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Abstract

A method of incremental attribute evaluation and parsing is described. It
is based on a class of one-pass attribute grammarscalled ECLR-attributed
grammars which works with LR parsing. The method unifies incremental
attribute evaluation. and incremental parsing in a single algorithm. It is
expected to be space efficient with respect to inherited attributes.
Multiple substitutions in the original input are also allowed.

1. Introduction

The importance of interactive environments which support software
developments has been highly recognized. As a typical example, let us
think of an environment where a language-based editor, interpreter,
debugger and code generator are unified around a single intermediate
representation, as follows.

source ---- language- ---- intermediate ---- interpreter
based representation ---- debugger
editor ---- code generator

If we regard such a system as a language processor, the front-end,
which backs up the editor, deals with the conversion from the source
program into the intermediate representation, i.e. lexical, syntactic and
(static) semantic analysis. According to the interactive nature of
modification of the source program by the editor, it will be nice if the
analysis is made in an incremental way.

Several systems exist so far which make incremental syntax and
semantic analysis. As for incremental syntax analysis or incremental
parsing, some systems allow only modification of the parse tree itself
[Notkin 85]. But, recent experience with language-based editors shows
that a hybrid approach which also accepts text mode editing in addition to
structure mode editing is indispensable. In this sense, incremental



69

parsing [Ghezzi 80, Jalili 82, Agrawal 83, Yeh 88] is effective.

As for semantic analysis, the use of attribute grammar [Knuth 68] is
becoming popular due to its good balance between formality and easiness
of automatic generation of attribute evaluators. Therefore, henceforth we
adopt attribute grammars as the base and use an attributed parse tree as
the intermediate representation. As for incremental attribute evaluators,
previous works were mostly based on elaborate approaches which are
separate from parsing [Yeh 83b] or rather expensive [Reps 83]. However,
the experience in the HLP84 system [Koskimies 88] and in our Rie system
[Ishizuka 85] [Sassa 85a] showed that the use of one-pass attnbute
grammars is efficient and practical enough.

Considering the above facts, we present in this report a unified method
which performs both parsing and attribute evaluation in an incremental
way in one pass. It is based on a class of one-pass attribute grammars
called ECLR-attributed grammars [Sassa 87]. It works with LR parsing.

Our basic hypothesis is that we maintain the attributed parse tree
(hereafter APT). This will be justified in a programming system which
unifies an interactive interpreter, debugger etc. in addition to a
language-based editor.

One of the main advantages of our method is that the storage for APT
is space efficient due to the concept of LR-attributed grammars and
equivalence classes in ECLR-attributed grammars. In particular inherited
attributes must be stored only in a part of the nodes of the APT, not in
every node, and inherited attributes having the same value can share a
memory space. Typical storage reduction of 1/3 - 1/10 is expected for
inherited attributes.  Synthesized attributes are stored in each node as
usual.

Our incremental parsing method is a combination of the methods of
Ghezzi and Mandrioli [Ghezzi 80] and of Yeh and Kastens [Yeh 88], both for
LR grammars. The former method uses a parse tree, but it is for LR(0)
grammars without e-productions (productions where the right-hand side is
empty) and deals only with a single modification in the original input. The
latter method is for LR(1) grammars with e-productions and allows
multiple modifications. But it uses a specnal data structure for space
efficiency and keeps LR states in it.

Our incremental parsing method is for LR(1) grammars with
e—productions and allows multiple modifications. We use the general
(attributed) parse tree as the internal structure. We need not store LR
states in the APT in contrast with the methods of [Jalili 82, Agrawal 83
Yeh 88] etc. (although some uses different data structures). Elimination
of LR states will be convenient in editors" allowing also structure mode
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editing, like "cut and paste" of subtrees.
In the following; we explain incremental parsing in section 2, and
incremental evaluatlon in section 3.

2. Incremental parsing

We assume that readers are familiar with basic concepts of grammars
and LR parsing. Unless otherwise stated, the definitions and notations of
[Aho 86] are used in this report. : '

Let G = (N, T, P, S) be an augmented LR(k) (henceforth, simply LR)
grammar whose first production is of the form "S- 8 $""

Suppose that w = Xxpyqs Xy Yo Xo ..¥m Xy i in L(G), and that w has
: ,been parsed by an LR. parser, yielding the parse tree shown in Fig. 1(a).
Suppose also that w'= xp y1' X1 Yo' X5 ..¥y' Xy is in L(G) and w' is
- obtained from w by substituting y'; for y; (i=1,...,m). (Note that x, or x,,
may be e, but not x; (i=1,...,m-1). y; or y';, but not both, may be e. The last
terminal of x., is $.) | '

After modification, only a part of the parse tree remains "valid". By
"valid”, we mean that the grammar symbol labeling a node of the part and
the production applied at the node are the same as in the original parse
tree. In fact, only the shaded area in Fig. 1(b) is valid after modification.
The zig-zag of a border in Fig. 1(b) means that there may be some
productions for which some sons are in the shaded part but others are not,
like the production "A — X Y Z". The border in zig-zag can not be known in
advance.

Let us divide X into three parts, i.e. Xjp=t ujv; (i=0, ...,m). The -
invalidity of the part above v; 4 (i=1 ,...m) is due to the fact that
lookahead symbols which involve the first part of y';may affect the move
of the LR parser in v; ;. For LR(k) parsers, it is clear that letting the
length of v;_; lvi¢| =k-1is enough for safety. (At the boundary, v
e.) (Letting |v; ;| be not k but k-1 comes from the fact that when the
parser made a shift operation for the last symbol of v; ; the k lookahead
symbols were still in x; ;. So the valid part of the parse tree also
includes the leaf node corresponding to the last symbol of v; ;. cf.

section 2.2.) |
The invalidity of the part above t;is due to the possibility that the
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parsing configuration of the LR parser at the end of the part of y’; might

not be generally the same as when it parsed the original input. Again, the
length of t; or the border above the end of t;can not be known in advance.

(tg = €. tj may be &.)
In Fig. 1(c)(d), a couple of other possibilities are illustrated. The
shaded parts may be disconnected from each other (Fig.(c)) or several

modifications may cause invalid parts to fuse into one (Fig.(d)).
To be more precise for later explanations, let TAILj (z ) be the last j

terminal symbols of z inw orw'. If |z |<j, this denotes the sequence of
terminal symbols starting from j-th position before the end of z inw or
w' (or the first terminal of w or w' if it exceeds the beginning) up to the
end of z. Then, v; means TAIL,_4(x;).

2.1 Outline of the incremental parser ,

The outline of reconstruction of the parse tree is generally as follows
(Fig. 2). '

First, initialize i to 1.

Then, the incremental parser recovers its parsing configuration of the
moment just before reading v, 4 (Fig. 2(c)(d)).

Next, it parses the part v; s y/' t,- and newly makes a fragment of the

parse tree corresponding to that part (Fig. 2(c)). We call it a new parse
subtree . (It is not really a subtree because of the zig-zag in the border,
but we call it as such for simplicity of terminology). Here, we generally
preserve the original parse tree, preferably as much as possible. Since it
is not generally possible to know the end of t;beforehand, the incremental

parser checks the matching condition after entering the analysis of part
x;. When this condition holds, that is, when the parsing configuration
‘becomes the same as when it parsed the original input, the incremental
parser for this part stops. (Sometimes the matching condition may not

hold in the part x;, and analysis may proceed to the following part, like
¥'i,1 etc. (Fig. 1(d)). But let us assume for the moment that the matching

condition holds in the part x;, before v; . The precise treatment will be

given in section 2.4). ,
Then, the new parse subtree corresponding to " ... v; yy’;it;"is

connected to the appropriate node of the original parse tree. This
connection of the subtree after succeeding in reparsing is safer than
modifying the original parse tree itself, in the case when syntax (and
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semantics) errors occur in the modified part of input, since the original
parse tree will still be retained.
If there are multiple modifications, skip parsing u; and increment i by

1. ,
Now, we arrive at the same situation as we started the incremental
parsing for y;". Repeat the above steps until we reach x,.

Now, we present the incremental parser using the following grammar
as a running example.

Gi: (0) EoE
(1) E—E+T

(2) E=T
(3) TS T*F
(4) T-F
(5) F-=(E)
(6) F i

The LR states are given in Fig. 3(a) [Aho 86]. Here, we give only the
canonical collection of LR(0) items, or the core part of LR items, for
simplicity, but it does not affect the generality of discussion. The
parsing table is given in Fig. 4 [Aho 86].

Suppose that the original input w is

W=Xg¥1XqYoXo =i*i+iti+i

where x'o= i*,yy=¢,xy=i+i,yo=¢,%xo="1i+i The corresponding
parse tree is shown in Fig. 5(a). Subscripts like iq, T4 are used only to

discriminate occurrences in the following explanations. (Henceforth we"
often use subscripts and superscripts for discrimination/explanation.
Their meaning will be clear.)
If we replace the part y;=¢,yo,=¢ byy’y=(,y 5 =) , the modified
input w' becomes
W'=X0y’b1 X1by,2X2 =i*(i+i)*i+i
The new parse tree is shown in Fig. 6(a). Only the shaded part of the

original parse tree in Fig. 5(a) turns out to be valid after modification. In
this example modification, the two invalid parts above y;'and y,' of Fig.

6(a) have fused into one (cf. Fig. 1(d)).

- 2.2 Initialization of the incremental parser

5
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In order to initialize the incremental parser, let us introduce some
concepts . . '

For each node nin the parse tree, let prefix (n) be a function or a field
of n which gives a pointer to either (a) its left brother node (if one
exists), or (b) the left brother node of the closest ancestor that has a left
brother (if such an ancestor exists), or (¢) nil (otherwise). (This
corresponds to the rightmost thread of [Ghezzi 79] or LINK field of [Yeh
88]).

For a node n, let us consider a sequence of nodes by succesive
application of prefix() starting from n. Assume that n is the beginning of
the sequence and the node immediately before "nil" is the end of this
sequence. Let us call it prefix chain. It actually corresponds to the
reverse of the viable prefix in LR parsing [Aho 86]. As an example,the
prefix chain of *5 in Fig. 5 is V |

2 T
and that of ig in Fig. 5 is

The prefix chain of a node n can be easily got as follows.

-function Trace prefix chain(n):
current_node :=n;
prefix_chain := ¢;
loop
append current_node to prefix_chain ;
while current_node is the leftmost son of a node do
current_node := current_node's father ;
if current_node = root node then return ( prefix_chain ) ;
end while ;
current_node := current_node's left brother ;
end loop ;

Now, consider the initialization of the incremental parser for part y”;.
We assume that
y1y2 ...... yl'1 |
have been already parsed and their parse subtrees are connected to the

original parse ftree. , (#)
The incremental parser skips parsing of the shaded part above Uj_q and

sets up its parser configuration at the moment when it has just shifted
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the last terminal symbol of u; 4 (Fig. 2(c)(d)). The initialization can be

~done by using the prefix chain
a, Xn- , Xn-2’ e X1

starting from the last terminal symbol a of u;_; . (In case of LR(1)5’
grammars, a is in fact the last terminal symbol of x;_; itself.) (If /-1 = |
0 and [xp| < k-1, let a be the first terminal symbol of x,.) It is known

that for any teminal symbol a, the configuration of the parse stack at the
moment where a has been shifted can be obtained by this prefix chain [Yeh
88]. If we assume (#), the subtree to the left of this prefix chain is
assured to be valid after the modification.

Thus, the initialization of the parser configuration, which is (parse
stack, remaining input), is made as follows:

procedure Initialize incremental parser (fory “;):
(1) Put (nil, nil) and then the initial LR state /5 on the bottom of the parse{

stack (see note 1).
(2) Get the prefix chain a, Xn-1’ Xn.2s - s X, starting from the last

terminal symbol a of Uj_q.

(3) If the prefix chain = g, then skip this step.
Otherwise, put into the parse stack each grammar symbol in the above
prefix chain in reverse order like Xy, X2, s Xn.1, @ recovering the

corresponding LR states /4, I5, ..., I,_4, I, Dby performing LR parsingiusing

the goto function of the parsing table. In the parse stack elements for
grammar symbols, we also make a field where pointers px1,pX2', -, P4 1O

- nodes corresponding to  Xy,X5, ... ,a in the original parse tree are stored.

Thus in general, the parse stack is like (hote 2)
(nil,nil) 1y (X4, Px1) 11 (X2, Px2) 1o - (X 1, Pxn-1) In-1 (& Pg) Iy
(4) Let the remaining input be '
k
b..$
where b is the input symbol next to a and $X is the end of input.

Example Let us see the incremental parsing of y'1= (g in Fig. 6. Now,
the last terminal symbol of uy or a in the above procedure is *5. Then, |
the prefix chain is *5, T4. So, the parse stack will be initialized as |
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(nil, nil) g (T, p11) lp (2, Peg) 17
‘where p14 and ps, are pointers to nodes for T4 and *5,, respectively.
The remaining input is (3-i4- ... $.

2.3 Termination of the incremental parser
After finishing the parsing of y;/ and entering x;, the incremental

parser can stop parsing when a condition that the parser is in the same
configuration as it parsed the original input holds. This condition is
called the matching condition. Actually, t;is defined to be the part of the

_input from the beginning of x,- up to the position of the input where the

matching condition holds (Fig. 1(b)). ,

Suppose that a reduction "A— a" occurs. Informally, if there is the
same nonterminal A in the original parse tree such that the configuration
of the parser when it was originally recognized is the same as the current
one, we can say that the matching condition holds (Fig. 2 (a)(b)(c)(e)).

To be more precise, recall that a parser configuration is determined by

(parse stack, remaining input) ‘
So, if the content of the "parse stack" and "remaining input" (here we only
think of the input in the part x; except v;) are the same for the original

and the current one, we can say that future moves of the parser (for the
part x; except v;) will also be the same, due to the nature of LR parsing.

(Considering the case of Fig. 1(d), the "remaining input" may be in practice

the part Xj except i for some j21i).

Firstly, checking equality of the remaining input is }trivvial. If the
parser is reading some part in x;(except v;), the remaining input is of

course the same.

Secondly, to check equality between the parse stack corresponding to
the original parse tree and the current parse stack, we do not need to look
at all parse stack elements. "It will be shown that if we have the original
parse tree, it is only required to check the topmost and the next element
of the current parse stack. ‘

To check the matching condition, let ancest(n), where n is a leaf
(terminal) node in the parse tree, be a function or a field of n which gives
the topmost ancestor that has n as the rightmost descendant (if such an
ancestor exists), or "nil" (otherwise). (This corresponds to LAB in [Yeh
83a]). For example in Fig. 5,

ancest(ig) = T, ancest(’g) = nil, ancest(i7) = Eo

Using this, the matching condition can be stated as follows.

8
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Matching condition: (Fig. 2)

Suppose that- a reduction by "A - o" has occurred. Let the current
configuration be

(e (X Px) Igy (Ap'g) g, . $)

where the first component is the parse stack and the second component is
the remaining input. | |

Note that p’y points to a node of the new parse subtree because we
have just made a reduction and py might be nil if it is the bottom element

of the stack. .

Let the terminal symbol just before d in the original parse tree be c
(note E2, appendix 3). Let n be the node specified by ancest(c) in the
original parse tree (note 3). The matching condition holds if

(i) disin Xj except Vj for some j 2 i,
(i) " the grammar symbol corresponding to n" = A, and

(iii) prefix(n) = py (comparison of pointers, note 1).

The matching condition is assured to eventually hold, since at least it
holds when a reduction to the start symbol occurs at the end of input,
where d = $, n is the root node, A is the start symbol and Px = nil. -

The proof is given in Appendux 2. Notes regarding e-productions are
given in Appendix 3.

Example See Fig. 5 and 6. Suppose that i = 1 and the incremental
parser has read ig- and the lookahead is +g. Thus, ¢ =iy and d = +g.

Suppose that a reduction "E — T" occurred and the parse stack is now
(ml nil) lg (Eo, PE2) N4
(This is exactly what will happen when we reparse the input of Fig. 6.)

The matching condition holds for this reduction "E — T" because n,

which is the node specified by ancest(iz), is the node for E,, and
(i) +g isianforj=22i=1
(i) "the grammar symbol corresponding to n " = E, holds ,

(iii) prefix(n) is nil. (X, py) is (nil,nil), thus py is nil. Thus, prefix(n) =
Py holds.

2.4 Incremental parser
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We can now present the incremental parser as a whole, which is stated
in. the following algorithm.

Algorithm Incremental parser

Input: The parse tree of W =X ysX7Y¥oXo...¥m Xy @and still unparsed
input w'=xgyy1' X1¥2' Xo..¥m' Xm-

Output: The parse tree of w' if w' belongs to L(G), otherwise an error
indication. '

Method: It consists of the following steps:

(1) Seti=1.

(2) Skip parsing of u; 4. By using the procedure "Initialize incremental

parser" presented before, set the parse stack to have the same contents as
when it has just shifted the last terminal symbol of u; ;.

(38) In the following steps (4) through (7), if "accept” or "error" turns up,
go to step (8). ‘
(4) Using the normal parser, parse the rest of v; ; and y’; while making a

new parse subtree.
(5) After the lookahead is within x;, continue parsing and making the new

parse subtree, but test the matching condition every time a reduction is
made. ’
(6) If the matching condition does not hold yet, but the lookahead comes

to be within v; (i< m), increment i/ by one, and go to step (4).

(7) When the matching condition holds after reading ¢; and at node n, of
the original parse tree, then replace the subtree of n, by the new parse

subtree for "... v; 4y y';it;". Increment iby one. If i< m, go to step (2).
(8) Stop.
Example: When we modify the original input w = Xxp ¥y Xy yoX o=1i"i

+iti+itow =xpgy'yxgyoxo=i"(i+i)"i+i,wherexpg=i",yqs=
€,Xy=i+i,yo=¢,xXp="1+1i,y'y=(and y's =) , the modified parse

tree and incremental parsing for the modified input are as shown in Fig. 6
and 7, respectively. Matching condition does not hold within x,, and we go

from step (6) to step (4) again. The matching condition holds at x, at E,

of Fig. 6 or at E in the last line of Fig. 7. At step (7) of the algorithm, we
connect E2, which is the root of the new parse subtree, to E3.

10
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3. Incremental attribute evaluation and parsing

In this section, we show a method of incremental attribute evaluation
based on a class of one-pass attribute grammars.

As a running example, we use the following attribute grammar. lts
syntactic part is the same as in grammar G1. The attribute /ev
represents the number of enclosing parentheses in an expression.

AG1: (0) E'- E

{Elev=0}
(1) E-> E+T
{Eo.lev=Eq.lev; Tlev=Eq.lev}
2 E-> T _
{T.lev=~E.lev}
@B T o> T*F |
{Tolev=Tq.lev,; Flev=Ty.lev}

4 T o5 F
- {Flev=Tlev}
5) F > (E)
{Elev=Flev+1}
6) F - i

{/* here F.lev is the no. of parentheées enclosing i */}

Subscripts like E4, E5 etc. are used to discriminate occurrences of
- grammar symbols in productions.

Incremental attribute evaluation presented here is based on a class of
one-pass attribute grammars called ECLR-attributed grammar [Sassa 87].
It is a class of attribute grammar where attribute evaluation can be made
in one-pass during LR parsing and in a space-efficient way. We first give
a brief outline of LR- and ECLR-attributed grammars.

Hereafter, we assume that k of LR(k) is 1. (So, v; is in fact ¢, although

we retained v;'s in figures.)

3.1 LR-attributed grammar
Suppose that the input for grammar AG1 is
172 03 +4 15 "5 17 +g g
as in Fig. 5 and the analyzer is now at the beginning, i.e. the lookahead is
i{. Although we do not have the parse tree of Fig. 5 yet since we are at

11
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the very beginning, the LR theory tells that the parser is at LR state lg of

Fig. 3.

Furthermore, since we know the current LR state, it is possible to get
the values of inherited attributes even if we do not know exactly the
parse tree. For example, we know that in LR state Iy, LR items (i) and (ii)

derive (ii) and (iii), (iii) and (iv) derive (iv) and (v), (v) derives (vi) and
(vii). Tracing these derivations in reverse order, we are able to see that
F.lev = 0, because
FS21ev = T2 Jev

(= T2 0ev = T4 lev ...)

=732 jev = E3:T ey

(= E22Jev = E2: 1 Jev ...)

=E2lev =0
(Attributes in parentheses may or may not occur.)

Thus, we are able to know that F.lev of F somewhere above iy of Fig. 5

(F4, in this case) is 0 and T.lev of T somewhere above iy (T4 in this case)

is also 0.

Note that we have been able to get the values of inherited attributes
even if we do not know the exact parse tree. This is the basic idea of
LR-attributed grammar (henceforth LR-AG). That is, an LR-AG is known to
be a class of attribute grammars where the values of inherited attributes
can be computed "uniquely", or without any inconsistency, during LR
parsing [Jones 80] [Sassa 85b].

In LR-AG, evaluation of inherited attributes is made at the point when
the parser enters a new LR state, that is, at state transition time.  This
means that we can make "semantic action" (in traditional terminology) not
only at reduction time, but also in the midst of the right hand side of a
production. |

A more complete description of LR-AG can be found in [Sassa 85b].

3.2 ECLR-attributed grammar
In the previous section, readers would have noticed that most values of
attribute /ev of AG1 are the same. For example in LR state '0' the values

of E.lev, T.lev and F.lev are all the same. We can utilize this
characteristic to save storage space and evaluation time for inherited
attributes as follows. _

We collect the set of inherited attributes which have the same value in
each LR state into an equivalence class. For example in AG1, we can make
an equivalence class ‘ ‘

12
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EC1 = { E.lev, T.lev, F.lev }

In storing attribute values, we allocate a single location not for each
inherited attribute but for each equivalence class. This is the basic idea
of ECLR-attributed grammar (hereafter ECLR-AQG). Introduction  of
equivalence classes contributes to reduction of storage space for
inherited attributes. A space reduction of 1/17 - 1/9 is reported in
[Sassa 87]. Also, a time reduction of about 8 percent is reported there.

To define ECLR-AG more formally, we introduce some concepts.
First, the L-attributed property is defined as usual.

Def. Attribute grammar AG is called L-attributed, iff for any
production X5 — Xy ... an the following condition holds.

Each inherited attribute of X, (1< k < np) depends only on inherited
attributes of X5 and synthesized attributes of X, ... Xj_4.

Next, let EC = { EC4, ECo, ..., EC,, } be a disjoint partition of the set of
all inherited attributes of a given grammar. Each EC; is called an
equivalence class. An equivalence class is supposed to be a set of

inherited attributes whose values are mutually the same in each LR state.
For example, we may let EC = { EC1 }, EC1 = { E.lev, T.lev, F.lev } for

grammar AG1.

Then, let IN be the set of inherited attributes of nonterminals after
the "." (dot or the LR marker) of LR items in a given LR state. It represents
the set of inherited attributes to be evaluated at that LR state. That is, if
liis an LR state, '

IN(/;) = { A.a| A.a is an inherited attribute of A, A is a :
nonterminal such that [B —» o . A B] is an LR item of /;}. ::
For example, IN(lg) of the above LR state Iy is { E.lev, T.lev, F.lev }. ‘

Lastly, in order to describe that attribute values can be evaluated}
"uniquely", we introduce a function called semantic expression. Since this
concept is important in defining ECLR-AGs, we explain it in detail. :

Recall that we got
_ F.lev =0 and T.lev =0 :
in the example before. In general, we can see that the value of an

13
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inherited attribute A.a in IN(J;) for an LR state /; can be computed as a
function of the values of attributes in the kernel of l,-. This function is

called the semantic expression [Jones 80, Sassa 85b, Sassa 87]. That is,
the semantic expression £ (A.a) of an inherited attribute A.a in IN(/;)

of LR state /;is a set of possible expressions or symbolical forms for
evaluating A.a in terms of attributes of LR item(s) in the kernel of /;. For
example, :
E|o(F-lev) = {expr. for evaluating F22 lev } = {0}
Eyo(T.lev) = {expr. for evaluating T3:2 jev } |

U {expr. for evaluating T42.lev }
= {0} L {0} = {0}
Similarly, we can see that
Eo(E.lev) = {0} o .
Since E|y(A.a) = {0} for all A.ae IN(I5) n EC4, we denote this by
Elo(ECy) = {0}
The fact that an inherited attribute value is evaluated uniquely can be

expressed by that the semantic expression contains only one expression.
We show all semantic expressions for LR states of Fig. 3(a) in Fig. 3(b).

Now, the definition of ECLR-AG is as follows.

Def. A grammar G is ECLR-attributed with respect to a partition
EC ={ EC4, ECy, ..., EC }, iff ' |

(1) G is L-attributed, and

(2) for each EC;, and for each LR state Ij of G, semantic expressions
E/I(A.a)'s are the same and unique (i.e. contain only one expression) for all

inherited attributes A.ae EC;n IN(Ij).

Example: Grammar AG1 is ECLR-AG with respect to EC = { EC1‘}, ECy =

{ E.lev, T.lev, F.lev }, since
(1) AG1 is L-attributed, and
(2) for LR state Iy, E|5(A.a)’s are { 0 } and are the same and unique for all

inherited attributes A.a € ECq n IN(lg) = { E.lev, T.lev, F.lev }. Similar
reasoning holds for other LR states.

14
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A more complete description of ECLR-AG can be found in [Sassa 87].

3.3 The normal evaluator :
In this section, we show the normal evaluator based on ECLR AG, whuch
both parses the input and evaluates attributes, making an APT.

Attribute storage in APT :

In the last section, we saw that in ECLR-AGs we can allocate storage
for each equivalence class at an LR state. This means that in the parse
tree, we need not store values of inherited attributes in every node.
Rather, we can store them only in some nodes corresponding to some LR
states, using a single location for all inherited attributes in the same
equivalence class. |

Let us call LR states in which IN(/;) is not empty evaluation states.

For example in Fig. 3(a), 1y, l4, lg and Iy are evaluation states. In the APT,

we allocate storage for equivalence classes to nodes which have those
evaluation states as their "next" LR states. Here, "next" state of a node
means the LR state to which the parser makes transition after reading the
grammar symbol corresponding to that node in that parsing configuration.
Note that a "next" LR state of a node depends on the context. Let us also
add a special node ¢ into the APT, which has the initial LR state '0 as the

"next" LR state.

As an example, in the APT of Fig. 5(b), we allocate storage for
equivalence classes to nodes ¢ (which has the evaluation state Ip as the
2('"- |7), +4('"- |6),*6(-"- |7) and +8(-"" le) They have
values for ECy = { E.lev. T.lev, F.lev } which are all 0 in this particular

*

- "next" state),

example. Here only a small part of nodes contain values of inherited
attributes. ‘ ‘

As for synthesized attributes, storage is allocated as usual in nodes of
the APT, of which the corresponding grammar symbol has synthesized
attributes.

The normal evaluator .
Let us now present the normal evaluator which, in addition to parsing
and making the parse tree, evaluates attributes and stores their values
into nodes of the parse tree, making the APT. (Note : The evaluator
presented here is a little different in appearance from the one presented
in [Sassa 87], although the principle is the same (see discussion).)
The configuration of the parse stack in this normal evaluator is similar
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to the one in the incremental parser given before. Only the bottom
element is a little different. The form of the parse stack is in general

(nil, pg) lp (X1, Px1) 11 (Xo Px2) oo X PxXm) Im
where /;is an LR state, X; is a grammar symbol and py;is a pointer to the
node in APT corresponding to X; In particular, Py is a pointer to node ¢.

Note: As in section 2, X;'s need not be stored.

Now, the algorithm for the normal evaluator is as follows.

Algorithm Normal evaluator
Input:  The input w= Xpy(X1¥oXo ... YmXm -
Output: APT of w.
Method: ,
configuration := ((nil, pg) lp,ay..ap$);
loop
let configuration be
action := ACTION [/, aj] {ACTION in the parse table} ;
if action = "accept" or action = "error" then exit ;
if IN(/,,) # @ then compute values of equivalence classes of inherited

attributes in IN(/,) {note 2,3} and put them in node pointed by

case action of

"shift I":
make a new (leaf) node corresponding to a;;
put values of synthesized attributes of a; {from lexical analysis}
into that node ;
Paj= pointer to that node ;
configuration := ( ... I, (aj, paj) I, aj,1 - ap $) ;

"reduce by A — o: ’ ~
make a new (internal) node corresponding to A ;
compute values of synthesized attributes of A {note 3}

and put them into that node ; {note 4}
p A = pointer to that node ;

k=lal; SR
make the node pointed by p4 be the father of nodes pointed by
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PXm-k+1 > PXm-k+2 + = » PXm >
pop configuration down to ( ... /4, aj ... ap %) ;

[:= GOTO [ I, , A] {GOTO in the parse table} ;
configuration := ( ... I,k (A, pa) I, a;..ap $) ;

end case
end loop

Example The normal evaluator for input i * i + i * i + i proceeds as
shown in Fig. 8. This makes the APT of Fig. 5(b).

3.4 The incremental evaluator

“In this section, we present the incremental evaluator based on the
ECLR-AG. We note that the power of the incremental evaluator is
naturally the same as the normal evaluator. ,

The general idea of incremental attribute evaluation is similar to the
incremental parser. One difference is that modification of y“; may also

affect attribute values in some part "above" u; in addition to the part
"above" v;_; and t; (Fig. 1(b)). That is, there may be some part above u;

where the attribute values become invalid, although the parse tree is valid
there. The general scheme is as shown in Fig. 9. The shaded part remains
valid concerning the parse tree and attribute values.

Here, t; and v; are the same as before, but u; is now divided into two

parts riand s;. We define r; so that in the part above r;, the parse tree is

the same as the original one, but the attribute values are not the same. In
the part above Sj both the parse tree and the attribute values are the

same (r;=¢ fori=0).

Thus in general, w” = XY 1 X1Y 0Xo o ¥y Xm » Xj= 1 Fj S V;

Now, we are ready to present the incremental evaluator.

The idea is to combine the incremental parser of section 2 and the
normal evaluator of section 3.3 with consideration of the validity of

attribute values. Two points, initialization and termination should be
made clear.

3.4.1 |Initialization of the incremental evaluator
First, we will show some properties concerning Fig. 9.

Prop. 3.1  Values of attributes (also values of inherited attributes in
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evaluation states associated to nodes in this part) in the shaded part
"above" s; (if s;# ¢) are still valid after modification. o

(The proof is omitted. See [Sassa 88] for details.)

Now, initialization of the incremental evaluator for y’jis quite similar

to that of the incremental parser. The only difference is that we put (nil,
p¢), where Py is a pointer to node ¢, instead of (nil, nil) at the bottom of

the stack:

Example In the running example (Fig. 6), if the incremental evaluator
starts at point after *,, the parse stack will be initialized as

(nilpg) lg (T4, p11) 12 ("2, P2) 17
where pr4 and p«, are pointers to nodes for T4 and "5, respectively.
Notice that we are able to access IN(lp) attached to ¢ and IN(l7) attached

*

to *5 tracing pointers from the parse stack.

3.4.2 Termination of the incremental evaluator
Termination of the incremental evaluator for the part y requires

checking of attribute values in addition to the matchlng condition for
parsing presented in section 2.3.

Assume that the matching condition holds at reduction "A — «". Let the
corresponding node of the new parse subtree be n'y and that of the original

parse tree be n, (Fig. 2(b)).

Recall that in attribute grammars the only way of passing attribute
values from the subtree of n'y outward is through synthesized attributes

of n'y. Therefore, if values of synthesized attributes of n'y are the same
as those of n, we can really teminate incremental evaluation for the part
I | |

If synthesized attributes values of n'y and n, are not the same, we

should continue incremental evaluation. Several ways might be possible
how to continue and when to stop re-evaluation. For the sake of
simplicity of the algorithm however, here we only show the SImplest
method, and leave possible improvements to further discussion.

So, here we continue re-evaluation of inherited and synthesized
attributes until the attribute matching condition holds.
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Attribute matching condition: (Fig. 10)
Let n, be the node in the original parse tree where the matching

condition holds. Assume that a reduction "C — B" occurs. Let the
corresponding node of the original parse tree be ns. The condition holds if:

(i) Node ng is an ancestor of n4, or ny itself.
(i) Newly evaluated values of synthesized attributes of n, are the same
as the old values of synthesized attributes of ne - ‘

The condition means in general that attributes are to be re-evaluated
for nodes in the shaded part "above" r;jof Fig. 10 after the matching

condition for incremental parsing is satisfied. (The cases in which r;

extends to v;or y';, ; etc. are treated properly in section 3.4.3.) Whether

or not we rewrite attribute values on the original APT in re-evaluating
attributes, is discussed in the next section.

3.4.3 Incremental evaluator
We can now present the incremental evaluator as a whole, which is
stated in the folllowing algorithm.

Algorithm Incremental evaluator with parsing

Input: The APT of w = xpy X 1¥oX5 ...y Xy @and still unanalyzed input

W'= XY 1X1Y 2X2 ¥ mXm-

Output: The APT of w'if w' belongs to L(G), otherwise an error indication.
Method: It consists of the following steps:

(1) Seti=1."

(2) Skip analysis of s;_4. By using the procedure "Initialize incremental

evaluator" presented before, set the parse stack to have the same
contents as when it has just shifted the last terminal symbol of u;_;.

(3) In the following steps (4) through (8), if "accept" or "error" turns up,
go to step (10).

(4) Using the normal evaluator, make parsing and attribute evaluation for
the rest of v;_; and y'; while making a new APT subtree.

(5) After the lookahead is within x; continue parsing, attribute

evaluation and making the new APT subtree, but test the matching
condition every time a reduction occurs.

(6) If in (5), (7) or (8) the matching condition or the attribute matching
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condition does not hold yet, but the lookahead comes to be within vi (i<m),

increment / by one and go to step (4).
(7) When the matching condition holds after reading t; and at node ny of

the original APT, then replace the subtree of n, by the new APT subtree

for ... vj_q¥'i t; ,

(8) Continue attribute re-evaluation (see note 1, 2), but test the attribute
matching condition every time values of synthesized attributes of a node
have been re-evaluated (including the moment in step (7)).

(9) When the attribute matching condition holds at node n, then

increment i by one. If i<m, then go to step (2).
(10) Stop.

Example: Moves of the incremental evaluator and the resulting APT for
the modified input i * (i +i)* i+ i are shown in Fig. 11 and Fig. 6(b),
respectively.

3.5 Discussion

In the method of attribute evaluatlon presented here, space for
inherited attributes seems to be fairly small. For example in Fig. 5(b),
only 5 nodes out of 25 nodes have a storage for inherited attributes. The
space reduction comes from two factors. First, the use. of LR-attributed
grammars makes storage for inherited attributes be allocated only into
"evaluation states", not into every node. This realizes some storage
optimization, particularly in the case of left-recursive productions.
Secondly, the use of equivalence classes in ECLR-AGs makes it possible
for inherited attributes in the same equivalence class to share storage,
which is more significant.

‘Several optimization of the method shown here will be possible:

For unit productions, we can omit intermediate nodes of APT if (i) the
production is a unit production, (ii) attribute evaluation rules for
synthesized attributes of that production are copy rules, and (iii) there is
no evaluation state associated with that production.

Also, optimization of incremental evaluation by skipping analysis of
some subtrees of x; in the APT as for incremental parsing will be an

interesting problem.

The attribute matching condition for the incremental evaluator might
be too restrictive. Reducing the part of re-evaluation at step (8) of the
incremental evaluator will be profitable.

In actual attribute grammars, efficient treatment of big values, like

20



88

the symbol table, should be further investigated [Hoover 86].

In application to language-based editors, the relation between lexical
level changes in units of characters and grammar level changes in units of
tokens should be considered carefully. For example, a token may be
divided into two by a character mode editing.

4. Conclusion

A method of incremental attribute evaluation and parsing is descrlbed _

It is based on a class of LR-attributed grammars called ECLR-attributed
grammars. The method unifies incremental attribute evaluation and
incremental parsing in a single algorithm. Multiple modifications in the
original input are also allowed.

From the one-pass nature and the use of equivalence classes in
ECLR-attributed grammars, reduction of evaluation time and memory size
can be expected. In particular, use of equivalence classes contributes
quite much to space efficiency of the attributed parse tree. Inherited
attributes are stored only in a small part of the nodes of the attributed
parse tree, and the storage requirements would be 1/3 - 1/10 compared to
naive methods.
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Shaded part is valid. ¢ will be explained later.

(b)

(a) Original parse tree
(b)(c)(d) Modified parse tree

Fig. 1 Original and modified parse tree



d _ :

" Fig. 1 (cont.



92

%

(a) refix
A
N
A
/ ” | - 8
i-1. Q51 ‘;-1 :}; t,' Yj Vi
!
il,nil) 1 X o)1 (A.p )1, d.s"
(b)  ((nil,nil) o ( ,px) n_1( .‘DA) - %)

' ' recover parsing'f matching condition
AN configuration : holds

N\ /
\ (N s’

. e k .
(d)  ((nil,nil) lo... \ga,pa) |n,b---$ 2/,/

) (ilnih) 1 4. (X,py) In_1(A,p'/A) | g $%)

(a) original parse tree

(b) original parsing configuration just before d of (a)

(c) original parse tree (left) and new parse subtree (right)
(d) initialization of parsing configuration

(e) current parsing configuration just before d of (c)

Fig. 2 Matching original and modified parse tree
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Ejo(EC4) ={0}

Ejo(ECy) ={ (EC4,-1) +1}

Eo(EC{) = { (EC4,-2)}

Ejo(EC) = { (EC4,-2))



lg: F - (E.)
E - E.+T

gt E - E+T.
T - T.*F

i T - T*F,

ljg: F = (E).

(@) | (b)

(a) LR states for gramar G1 (canonical LR(0) collection)
(b) semantic-expressions corresponding to each LR state

Fig. 3 LR states and seniantic expressions for grammar G1 and AG1

| action : | goto
I
STATE | i + * ( ) $ | E T F

| s5 s4 |1 2 3
| s6 acc |
| r2 s7 2 r2 |
| 4 4 A 4 |
| s5 s4 | 8 2 3
| 5 6 s B |
| s5 s4 | g 3
| s5 s4 I 10
| s6 st - |
| M s7 M |

0 | 3 13 3 3 |

1 | 5 5 5 5 |

LB OONOOU A WN —=-O

Fig. 4 Paréing table for grammar G1



| iand the associated box mean an LR state and IN(Ii ),
i.e. inherited attributes evaluated at LR state | ., respectively.

F " F3 and F5 may be omitted as unit ,production.'

(a) original parse tree (ignore | . etc.)
(b) original APT (with | ietc.)

Fig. 5 Original parse tree and APT
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new parse subtree

original parse tree

F1 , F - T1 y ﬁ 5 and F5 may be omitted as unit production.

(Note 1) cut the original arc and establish a new arc.

(a) modified parse tree (ignore | ietc.)

(b) modified APT  (with | ietc.)

Fig. 6 Modified parse tree and APT



parse stack input

l
0T2*7 | | (i+i)*i+i$
0T2*7(4 1 i+i)*i+i$
0T2*7(4i 5 | +i)*i+i$
0T2*7(4F3 | +i)*i+i$
0T2*7(4T2 | +i)*i+i$
0T2*7(4E8 | +i)*i+i$
0T2*7(4E8+6 | )i+l $
0T2*7(4E8+6i 5 | Yri+i$
0T2*7(4E8+6F3 | Yri+i$
0T2*7(4E8+6T29 | )*i+i$
0T2*7(4ES8 | Yri+i$
0T2*7(4E8) 11 | Yiti$
0T2*7F10 | *i+i$
oT2 R *i+i$
0T2*7 | i+i$
0T2*71i 5 | +i$
0T2*7FA10 | +i$
0T?2 | +i$
0 E1 | +i$

(nil,nil) at the bottom of the parse stack is omitted.
(X,px) and I; in the parse stack are just written as X and i, respectively.

Fig. 7 Incremental parsing of the modified input
i (i)t
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parse stack input

| evaluation

I

iti+iti+i $

*iriti+i $
*i+iti+i$
*iriti+i$
i+i*i+i$
*i+i$

+i*i+i$

» » »
NN N

. m-
-
00‘1

+i*i+i$

*i+i$
*i+i$
*i+i$

i+i$

» -

NN N
-
—
S0

+i$

F o+ o+ o+ F
DO OO O
~ - -
W OW W OWwwM

»

+i$
i$

(o, 3o M I ¢)]
- T -
0 wom

COO0OO OCOOCOO OO0 ODOO0OO0OO0 OO0 O O
+ + + +

mmmmmmmmmmmmm mm-A-— =4 -7
eh ok od ad oA b ok edh ok ek A —h e = NN NN WO

— — — o m— thty ommany  mm— ——— o— — — — ——— o— ———— ——— — w— oup———  non o a— f— ———s

©9 PP Ph

(nil,pg) at the bottom of the parse stack is omitted.

+i*ti+i$

iti+i®

+i$
+i$

| IN(IO) 0} - ¢

| IN(I7)={0} -

IN(lg)={0} — +

IN(I)={0} - *

I
I
|
I
|
I
I
|
|
I
I
I
I
I
|
I
e
| IN(Ig)={0} — +
|

|

|

|

(X,px) and |; in the parse stack are just written as X and i, respectlvely
IN(l;)={v....} = Xin evaluation means: evaluate IN(l;) according to
semantic expressions, get values v,... for equivalence classes, and store

them into node corresponding to X.

Fig. 8 Moves of the normal evaluator for the original input

S Rl



Shaded part is valid

Fig.9  Modified APT

Fig. 10 Re-evaluation of attribute values
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parse stack | - input | evaluation

| |

| I
0T2*7 | (i+i)*i+i$ |
0T2*7 (4 | i+i)*i+i$ | IN(14)={0} — (
0T2*7(4i 5 ] +D)ti+i$ |
0T2*7(4F3 | +i)*i+i$ |
0T2*7(4T2 | +i)*i+i$ |
0T2*7(4ES8 | +i)*i+i%$ |
0T2*7(4E8+6 | i)' i+i$ | IN(lg)={1} = +
0T2*7(4E8+6i 5 | Yri+i$ I
0T2*7(4E8+6F3 | )ri+i$ |
0T2*7(4E8+6T9 | )*i+i$ |
0T2*7(4ES8 | )ri+i$ l
0T2*7(4E8) 11 | *i+i$ |
0T2*7F10 | *i+i$ |
0T2 | *i+i$ | _
0T2*7 1 i+i$ | IN(I5)={0} - *
0T2*7i 5 i +i$ |
0T2*7 F10 | +i$ |
0T2 | +i$ |
0 Ef1 | +i$ |

Fig. 11 Incremental evaluation of the modified input
i*(i+i)*i+i



