Cla] Clark, K. L. : Negation as Failure, Logic and Database, Plenum Press (1978).

[ClMe] Clocksin, W. F. and Mellish, C. S. : Programming in Prolog, Springer-Verlag
(1981).

[L1] Lloyd, J. W. : Foundations ofLogic Programming, Springer-Verlag (1984).

[Na] Naish, L. : Negation and Control in PROLOG, Ph.D. dissertation, University of

$–$ 19 $–$

67
Melbourne (1985).

[Sal] Salomaa, A : Formal Languages, Academic Press (1973).

[Sat] Sato, T. : Program Traniformation (Eds. Furukawa, K. and Mizoguchi, H.),

Chapter 6, Kyooritsu(1987) (in Japanese).

$[SaTa]$ Sato, T. and Tamaki, H. : Transformational Logic Program Synthesis, Proc. Int.

Conf. Fifth Generation Computer Systems (1984), pp. 195-201.
[Sch] Schultz, J. W. : The Use of First-Order Predicate Calculas as a Logic Programming

System, M.Sc. dissertation, University of Melbourne (1984).

$[YaNa1]$ Yamashita, Y. and Nakata, I. : Programming in Coupled Context-Free Grammars,

Technical Report ISE-TR-88-70, university of Tsukuba (1988).

$[YaNa2]$ Yamashita, Y. and Nakata, I. : On the Relation between CCFG Programs and Logic
Programs, Technical Report ISE-TR-88-71, university of Tsukuba (1988).

$[YaNa3]$ Yamashita, Y. and Nakata, I. : Programming in Gramp: a Programming Language

$–$ 20 $–$

