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Abstract

A denotational semantics is given to type inheritance and higher order generic functions,
where a type is defined to inherit another type if there exists a coercion function between them
and a function is defined to be generic if it preserves types and coercions. The semantic domain
is constructed in the category of I-domains (domain with type inheritance), whose objects are
mathematical models of domains with hierarchical type structure, and whose morphisms are math-
ematical models of generic functions. This category is cartesian closed and such domain equations
as $M=M_{B}+[Marrow M]$ are solvable in this category. On the solution of this equation, the
semantics of a simple functional language with hierarchical type structure and higher order generic
functions is defined.

1. Introduction

Coercion and type inheritance
Most programming languages have type structures. Values are classified into types according

to their representation on memory and the operations applicable to them. Many programming
languages, in addition, have type structures with inheritance.

There seems to be several viewpoints on the meaning of type inheritance. [Car85] constructs
a denotational model of type inheritance, in which a type is a non-empty weak ideal of the value
domain, and inheritance relation is defined by set inclusion between ideals. The denotational model
we construct is essentially different. Types correspond to disjoint sets of values, that is, each value
belongs to only one type; and inheritance relation is defined by the existence of a coercion function
from the more specified type to the more general type, instead of by set inclusion.

As an example, consider the inheritance relation between int and real which many program-
ming languages have. In those languages, 1 which belongs to int and 1.0 which belongs to real
are treated as separate values, and when a function defined on real is applied to 1, it is coerced to
1.0 automatically and the function is applied to 1.0. In this case, int can be regarded as inheriting
real through this coercion function from int to real. $J$

As another example, consider record types with typed slots $\dagger^{1}$ . Record types are important
because they are used as classes in some dialects of lisp with object oriented facilities. Consider
the following types:

deftype person $<age$ $arrow$ integer,
$namearrow$ string,
sex $arrow boole$ $>$

deftype female-student $<age$ $arrow$ integer,
name $arrow$ string,
sex $arrow true$ ,
school $arrow$ string $>$

$\dagger^{1}$ Though we do not deal with record types in order to make the theory simple, the contents of
this paper can be easily extended to record types.
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where true is a type which inherits boole and contains only $t$ , the value which means female in this
example. For each value belonging to female-student, there exists a value belonging to person,
where the coercion from female-student to person is obtained by ignoring the value attached
to the slot school and by coercing the value attached to the slot sex from true to boole. Thus
female-student inherits person through this coercion function $\dagger^{2}$

Consider the following additional type definitions:

deftype female $<age$ $arrow$ integer,
$namearrow$ string,
sex $arrow true$ $>$

deftype student $<age$ $arrow$ integer,
name $arrow$ string,
$schoolarrow string$ $>$ .

Female-student inherits both female and student. Thus record types shown here have multiple
inheritance, which means that, by defining order relation $\geq asA\geq B$ when the type $A$ inherits the
type $B$ , the set of types is a partially ordered set (in short a poset)

$\dagger^{3}$ . Moreover, female-student
is the least upper bound of female and student, that is, any type which inherits both female and
student inherits female-student. In this example of record types, a set of types which has an
upper bound has the least upper bound. We call posets with this property semi-coherent. As for
the value domain, the set of values is also a poset with the order $relation\succeq$ defined as $a\succeq b$ when
$a$ is coercible to $b$ . It is also semi-coherent, that is, when a set of values has an upper bound, it
has the least upper bound. The semi-coherentness ensures that $((aub)uc)$ , if exists, is equal to
(a $u(buc)$ ) in value and type domain, where we write $a$ $ub$ for the least upper bound of $a$ and $b$ .

We construct, as a semantic domain, a triple $(D, T, \tau)^{\uparrow^{4}}$ , where $D$ is the set of values, $T$ is
the set of types, and $\tau$ is the function from $D$ to $T$ which assigns a type to each value. $T$ and
$D$ are semi-coherent posets, and $\tau$ is a monotonic function which is surjective and satisfies some
conditions in order that the coercion of a value to a type is uniquely determined. We also require
that $D$ be a complete partial order (in short cpo), which we need in solving domain equations. We
call the triple $(D, T, \tau)$ which satisfies these conditions an I-domain-domain with type inheritance.
We call $D$ the value domain and $T$ the type domain. We say that $x$ belongs to $t$ when $\tau(x)=t$ .

Generic functions
A Generic function is a function that is applicable to more than one types and whose behavior

depends on the type of the arguments supplied to it. We can find generic functions in many
practical languages with type inheritance. For example, in some languages, the addition function
$+with$ two arguments is applicable to arguments both in int and real, and returns a value in
int when both of the arguments are int, and real when either of the arguments is real. As
another example, there is an extension of lisp called CLOS (Common Lisp Object System), which
is the standardization of merging object oriented programning to Common Lisp [BDG87]. CLOS
implements message passing using generic functions.

In the model $(D, T, \tau)$ , we are only concerned with the function space which consists of total
generic functions from $D$ to $D$ . In order to treat partially defined generic functions as total generic

$\dagger^{2}$

The coercion function from female-student to person is not injective, which did not appear
in the example of real and int.

$\dagger^{3}$

Note that we define the order relation in such a way that bigger types have more information.
$\dagger^{4}$

We use italic fonts for semantic objects.
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functions, we consider a special type null which inherits every type and a special value nil belonging
to null. Thus, a generic function defined only for some types can be extended to a total generic
function by assigning nil as the return value for illegal arguments.

Generic functions are very useful in writing programs. However, if a generic function behaves
completely differently for different types of arguments, it will cause programming errors which are
difficult to detect. In fact, it is difficult to give clear semantics to generic functions if their actions
for different types are unrelated. Therefore, we restrict generic functions from $D$ to $D$ so that
they preserve types and coercions; where we say that a function preserves types if it maps values
belonging to the same type to values belonging to the same type, and that a function preserves
coercions if it maps coercible values to coercible values. Thus, generic functions are not simply
overloaded functions. We also require that generic functions be continuous, which we need in
solving domain equations. We call a continuous function from $D$ to $D$ which preserves types and
coercions a generic function of I-domains with respect to $T$ and $\tau$ .

[Rey81] gives semantics to generic functions using natural transformations, where generic func-
tions are treated not as values but as operators; so they cannot be used as arguments to other generic
functions. The I-domain $(D, T,\tau)$ we want to construct as a semantic domain is the one in which
a generic function from $D$ to $D$ is treated as an element of $D$ and can be used as an argument or a
return value of other generic functions. In other words, we consider higher order generic functions.
In order to do that, we must assign a type to each generic function. In the model of typed lambda
calculus, the type of a function is given by a pair of types: the source type and the destination
type. The type of a generic function is not a pair of types, but a function from $T$ to $T$ which, to
each type $A$ , assigns the type of return values to arguments belonging to $A$ .

We construct, as a semantic domain, a reflective I-domain $M=(D, T, \tau)$ from a given I-domain
$M_{B}=(D_{B}, T_{B}, \tau_{B}):T_{B}$ consists of basic types such as int and real, $D_{B}$ consists of values belonging
to $T_{B}$ such as 1 and 1.0, and $\tau_{B}$ is the type assignment function from $D_{B}$ to $T_{B}$ . $D$ consists of $D_{B}$

and generic functions from $D$ to $D$ , and $T$ consists of $T_{B}$ and monotonic functions from $T$ to $T$

which are types of generic functions. Therefore, $M$ satisfies the following equations:

$D_{\tau}T\downarrow$ $==$ $D_{B^{B}}T\downarrow^{B}$ $++$ $[D[Tarrow D]arrow T]\downarrow\tau^{*}$

$(*)|$

where $[Darrow D]$ denotes the set of generic functions from $D$ to $D$ with respect to $T$ and $\tau,$ $[Tarrow T]|$

the type assignment function from $[Darrow D]$ to $[Tarrow T]^{\uparrow}$ .
denotes the set of monotonic functions from $T$ to $T$ which are types of generic functions, and

$\tau^{*}is|$

To give some examples of generic functions, consider an I-domain $(D_{B}, T_{B}, \tau_{B});T_{B}$ is equal to 1
{int, real, null}, $D_{B}$ is equal to $INT+REAL+\{nil\}$ where INT is the set of integers and REAL
is the set of real numbers. $\tau_{B}$ : $D_{B}arrow T_{B}$ is defined obviously. There is an embedding function
from INT to REAL, and the collapsing function from REAL to {nil}. Taking these functions as
the coercion functions, the order on $T_{B}$ is defined as 5’

$int\geq real\geq null$ . $\underline{**}:^{:}\exists\#\sim\sigma$

Suppose that an I-domain $M=(D, T, \tau)$ which satisfies $(*)$ has been constructed. $\frac{\xi}{1}$

$mismatch,whichisomitedhereforsimp1icity\overline{\dagger_{Inthispaper,wea1sodedwiththeva1ueD_{3}Wrong}}$

and the type TWrong which mean
$type_{\S^{\{},8^{\triangleright}}\epsilon^{}=@\vee ii|$
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Let square be a function from $D$ to $D$ which calculates the square of the argument and returns

it as an integer if the argument belongs to int, and as a real number if the argument belongs to
real, and returns nil if the argument does not belong to int nor real. Clearly, square is a generic
function. The type of square is a function from $T$ to $T$ which returns int to int, real to real, and
null to other arguments. We denote this function by

$\lfloor int\Uparrowarrow\succ int\rfloor u\lfloor real\Uparrow\vdash\div real\rfloor$ .

The meaning of this notation is defined as follows. $\lfloor t\Uparrowarrow\succ s\rfloor$ denotes the function which returns $s$

if the argunent is bigger than $t$ by the order on $T$, and returns null if it is not.

$\lfloor t_{1}\Uparrowarrow\succ s_{1}\rfloor u\ldots u\lfloor t_{n}\Uparrowrightarrow s_{n}\rfloor$

denotes the least upper bound of $\lfloor t_{1}\Uparrowarrow\succ s_{1}\rfloor,$

$\ldots,$
$\lfloor t_{n}\Uparrowrightarrow s_{n}\rfloor$ by the order on $[Tarrow T]$ induced by

that on $T$ . We use this notation only when the least upper bound exists.
Instead of adding product types, we treat a generic function with more than one arguments

as that with one argument by currying it. Therefore, the generic $function+which$ calculates sum
has the type

$\lfloor int\Uparrowarrow\succ\lfloor int\Uparrowarrow\succ int\rfloor\rfloor\coprod\lfloor real\Uparrowarrow\succ\lfloor real\Uparrowarrow\succ real\rfloor\rfloor$ ,

which returns to int the function

$\lfloor int\Uparrowarrow\succ int\rfloor u\lfloor real\Uparrow\mapsto real\rfloor$ ,

and returns $\lfloor real\Uparrowarrow\succ real\rfloor$ to real.
A function which is defined as a lambda expression using generic functions are also generic.

For example, let sqrt be the generic square root function which belongs to $\lfloor real\Uparrowrightarrow real\rfloor$ , and let
trunc be the generic truncation function which belongs to $\lfloor reat\Uparrow\mapsto int\rfloor$ . Then

lambda$(x).((+(trunc(sqrtx)))x)$

is a generic function whose type is

$\lfloor int\Uparrowarrow\succ int\rfloor u\lfloor real\Uparrow\mapsto realJ$ .

Note that not all the types of generic functions can be written using this notation. For example,
the identity function on $D$ defined as (lambda(x).x) is generic and its type is the identity function
on $T$ .

Outline of the paper
In order to construct an I-domain which satisfies $(*)$ , we first show that I-domains make a

category. In this category, a morphism is a pair of functions: one is between value domains which
is a generic function, and the other is between type domains which is the type of the generic
function. Next, we prove that the triple $[Marrow M]=([Darrow D], [Tarrow T], \tau^{*})$ is also an I-domain,
and that I-domains make a cartesian closed category with exponent $[arrow]$ . After that, we solve the
domain equation $M=M_{B}+[Marrow M]$ , which is equivalent to $(*)$ , in this category.

On the I-domain $M$ which is the solution of this equation, we define the semantics of a simple
functional language LTI (Language with Type Inheritance) in the denotational manner. The syntax
of LTI consists of a triple ( $Exp$ , TExp, typeof), which corresponds to $(D, T, \tau)$ . $Exp$ is the set of
expressions which are lambda expressions with constants. TExp is the set of type expressions which

4
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are extension of lambda expressions in that it has constants and that one can express such function
on types as

$\lfloor int\Uparrow\mapsto int\rfloor u\lfloor real\Uparrowarrow\succ real\rfloor$ .
Let Env be the set of environments and let TEnv be the set of type environments. The semantics
of LTI is defined by the pair of semantic functions $(\mathcal{E}, \mathcal{E}^{T})$ . $\mathcal{E}$ : $Exp$ $arrow(Env arrow D)$ is the
semantic function for expressions and $\mathcal{E}^{T}$ : TExp $arrow(TEnvarrow T)$ is the semantic function for type
expressions. $\mathcal{E}$ and $\mathcal{E}^{T}$ make the following diagram commute.

$T^{E_{E^{typeof\downarrow*}}}\downarrow_{xp\cross TEnv-}^{xp\cross Env-}arrow^{arrow e^{\epsilon_{\tau}}}DT\downarrow\tau$

2. I-domain

In this section, we define I-domain (domain with type inheritance) and DTI (the category $of|$

I-domains), and examine some properties of them.

2.1 I-domain
An I-domain is a mathematical model of values and types with type inheritance, where a type $|$

is defined to inherit another type if there exists a coercion function from the set of values belonging I
to the former type to that of the latter type. Before giving precise definition of an I-domain, let us
give another definition of it slightly informally in order to show that it is a natural model of type
structure with inheritance.

An I-domain consists of a set $D$ called the value domain, a set $T$ called the type domain, and a
surjective function $\tau$ from $D$ to $T$ called the type assignment function. Each element of $D$ is called
a value and each element of $T$ is called a type. When a value $x$ and a type $t$ satisfy $\tau(x)=t,$ $we|$

say that $x$ belongs to $t$ . The set of values belonging to a type $t$ is denoted by $Val(t)$ . $Val(t)is|$
equal to $\tau^{-1}(t)$ . $Val(t)$ and $Val(u)$ does not intersect when $t\neq u$ .

The type domain has inheritance relations on it. Let us denote $t\geq u$ when $t$ inherits $u$ . We
do not deal with a type structure in which two types can inherit each other. Therefore, we require
that $\geq$ be a partial order, that is,

$t\geq t$

if $t\geq u$ and $u\geq v$ then $t\geq v$

if $t\geq u$ and $u\geq t$ then $t=u$

for $t,$ $u,$ $v\in T$ . We also require that $T$ be semi-coherent.

DEFINITION. A poset $O$ is semi-coherent if every subset which has an upper bound in $O$ has $the|$

least upper bound in $O$ .

By taking the empty set, semi-coherent poset has the least element. In a poset $O$ , the greatest
lower bound of a subset $U$ , if it exists, is equal to the least upper bound of $\{t|t\leq u, \forall u\in U\}$ . For
every non-empty subset $U$ of $O,$ $\{t|t\leq u, \forall u\in U\}$ has every $u\in U$ as an upper bound. So when
$O$ is semi-coherent, every non-empty subset $U$ of $O$ have the greatest lower bound. $\backslash$

As for values, we require that when a type $t$ inherits another type $u$ , there be a coercion
function $\delta_{t,u}$ from $Val(t)$ to $Val(u)$ such that

$\nu$

$\delta_{t,t}=id_{Val(t)}$ (the identity function of $Val(t)$ ) $\infty K$

if $t\geq u$ and $u\geq v$ then $\delta_{u,v}\cdot\delta_{t,u}=\delta_{t,v}$ . $(*)|p$

5
$\grave{\xi}\ddagger\xi*$

}
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Then we can define an order $relation\succeq$ on $D$ as follows $\dagger$ .

Let $t$ and $u$ be $\tau(x)$ and $\tau(y)$ . If $t\geq u$ and $\delta_{t,u}(x)=y$ then $x\succeq y$ .

It is easy to verify that $\succeq$ is an order relation. We require that $(D, \succeq)$ be semi-coherent. We also
require that $D$ be a cpo, which we need in constructing a reflective I-domain.

One can verify easily that the triple $(D, T, \tau)$ satisfying these conditions has the following
property:

If $\tau(x)=t$ and $t\geq u$ , then there is a unique $y$ such that $\tau(y)=u$ and $x\succeq y$ . $(**)$

This means that the coercion of a value $x$ to a type that the type of $x$ inherits exists and is unique.
So far, we defined the order relation on $D$ using the coercion functions $\delta_{t,u}$ . Conversely, suppose

that $D$ is a semi-coherent cpo, $T$ is a semi-coherent poset, and $\tau$ is a monotonic function from $D$

to $T$ which is surjective and satisfies $(**)$ . Then we can define $\delta_{t,u}$ which satisfies $(*)$ by defining
$\delta_{t,u}(x)$ as the $y$ in $(**)$ , which is uniquely determined by $x$ . So we define I-domains as follows.

DEFINITION. Let $(D, \succeq)$ be a semi-coherent cpo, $(T, \geq)$ be a semi-coherent poset, and $\tau$ be a
monotonic function from $D$ to $T$ which is surjective and satisfies $(**)$ . We call the triple $(D, T,\tau)$

an I-domain (domain with type inheritance). We write $y$ in $(**)$ as $\delta_{t,u}(x)$ and call it the coercion
of $x$ to $u$ .

$\delta_{t,u}(x)$ is also denoted by $x|_{u}$ . We denote the least upper bound (l.u.$b.$ ) of $U$ by $uU$ , and greatest
lower bound by $\lceil\urcorner U$ . We abbreviate $u\{e|u\in U\}$ to $u_{u\in U}e$ where $e$ is some expression which
depends on $u$ . We also abbreviate it to $u_{u}e$ when the set $U$ is apparent.

I-domains have the following properties.

PROPOSITION 1. Let $(D, T, \tau)$ be an I-domain.
1) Let nil an $d$ null be le$ast$ elemen $ts$ of $D$ and $T$, then $\tau(nil)=null$ . nil is the on$ly$ value which
$b$ elongs to null.
2) If $\tau(x)=\tau(y)=t$ and $x\succeq y$ , then $x=y$ .
3) Let $v$ be the 1. $u.b$ . of a $su$ bset $U$ ofT, and let $z$ be an element $be$longin$g$ to $v$ . Then $z=u_{u\in U}z|_{u}$ .
4) $\tau$ preserves all th$e$ existin$g$ least upper boun$ds$ . That is, when $X$ is a subset of $D$ which has the
leas$t$ upper bound $z,$ $u\tau(X)$ exists an $d$ is $eq$ ual to $\tau(z)$ .
5) $\tau$ preserves greatist lower boun $ds$ . That is, when $X$ is a $su$ bset of $D,$ $\tau(nX)=n\tau(X)$ .
(proof) 1) It is obvious because $\tau$ is surjective and monotonic.

2) Clear from the uniqueness of $\delta_{t,t}(x)$ .
3) Since $z\succeq z|_{u}(\forall u\in U)$ and $D$ is semi-coherent, there exists $x=U_{u}z|_{u}\preceq z$ . Since $\tau$ is

monotone, $\tau(x)$ satisfies $v\geq\tau(x)$ and $\tau(x)\geq u(\forall u\in U)$ . So $\tau(z)=v=\tau(x)$ , which means $z=x$
by 2).

4) Since $\tau(z)\geq\tau(x)(\forall x\in X),$ $v=u\tau(X)$ exists and $\tau(z)\geq v$ . We have $z\succeq z|_{v}\succeq z|_{\tau(x)}=$

$x(\forall x\in X)$ , which means $z=z|_{v}$ and so $\tau(z)=v$ .
5) We must show that $\tau(u\{z|z\preceq x, \forall x\in X\})=u\{u|u\leq\tau(x), \forall x\in X)\}$ , which is obvious

using 4).
(end of proof)

\dagger We use $\geq$ for type domain, $and\succeq for$ value domain.

6



122
3) means that if $v$ is the l.u. $b$ . of a set of types $U$ , then every value belonging to $v$ is uniquely
determined by its coercions to types in U. 4) means that the type of the l.u. $b$ . is determined by
the types of each value.

2.2 Generic functions

DEFINITION. Let $(D,T,\tau),$ $(D’, T’, \tau’)$ be I-domains. A function $f$ from $D$ to $D’$ is generic with
respect to $T,$ $\tau,$ $T’,\tau’$ if $f$ is continuous and preserves types. Here we say that $f$ preserves types if
$\tau(x)=\tau(y)$ implies $\tau’(f(x))=\tau’(f(y))$ for $x,y\in D$ .

A generic function is monotonic because it is continuous, which means that if $\tau(x)\geq u$ then
$f(x|_{u})=f(x)|_{\tau’(f(x|_{u}))}$ . In other words, $f$ preserves coercion. Preserving types and coercions
are natural properties of generic functions as we mentioned in Introduction. Generic functions
are defined to be continuous, which is a stronger condition than being monotonic. We need this
condition in constructing a reflective I-domain.

Let $M=(D, T, \tau),$ $M’=(D’, T’,\tau’)$ be I-domains, and let $f$ be a generic function from $D$ to
$D’$ with respect to $T,\tau,$ $T’$ and $\tau’$ . Then we can define a function $\tau\tau^{\prime*}(f)$ from $T$ to $T$‘ as follows.

$\tau\tau^{\prime*}(f)(t)=\tau’(f(x))$ where $\tau(x)=t$ .

Here, we can take $x$ which belongs to $t$ because $\tau$ is surjective, and $\tau\tau^{\prime*}(f)(t)$ does not depend on
the choice of $x$ because $f$ preserves types. We call the function $\tau\tau^{\prime*}(f)$ the type of $f$ . We denote
$\tau\tau^{\prime*}(f)$ by $\tau^{*}(f)$ when $M$ is equal to $M’$ . $\tau\tau^{l*}(f)$ makes the following diagram commute.

$D_{\tau}\downarrow\underline{j}arrow D\downarrow’\tau’$

$T\underline{\tau}\tau_{arrow}^{l*}(f)T’$

Conversely, $\tau\tau^{\prime*}(f)$ is the only function from $T$ to $T’$ that makes this diagram commute, which
leads to the following definition of a homomorphism between I-domains.

DEFINITION. Let $M=(D, T,\tau),$ $M’=(D’, T’, \tau’)$ be I-domains. We call a pair of functions
$(\phi^{D}, \phi^{T})$ aa homomorphism from $M$ to $M’$ if $\phi^{D}$ is a continuous function from $D$ to $D’$ and $\phi^{T}$ is a
function from $T$ to $T$‘ which satisfy $\phi^{T}\cdot\tau=\tau’\cdot\phi^{D}$ .

When $f$ is a generic function, $(f, \tau\tau^{\prime*}(f))$ is a homomorphism. Conversely, it is easy to check
that when $(\phi^{D}, \phi^{T})$ is a homomorphism, $\phi^{D}$ is a generic function and $\phi^{T}$ is the type of $\phi^{D}$ . So there
is a one-to-one correspondence between homomorphisms and generic functions. Homomorphisms
satisfy the following Proposition.

PROPOSITION 2. Let $(\phi^{D}, \phi^{T})$ be a homomorphism from $M=(D,T, \tau)$ to $M’=(D’, T’,\tau’)$ .
1) $\phi^{T}$ preser$ves$ limits of directed sets. That is, if $U$ is a directed $su$bset of $T$ which has $uU$ , then
$u\phi^{T}(U)$ exists and is $eq$ ual to $\phi^{T}(uU)$ . Particularly, it is monotonic.
2) $Su$ppose that $x\in D,$ $u\in T,$ $\tau(x)\geq u$ , then $\phi^{D}(x)|_{\phi^{T}\langle u)}=\phi^{D}(x|_{u})$ .
(proof) 1) Because $\tau$ is surjective, there exists a value $c$ which belongs to $uU$ . We have $\phi^{T}(uU)=$

$\phi^{T}(\tau(c))=\tau’(\phi^{D}(c))$ . On the other hand, $c=u_{u}(c|_{u})$ by Proposition 1 (3) and so

$\tau’(\phi^{D}(c))=\tau’(\phi^{D}(u_{u}(c|_{u})))$

7
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Since $\{c|_{u}|u\in U\}$ is directed and $\phi^{D}$ is continuous,

$=\tau’(u_{u}(\phi^{D}(c|_{u})))$

$=u_{u}(\tau’(\phi^{D}(c|_{u})))$ ; Proposition1(4)
$=u_{u}(\phi^{T}(\tau(c|_{u})))$

$=u_{u}(\phi^{T}(u))$ .

2) Since $\phi^{D}$ is a generic function, $\phi^{D}(x|_{u})=\phi^{D}(x)|_{\tau’(\phi^{D}(x|_{u}))}$ . $\tau’(\phi^{D}(x|_{u}))$ is equal to $\phi^{T}(u)$ from
the definition of homomorphisms.

(end of proof)

PROPOSITION 3. I-domain$s$ with homomorphisms $make$ a category with the composition defined
as

$(\phi^{D}, \phi^{T})\cdot(\phi^{D’}, \phi^{T’})=(\phi^{D}\cdot\phi^{D’}, \phi^{T}\cdot\phi^{T’})$

an $d$ the identity homomorphism of $M=(D, T, \tau)$ defined as $id_{M}=(id_{D}, id_{T})$ where $id_{D}$ and $id_{T}$

are identity function$s$ of $D$ and $T$, respectively. We call this category DTI (the category of $dom$ains
with type inheritance).

DEFINITION. A homomorphism $(\phi^{D}, \phi^{T})$ from $M=(D, T, \tau)$ to $M’=(D’, T’, \tau’)$ is strict when
$\phi^{D}$ maps the bottom of $D$ to the bottom of $D’$ .

When $(\phi^{D}, \phi^{T})$ is strict, $\phi^{T}$ maps the bottom of $T$ to the bottom of $T’$ .

DEFINITION. A homomorphism $(\phi^{D}, \phi^{T})$ from $M=(D,T, \tau)$ to $M’=(D’, T’, \tau‘)$ is additive when
$\phi^{D}$ preserves all the existing l.u. $b’ s$ . That is, if $X$ is a subset of $D$ for which $ux$ exists then
$u\phi^{D}(X)$ exists and is equal to $\phi^{D}(\coprod X)$ .

By taking the empty set as $X$ , additive homomorphisms are strict. When $(\phi^{D}, \phi^{T})$ is additive,
$\phi^{T}$ also preserves all the existing l.u. $b’ s$ .

2.3 Some properties of DTI
In this subsection, we prove that DTI is a cartesian closed category. First, we discuss products

and sums of DTI.
Let $M=(D,T, \tau)$ and $M’=(D’, T’,\tau’)$ be I-domains. We define the product of $M$ and $M’$

as $M\cross M’=(D\cross D’, T\cross T’, \tau\cross\tau’)$ . Here, $D\cross D’$ is the product of two cpos, $T\cross T’$ is the
product of two posets, and $\tau\cross\tau’$ is the product of functions between posets. It is easily proved
that $M\cross M’$ is an I-domain. The projection from $M\cross M’$ to $M$ is the pair of projections from
$D\cross D’$ to $D$ and from $T\cross T’$ to $T$ . The projection to $M’$ is defined in the same way. Actually,
$M\cross M’$ is the categorical product of DTI.

We also define the sum of $M$ and $M’$ as $M+M’=(D+D’, T+T’, \tau+\tau’)$ . Here, $D+D’$
is the sum of two cpos with their least elements identified, $T+T’$ is the sum of two posets with
their least elements identified, and $\tau+\tau’$ is the sum of two strict functions between posets. It is
also easy to prove that $M+M’$ is an I-donain. The injection from $M$ to $M+M’$ is defin$ed$ as the
pair of injections from $D$ to $D+D’$ and from $T$ to $T+T’$ . The injection from $M’$ is defined in
the same way. Actually, $M+M’$ is the categorical sum in $DTI\perp$ , the subcategory of DTI whose
morphisms are strict homomorphisms.

8
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$Let\perp_{POSET}$ be the poset which consists of only one element, and $let\perp\tau$ be the only function

$from\perp_{POSET}to\perp_{POSET}$ . Then the I-domain $(\perp POSET, \perp_{POSET}, \perp_{\tau})$ is the terminal object of
DTI. This I-domain is denoted $by\perp_{DTI}$ .

Next, we prove that the set of homomorphisms make an I-domain. Let $M=(D,T, \tau),$ $M’$

$(D’, T’, \tau’)$ be I-domains. Let $[Darrow D’]$ denote the set of generic functions from $D$ to $D$ ‘ with
respect to $T,$ $\tau,$

$T’$ and $\tau’$ . We define order $relation\succeq on[Darrow D’]$ which is induced by that on $D’$ ,
that is,

$f\succeq g\Leftrightarrow f(x)\succeq g(x)$ $(\forall x\in D)$ .
$\succeq is$ an order relation.

PROPOSITION 4. 1) $[Darrow D’]$ is a $cpo$.
2) $[Darrow D’]$ is $s$emi-coherent.
(proof) 1) Let $F$ be a directed subset of $[Darrow D’]$ . We define $uF$ as $uF(x)=u_{f\in F}(f(x))$ (since
$F$ is directed, $\{f(x)|f\in F\}$ is directed for every $x$ ). It is easy to prove that $uF$ is continuous $and|$

preserves types. It is clear that $uF$ is the l.u. $b$ . of F. $|$

2) Let $F$ be a subset of $[Darrow D’]$ which has an upper bound $g$ . $g(x)\succeq f(x)(\forall f\in F)$ . $So|$

there exists the least upper bound $c(x)$ of $\{f(x)|f\in F\}$ for each $x$ . It is easy to prove that $c$ is !
continuous and preserves types. It is clear that $c$ is the l.u.$b$ . of $F$ .

(end of proof) $|$

Let $\{Tarrow T‘\}$ be the poset which consists of monotonic functions from $T$ to $T’$ . The $order|$

relation on $\{Tarrow T’\}$ is induced by that on $T’$ . There exists a function $\tau\tau^{;*}$ from $[Darrow D’]$ to
$\langle Tarrow T^{l}\rangle$ . Though $\tau\tau^{\prime*}$ is monotonic, the triple $([Darrow D’], \{Tarrow T’\}, \tau\tau^{\prime*})$ is not an $I- domain|$

because $\tau\tau^{\prime*}$ is not surjective. An example that it is not surjective is given in Appendix. We $need|$

to restrict the type domain to the image of $\tau\tau^{\prime*}$ . Let $[Tarrow T’]$ be the image of $\tau\tau^{;*}$ . We prove that
$[Tarrow T’]$ is semi-coherent. $|$

LEMMA. Let $f\in[Darrow D’]$ and $u\in[Tarrow T’]$ such that $\tau\tau^{\prime*}(f)\succeq u$ . Then $f|_{u}$ : $Darrow D’defined|$

as $f|_{u}(x)=f(x)|_{u(\tau(x))}$ is a generic function.
$|$

(proof) First, we prove that $f|_{u}$ is continuous. Let $X$ be a directed subset of $D$ .
$f|_{u}(uX)=f(uX)|_{u\langle\tau\langle uX))}$

$=(uf(X))|_{u(\tau\langle ux))}$ .
Since $u$ is in the image of $\tau\tau^{;*},$ $u(\tau(uX))=u(u\tau(X))=uu(\tau(X))$ by Proposition 2(1). Since
$uf(X)\succeq uf|_{u}(X)$ , we only need to show that $\tau’(u(f|_{u}(X)))=uu(\tau(X))$, which is trivial $because|$

$\tau’(u(f|_{u}(X)))=u\tau’(f|_{u}(X))=uu(\tau(X))$ . $f|_{u}$ preserves types because $\tau’(f|_{u}(x))=u(\tau(x))$ ,
which only depends on $\tau(x)$ . $f$

(end of proof)

PROPOSITION 5. $[Tarrow T’]$ is $s$emi-coherent.
(proof) Let $U$ be a subset of $[Tarrow T]$ and $v$ be an upper bound of $U$ . We have to show that $U$

has the least upper bound in $[Tarrow T]$ . Take $f\in[Darrow D’]$ which satisfies $\tau\tau^{\prime*}(f)=v$ . Since
$f|_{u}(x)\preceq f(x)(\forall u\in U)$ , there exists $U_{u\in U}(f|_{u}(x))$ . Define $g(x)=u_{u}(f|_{u}(x))$ . We will show
that $g$ is a generic function whose type is U U. $g$ is continuous because $g(uX)=u_{u}(f|_{u}(uX))=$
$u_{u}u_{x}(f|_{u}(x))=u_{x}g(x)$ for a directed subset $X$ of D. $g$ preserves types because

$=u_{u}\tau’(f|_{u}(x))$

$=u_{u}u(\tau(x))$ ,$\tau’(g(x))=\tau_{9}’(u_{u}(f|_{u}(x)))$
$\ovalbox{\tt\small REJECT}\supsetneqq^{\}|u\ovalbox{\tt\small REJECT}\wedge$
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which only depends on $\tau(x)$ . $\tau\tau^{\prime*}(g)$ is the least upper bound of $U$ because

$\tau\tau^{;*}(g)(t)=\tau’(g(x))$ (where $\tau(x)=t$)
$=\coprod_{u}u(\tau(x))$

$=u_{u}u(t)$

(end of proof)

$[Tarrow T’]$ is not a cpo even if $T$ and $T’$ are. An example that it is not is shown in Appendix.

THEOREM 1. Let $M=(D, T, \tau),$ $M’=(D’, T’,\tau’)$ be I-domains, then $[Marrow M’]=([Darrow$
$D’],$ $[Tarrow T’],$ $\tau\tau^{\prime*}$ ) is an I-domain.
(proof) It is sufficient to prove that $\tau\tau^{\prime*}$ satisfies $(**)$ , which is obvious by the lemma above.

(end of proof)

Moreover, DTI is a cartesian closed category (in short ccc).

THEOREM 2. DTI $is$ a $ccc$ .
(proof) Let $M=(D, T, \tau),M’=$ $(D’, T’, \tau’),$ $M_{1}$ $=(D_{1}, T_{1}, \tau_{1}),$ $M_{2}$ $=$ $(D_{2}, T_{2}, \tau_{2}),$ $M_{3}=$

$(D_{3}, T_{3}, \tau_{3})$ be I-domains. We have proved that there exist products and terminal object. Let
$ev^{D}$ : $[Darrow D’]\cross Darrow D’$ be $ev^{D}(f, d)=f(d)$ , and let $ev^{T}$ : $[Tarrow T’]\cross Tarrow T’$ be $ev^{T}(u, t)=u(t)$ .
Then $ev^{D}$ is continuous and $ev^{T}\cdot\tau\tau^{l*}\cross\tau=\tau^{l}\cdot ev^{D}$ ; so $ev=(ev^{D}, ev^{T})$ is a homomorphism from
$[Marrow M’]\cross M$ to $M’$ . Let $f=(f^{D}, f^{T})$ be a homomorphism from $M_{1}\cross M_{2}$ to $M_{3}$ . $f^{D}$ is from
$D_{1}\cross D_{2}$ to $D_{3}$ and $f^{T}$ is from $T_{1}\cross T_{2}$ to $T_{3}$ . It is easily proved that $\Lambda f^{D}$ : the curry of $f^{D}$ in
the category of cpos, is a function to $[D_{2}arrow D_{3}]$ , and $\Lambda f^{T}$ : the curry of $f^{T}$ in the category of
posets, is a function to $[T_{2}arrow T_{3}]$ . It is easy to verify other conditions for $\Lambda f=(\Lambda f^{D},\Lambda f^{T})$ to be
a homomorphism from $M_{1}$ to $[M_{2}arrow M_{3}]$ . $f=ev\cdot(\Lambda f\cross id_{M_{2}})$ because, as mentioned below, it
suffices to prove the equality of D-components of the homomorphisms.

(end of proof)

There is a faithful functor $F$ from DTI to CPO such that

$F(M)=D$

$F(f)=f^{D}$ where $f=(f^{D}, f^{T})\in Hom(M_{1}, M_{2})$ .

This means that when we prove the equality of two homomorphisms, it suffice to prove the equality
of D-components. $F$ preserves the terminal object, product and $ev$ . Since CPO has a faithful
functor to Set, DTI has a faithful functor to Set, that is, DTI is a concrete category.

2.4 Limits in DTI
Next, we will see that every $\omega^{op}$-chain $M_{B}arrow^{fo}M_{1}arrow^{f_{1}}M_{2^{arrow}}^{j_{\underline{2}}}\cdots$ has a limit.

PROPOSITION 6. Let $\Delta=(M_{i}, f_{i})(M_{i}=(D_{i}, T_{i}, \tau_{i}),f_{i}=(f_{D}., f_{T_{i}}))$ be an $\omega^{op}$-chain. Then $\triangle h$ as
the limit $(M,g_{i})$ .
(proof) $(D_{i}, f_{i}^{D}),$ $(T_{i}, f_{i^{T}})$ are $\omega^{op}$-chains in the category of cpo and poset respectively. Therefore,
there exist their limits $(D,g_{i}^{D})$ and $(T, g_{i}^{T})$ . $D$ and $T$ are actually constructed as follows,

$D=\{<d_{0}, d_{1}, \ldots>|d_{i}\in D_{i}, f_{n}^{D}(d_{n+1})=d_{n}(n=0,1,2, \ldots)\}$

$T=\{<t_{0}, t_{1}, \ldots>|t_{i}\in T_{i}, f_{n}^{T}(t_{n+1})=t_{n}(n=0,1,2, \ldots)\}$ .

10
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Since $\tau_{i}$ are functions between $\omega^{op}$-chains, there exists their limit $\tau$ from $D$ to T. $\tau$ is actually
defined as follows.

$\tau(<d_{0},d_{1}, \ldots>)=<\tau_{0}(d_{0}),\tau_{1}(d_{1}),$ $\ldots>$ .
Since $\tau$ is not, in general, surjective, we define $\overline{T}$ as the image of $\tau$ .

We show that $\overline{T}$ is semi-coherent. Let $U=\{u^{\langle l)}=<u_{0}^{(l)},$ $u_{1}^{(l)},$ $\ldots>|l\in L\}$ be a subset of $\overline{T}$

which has an upper bound $s=<s_{0},$ $s_{1},$
$\ldots>\in\overline{T}$ . We have to show that $U$ has the l. $u.b$ . in $\overline{T}$ . Take

$xs=<xs_{0},$ $xs_{1},$ $\ldots>\in D$ such that $\tau(xs)=s$ . By Proposition 2 (2), $f_{n}^{D}(xs_{n+1}|_{u_{n+1}^{(l)}})=xs_{n}|_{u_{n}^{(\mathfrak{l})}}$ . $|$

So, $xu^{(l)}=<xs_{0}|_{u_{0}^{(l)}},$ $xs_{1}|_{u_{1}^{(l)}},$ $\ldots>$ is in $D$ . There exists $a_{n}=u_{l}(xs_{n}|_{u_{n}^{(t)}})$ because each $D_{n}$ is $|$

semi-coherent.
Define homomorphisms $f_{i,n}=(f_{i,n}^{D}, f_{i,n}^{T})=f_{n}\cdot f_{n+1}\cdot\ldots\cdot f_{i-1}$ : $M_{i}arrow M_{n}(n<i)$ . $y_{n}=$

$u_{i\geq n}f_{i,n}^{D}(a_{i})$ exists because $\{f_{i,n}^{D}(a_{i})\}$ is a directed set in $D_{n}$ . $f_{n}^{D}(y_{n+1})=y_{n}(n=0,1, \ldots)$ because $|$

l.u.b. of $\{xu^{(l)}\}$ .
$f_{n}^{D}$ is continuous, which means that $y=<y_{0},y_{1},$ $\ldots>$ is in $D$ . It is easy to verify that $y$ is the

$!$

$\tau_{n}(y_{n})=\tau_{n}(u_{i\geq n}f_{i,n}^{D}(a_{i}))$

$=u_{i\geq n}\tau_{n}(f_{i^{D}n}(a_{i}))$

$=u_{i\geq n}f_{i,n}^{T}(\tau_{i}(a_{i}))$ ; $f_{i,n}$ is a homomorphism.

$=u_{i\geq n}f_{i,n}^{T}(u_{l}u_{i}^{(l)})$

it follows that $\tau(y)=<\tau_{0}(y_{0}),\tau_{1}(y_{1}),$ $\ldots>is$ the l.u.$b$ . of $U$ . From this proof, it is obvious that $D$

is semi-coherent. It is also easy to verify that $\tau$ satisfies the condition for I-domains. Now we have
$\epsilon$

proved that $M=(D,\overline{T},\tau)$ is an I-domain.
$g_{i}=(g_{i}^{D},g_{i}^{T})$ is a homomorphism from $M$ to $M_{i}$ and $(M, g_{i})$ is the limit of $\Delta$ .

(end of proof)

The functor $F$ from DTI to CPO also preserves limits of $\omega^{op}$-chains.

3. Construction of a reflective I-domain

In this section, we construct an I-domain $M$ which satisfies

$M=M_{B}+[Marrow M]$

where $M_{B}=(D_{B}, T_{B}, \tau_{B})$ is a given I-domain. $[SmP82]$ gives general conditions under which such $|$

recursive domain equations are solvable. We construct an I-domain $M$ using their results. Here,
we refer to their results as “Facts” and omit proofs. See $[SmP82]$ for their proofs.

DEFINITION. (Definition 5 of $[SmP82]$) A category, $K$ , is an O-category if and only if (i) every hom-
set is a poset in which every ascending $\omega$-sequence has a l.u. $b$ . and (ii)composition of morphisms
is an $\omega$-continuous operation with respect to this partial order.

$\wedge\}$

PROPOSITION 7. DTI $is$ an O-category. $\not\in\vee$

(proof) 1) Let $M_{1}=(D_{1}, T_{1}, \tau_{1}),$ $M_{2}=(D_{2}, T_{2}, \tau_{2})$ be I-domains. Hom-set from $M_{1}$ to $M_{2}$ is
isomorphic to $[D_{1}arrow D_{2}]$ , which is $a$ cpo. Composition of morphisms is $\omega$-continuous because of
the definition of the order on $[D_{1}arrow D_{2}]^{o}$

11
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DEFINITION. (Definition 6 of $[SmP82]$) Let $K$ be an O-category and let $f$ : $Aarrow B,g:Barrow A$ be
morphisms such that $g\cdot f=id_{A}$ and $f\cdot g\preceq id_{B}$ . Then we call $(f, g)$ a projection pair from $A$ to
$B,$ $f$ an embedding and $g$ a projection.

It can be proved that one half of a projection pair determines the other. When $f$ is an
embedding, we write $f^{P}$ for the corresponding projection. We write $K^{E}$ for the subcategory of $K$

which has the same objects as $K$ and which has only embeddings as morphisms.

FACT 1. (Theorem 1 of $[SmP82]$ ) Let $K$ be an O-category which 11as a terminal object, $\perp$ , and
in which every Aom-set $hom(A, B)$ has a le$ast$ element, $1_{A,B}$ . Suppose too that $com$position is
left-strict in the sense that for any $f$ : $Aarrow B$ we $have\perp_{B,C}\cdot f=\perp_{A,C}$ . $Then\perp is$ the initial
object of $K^{E}$ .

PROPOSITION 8. $DTI^{E}h$as an initial object.
(proof) $\perp_{DTI}$ is the terminal object of DTI. Easy using Fact 1.

(end of proof)

FACT 2. (Theorem 2 of $[SmP82]$ ) Let $K$ be an O-category and $\Delta=(A_{i},g_{i})$ be an $w$-chain in $K^{E}$ .
Then $\Delta^{Rev}=(A_{i}, g_{i}^{P})$ is an $\omega^{op}$ -chain in K. If $\Delta^{Rev}$ has a limit in $K$ , then $\Delta$ has a colimit in $K^{E}$ .

DEFINITION. (Definition 3 of $[SmP82]$) A category, $K$ , is an $\omega$-category if and only if it has an
initial object, and every $\omega$-chain has a colimit.

PROPOSITION 9. DTI is an $\omega$-category.
(proof) From Proposition 6, Proposition 7, 8 and Fact 2.

(end of proof)

DEFINITION. (Definition 4 of $[SmP82]$ ) Let $F:Karrow L$ be a functor. It is $\omega$ -continuous if and only
if it preserves $\omega$-colimits, that is, when $\triangle$ is an $\omega$-chain and $(A, g)$ is its limit, then $(F(A), F(g))$ is
the limit of $F(\triangle)$ .

FACT 3. (Derived from Lemmal, Lemma2 of $[SmP82]$ ) Let $K$ be a $\omega$-category and let $F:Karrow K$

be an $w$ -continuous functor. Let $1_{K}$ be the initial object of $K$ , and $1_{A}$ be the unique morphism
from $1_{K}$ to A. Define the w-chain $\Delta$ to be $(F^{n}(1_{K}), F^{n}(1_{F(1_{K})}))$ an$d(A,g)$ to be the colimit of $\triangle$ .
Then $F(A)\cong A$ .

DEFINITION. (Definition 10 of $[SmP82]$ ) Let $K,$ $L,$ $M$ be O-categories. A covariant functor $T$ :
$K^{OP}\cross Larrow M$ is locally continuous if and only if it is $\omega$-continuous on the hom-sets; that is, if
$f_{n}$ : $Aarrow B$ is an increasing $\omega$-sequence in $K^{OP}$ and $g_{n}$ : $Carrow D$ is one in $L$ then $T(u_{n}f_{n}, u_{n}g_{n})=$

$U_{n}T(f_{n}, g_{n})$ .

FACT 4. (Derived from Theorem 3 and Corollary to Theorem 2 of $[SmP82]$ ) Suppose a covariant
func$torT$ : $K^{OP}\cross Larrow M$ is locally $con$tinuous, an $d$ every $w^{OP}$ -chain $\Lambda$as a limit both in $K$

an $d$ L. Then the functor $T^{E}$ : $K^{E}\cross L^{E}arrow M^{E}$ defined as $T^{E}(A,B)=T(A, B)$ for objects and
$T^{E}(f, g)=T((f^{P})^{OP},g)$ for morphisms is $\omega$-continuous.

Using Fact 4, We will prove that an functor $F$ : $DTI^{E}arrow DTI^{E}$ defined for objects as
$F(M)=M_{B}+[Marrow M]$ is $\omega$-continuous, and that their exists an I-domain $M$ which is isomorphic
to $F(M)$ using Fact 3.

12
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PROPOSITION 10. Let $M_{i}=(D_{i}, T_{i}, \tau_{i})(i=1,2,3,4)$ be I-domain$s$ and $f=(f^{D}, f^{T})$ : $M_{1}arrow$

$\overline{M_{2},g=(g^{D},g^{T})};M_{3}arrow M_{4}$ be homomorphisms.
$l)Define\phi^{D}$ : [$D_{2}arrow D_{3}$ } $arrow[D_{1}arrow D_{4}]$ and $\phi^{T}$ : $[T_{2}arrow T_{3}]arrow[T_{1}arrow T_{4}]$ as follows:

$\phi^{D}(d : [D_{2}arrow D_{3}])=g^{D}\cdot d\cdot f^{D}$

$\phi^{T}(u : [T_{2}arrow T_{3}])=g^{T}\cdot u\cdot f^{T}$ .

Then $\phi=(\phi^{D}, \phi^{T})$ is a homomorphism from $[M_{2}arrow M_{3}]$ to $[M_{1}arrow M_{4}]$ .
$2)We$ can define a functor $HOM:$ DTI $\cross DTIarrow DTI$ as follows:

$HOM(M_{1},M_{2})=[M_{1}arrow M_{2}]$

$HOM(f,g)=\phi$ .
(proof) $1$ ) $Since\phi^{D}$ is continuous, we only have to prove that $\tau_{1}\tau_{4^{*}}\cdot\phi^{D}=\phi^{T}\cdot\tau_{2}\tau_{3^{*}}$ . Suppose
$d\in[D_{2}arrow D_{3}]$ $t\in T_{1}$ .

$(\tau_{1}\tau_{4^{*}}\cdot\phi^{D})(d)(t)$ $=\tau_{4}(\phi^{D}(d)(x))$ ; ; Definition of $\tau_{1}\tau_{4}^{*}$

where $x\in D_{1}$ such that $\tau_{1}(x)=t$

$=\tau_{4}(g^{D}\cdot d\cdot f^{D}(x))$ ; ; Definition of $\phi^{D}$

$=(g^{T}\cdot\tau_{3}\cdot d\cdot f^{D})(x)$ ; ; $g$ is a homomorphism.
$(\phi^{T}\cdot\tau_{2}\tau_{3}^{*})(d)(t)$ $=(g^{T}\cdot\tau_{2}\tau_{3^{*}}(d)\cdot f^{T})(t)$ ; ; Definition of $\phi^{T}$

$=(g^{T}\cdot\tau_{2}\tau_{3^{*}}(d)\cdot\tau_{2})(f^{D}(x))$ ; ; $f$ is a homomorphism.
where $x\in D_{1}$ such that $\tau_{1}(x)=t$

$=(g^{T}\cdot\tau_{3})(d(f^{D}(x)))$ ; ; Definition of $\tau_{2}\tau_{3^{*}}$ .

$2)Easy$.
(end of proof)

PROPOSITION 11. $l$ )$Thefun$ctor $HOM:$ DTI $\cross DTIarrow DTI$ defin$ed$ above is locally $c$ontinu-
$ous$ .
$2)The$ product functor $PROD:DTI\cross DTIarrow DTI$ is locally continuous.
$3)The$ sum functor SUM: $DTI\perp\cross DTI\perparrow DTI\perp is$ $loc$ally continuous. Where $DTI\perp is$ the
subcategory ofDTI whose objects are I-domains and whose morphisms are strict $I_{J}$ omomorphisms.

(proof) 1) Let $f_{n}=(f_{n}^{D}, f_{n}^{T})$ : $M_{1}arrow M_{2}$ be an increasing $\omega$-sequence in $DTI^{OP}$ , and $g_{n}=$

$(g_{n}^{D}, g_{n}^{T})$ : $M_{3}arrow M_{4}$ be one in DTI, We only have to prove the equality of D-components, that is,
$u_{n}(g_{n}^{D}\cdot d\cdot f_{n}^{D})=(u_{n}g_{n}^{D})\cdot d\cdot(U_{n}f_{n}^{D})$ , which is obvious.

$2),3)$ Easy.
(end of proof)

COROLLARY. The $fu$nctors $HOM^{E},$ $PROD^{E},$ SUM : DTI $\cross DTI^{E}arrow DTI^{E}$ are w-continuous.

(proof) For $HOM^{E}$ , it is a direct consequence of Proposition 11 and Fact 4. We can consider PROD
be a functor from $ID^{OP}\cross$ ( $DTI\cross$ DTI) to DTI, and SUM be one from $ID^{OP}\cross(DTI\perp\cross DTI_{\perp})$

to $DTI\perp$ , where ID is the category with one object and one arrow. By Fact 4, PROD is a functor
from DTI $\cross DTI^{E}arrow DTI^{E}$ , and SUM is a functor from $DTI_{\perp}^{E}\cross DTI_{\perp}^{E}arrow DTI_{\perp}^{E}$ . $DTI\perp^{E}$

is isomorphic to $DTI^{E}$ .
(end of proof)

13
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PROPOSITION 12. The fun ctor $F:$ DTI $arrow DTI^{E}$ defined as

$F(M)=M_{B}+[Marrow M]$
$F(f : M_{1}arrow M_{2})=SUM^{E}(id_{M_{B}}, HOM^{E}(f, f))$ .

is $\omega- con$ tinuous.

THEOREM 3. 1) $M$ , the colimit of $\Delta=(F^{n}(\perp DTI), F^{n}(\perp F(\perp)))$ in $DTI^{E}$ , and $M_{B}+[Marrow M]$

are isomorphic; that is, there are homomorphisms

$\Phi=(\Phi^{D}, \Phi^{T})$ : $M$ $arrow$ $M_{B}+[Marrow M]$

$\Psi=(\Psi^{D}, \Psi^{T})$ : $M_{B}+[Marrow M]$ $arrow$ $M$

which satisfies
$\Phi\cdot\Psi=id_{(M_{B}+[Marrow M])}$

$\Psi\cdot\Phi=id_{M}$ .
2) Moreover, $\Phi$ and $\Psi$ are additive.
(proof) 1) From Proposition 9, 12 and Fact 3.

2) Since $\Phi$ and $\Psi$ are morphisms in $DTI^{E}$ , they are embeddings in DTI. In DTI, all the
embeddings are additive, because it holds in cpo.

(end of proof)

4. The syntax of LTI

In this section, we specify the syntax of the language LTI. Before that, we introduce some notions
on posets which we use in giving semantics to LTI in the following sections.

4.1 Preliminaries

DEFINITION. Let $T$ be a poset. An element $t$ is finite if for every directed subset $U$ of $T$ whose
l.u. $b$ . is greater than $t$ , there exists an element $u\in U$ such that $t\leq u$ . The set of all finite elements
of $T$ is denoted by $\mathcal{F}(T)$ .

DEFINITION. Let $T$ be a poset. A subset $V$ of $T$ is open if it satisfies the following conditions: (1)
if $V\ni t$ then $V\ni u$ for all $u\geq t$ . (2) for every directed subset $U$ of $T$ which has the l.u. $b$ . in $V,$ $U$

and $V$ intersects. The set of all open sets of $T$ is denoted by $O(T)$ .

PROPOSITION 13. Let $T$ be a $p$oset.
1) If $t_{1}ut_{2}$ exists for $t_{1},$ $t_{2}\in \mathcal{F}(T)$ then $t_{1}ut_{2}\in \mathcal{F}(T)$ .
2) Let $u\in \mathcal{F}(T)$ . Then $u\Uparrow=\{t\in T|t\succeq u\}$ is an $op$en set of $T$ .

DEFINITION. Let $u$ be a finite element of $T$ . Then we call $u\Uparrow in$ Proposition 13 the principal open
set of $T$ generated by $u$ . The set of principal open sets and the empty set is denoted by $\mathcal{P}(T)$ .

PROPOSITION 14. Let $T$ be a poset an$dT’$ be a poset with least element null, and let $O\in \mathcal{P}(T),$ $u\in$

$\mathcal{F}(T’)$ . Then we define $\lfloor Oarrow\succ u\rfloor$ : $Tarrow T’$ as follows.

$\lfloor O\mapsto uJ(t)=if(t\in O)$ then $u$ else null

$\lfloor Orightarrow u\rfloor is$ a finite elemen $t$ of $\{Tarrow T’\}$ .

14
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PROPOSITION 15. Let $M=(D, T, \tau),$ $M’=(D’, T’, \tau’)$ be I-domain$s$ and let nil and null be the
least $el$ements of $D’$ an$dT’$ respec$ti$vely.
(1) Let $u\in \mathcal{F}(T),$ $v\in T’$ , and $f$ : $Val(u)arrow Val(v)$ . We define $f\triangle^{D}$ : $Darrow D’$ and $f\triangle^{T}$ : $Tarrow T’$

as follo$ws$ .
$f\triangle^{D}(x)=if$ $(\tau(x)\geq u)$ then $f(x|_{u})$ else nil
$f\triangle^{T}(t)=if(t\geq u)$ then $v$ else null

Then $f\triangle=(f\triangle^{D}, f\triangle^{T})$ is a homomorphism from $M$ to $M’$ .
(2) Let $f=(f^{D}, f^{T})$ be a homomorphism from $M$ to $M’$ , and $O\in \mathcal{O}(T)$ . We define $f^{D}!0$ : $Darrow D’$

an $df^{T}!0$ : $Tarrow T’$ as follows,

$f^{D}!o(x)=if(\tau(x)_{\sim}\in O)$ then $f^{D}(x)$ else nil
$f^{T}!o(t)=if(t\in O)$ then $f^{T}(t)else$ null.

Then $f!0=(f^{D}!0, f^{T}!0)$ is a $hom$omorphis$m$ from $M$ to $M’$ .

Let $T$ be a poset, $T’$ be a poset with least element null, $O\in \mathcal{P}(T)$ , and $f$ be a function from
$Y$

$T$ to $T’$ . We also write $f]_{O}$ for the function defined as

$f!_{O}(t)=if(t\in O)$ then $f(t)$ else null.

a
$z\in Dsuchthat\tau(z)=ua^{l}nddefi’nef^{D’}=lambda(x).zan\grave{d}f^{T}=lambda(t).u$.$Then(f^{D}, f^{T})LetM=(D,T, \tau)andM=(D,T’, \tau)beI- domains,$$and1etO\in \mathcal{P}(T)andu\in \mathcal{F}(T^{l}). Take|$

is a homomorphism from $M$ to $M’$ . By Proposition 15, $f!0$ is a homomorphism from $M$ to $M’$ .
You can see that $f^{T}!0$ is equal to $\lfloor Oarrow\succ u\rfloor$ . It follows that $\lfloor Orightarrow u\rfloor$ is a member of $[Tarrow T]$ . 1
4.2 The syntax of LTI

The syntax of LTI consists of $Exp$ : the set of expressions, TExp: the set of type expressions,
and typeof: a function from $Exp$ to TExp.

This language depends on the choice of following sets of symbols.

V :The set of variables
$C$ :The set of constants
TV :The set of type variables
TC :The set of type constants
FTC :The set of finite type constants

We assume the existence of one to one correspondence typeofv from V to TV. $C$ contains a
special constant nil. FTC is a subset of TC and contains a special type constant null. FTC is the set
of type constants which are assigned finite types as their meaning. In most practical cases, FTC is
same as TC.

First, we define $Exp$ : the set of expressions. $Exp$ is the set of untyped lambda-expressions with $=$

constants from C.
$\theta\tau g\prime R$

$e::=c|v|\lambda v$ . $e|e_{1}e_{2}$
$e,e_{1},e_{2}^{C}\in Exp_{15}v\in V\in C$

$\ovalbox{\tt\small REJECT}_{\theta}\xi_{\lambda}a_{W}$

We use parentheses additionally in order to make the order of association clear.
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Next, we define TExp: the set of type expressions. We also define FTExp: the set of finite type

expressions and OExp: the set of open set expressions along with defining TExp. In the semantics,
a finite type expression denotes a finite element of the type domain, and an open set expression
denotes a principal open $s$ et of the type domain.

$tc\in$ TC
$tv\in$ TV

$ftc\in$ FTC
$te,te_{1},te_{2}\in TExp$

$o,A_{i}\in OExp$ $(i=0,1, \ldots,m)$

$fte,$ $B_{i}\in$ FTExp $(i=0,1, \ldots, m)$

$te::=tc|tv|\Lambda tv:0$ . $te|te_{1}te_{2}|te_{1}\vee te_{2}$

$fte::=ftc|(A_{0}arrow B_{0},A_{1}arrow B_{1}, \ldots,A_{m}arrow B_{m})$

$o::=fte\uparrow$

$te_{1}\vee te_{2}$ is a type expression which denotes the least upper bound of the types denoted by $te_{1}$

and $te_{2}$ . $\Lambda tv$ : $0$ . $te$ is a type expression which denotes the type of a function whose retum value
belongs to the type denoted by $te$ when the type of the given argument is a member of the set
denoted by $0$ , and otherwise returns nil, the value denoted by nil. We abbreviate $\Lambda tv$ : $null\uparrow$ . $te$

as $\Lambda tv$ . $te$ . $(A_{0}arrow B_{0}, A_{1}arrow B_{1}, \ldots, A_{m}arrow B_{m})$ is an abbreviation for $(\Lambda tv : A_{1}. B_{1})\vee(\Lambda tv$ :
$A_{2}$ . $B_{2}$ ) $\vee\ldots\vee(\Lambda tv : A_{m}. B_{m})$ . Thus, FTExp is a subset of TExp. Closed expressions and closed
type expressions are defined in the usual manner.

Finally, we define the function typeof from $Exp$ to TExp. Suppose that there is a function
typeofc from $C$ to the set of closed type expressions such that typeofc(nil) $=$ null. typeof is defined
as follows;

typeof(c) $=typeofc(c)$ where $c\in C$

typeof(v) $=typeofv(v)$ where $v\in V$

typeof$(\lambda v. e)=\Lambda typeofv(v)$ . typeof(e)
typeof$(e_{1}e_{2})=typeof(e_{1})typeof(e_{2}$ }.

We call typeof(e) the type of $e$ .
The syntax of LTI depends on what we take as the symbols and how we define typeofv and

typeofc. Here is an example of them.

$V=\{x\}$

$C=INT+REAL+\{nil\}+$ { $sqrt$ , trunc, $+$ }
TV $=\{t\}$

TC $=$ FTC $=$ {int, real, null}

where INT is the set of symbols denoting integers such as $- 2,- 1,0,1,2$, and REAL is the set of
symbols denoting (a subset of) real numbers such as 1.0, 2.0, 2.45.

16
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typeofv and typeofc are defined as follows;

typeofv(x) $=t$

typeofc(e) $=int$ where $e\in$ INT
typeofc(e) $=real$ where $e\in$ REAL

typeofc(sqrt) $=(real\uparrowarrow real)$

typeofc(trunc) $=(real\uparrowarrow int)$

typeofc(+) $=(int\uparrowarrow(int\uparrowarrow int)$ ,
$real\uparrowarrow(real\uparrowarrow real))$ .

The followings are expressions:

$((+ 2)3)$
$\lambda x$ . $x$

$\lambda x$ . $(xx)$

$\lambda x$ . ( $(+$ (trunc (sqrt $x$ ))) $x$ ).

The types of these expressions are as follows;

typeof$((+2)3)=$ ($(+’$ int) int)

typeof(Ax. $x$ ) $=\Lambda t$ . $t$

typeof$(\lambda x. (xx))=\Lambda t$ . $(tt)$

typeof( $\lambda x$ . $((+$ (trunc (sqrt $x$ ))) $x)$ ) $=\Lambda t$ . ( $(+’$ (trunc’ (sqrt’ $x)))x$).

Here, we used the following abbreviations:

sq rt’ $=(real\uparrowarrow real)$

trunc’ $=(real\uparrowarrow int)$

$+’=(int\uparrowarrow(int\uparrowarrow int)$ ,
$real\uparrowarrow(real\uparrowarrow real))$ .

5. Semantics

In this section, we give a denotational semantics to LTI. The semantic domain is an I-domain
$M=(D, T, \tau)$ which satisfies the equation

$Marrow\Psi\underline{\underline{\Phi}arrow}M_{B}+[Marrow M]+WRONG$

where $M_{B}=(D_{B}, T_{B}, \tau_{B})$ is a given.I-domain which consists of the set of fundamental values $D_{B}$ ,
the set of fundamental types $T_{B}$ , and the type assignment function $\tau_{B}$ from $D_{B}$ to $T_{B}$ ; WRONG $|$
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DWrong and TWrong mean type mismatch; that is, DWrong means that an element of $D_{B}$

is applied, as a function, to an argument, and TWrong means that an element of $T_{B}$ is applied,
as a function, to an argument. There is another notion of ‘error’ in this semantics; that is, not
every type expression has meaning in T. TExp includes a type expression $te_{1}\vee te_{2}$ which denotes
the least upper bound of the two types denoted by $te_{1}$ and $te_{2}$ . However, in the type domain $T$,
not every two types have the least upper bound. So $te_{1}\vee te_{2}$ may not have meaning in T. Neither
may $\Lambda tv$ : o.te have meaning in $T$ , since one can express functions on types which are not types of
generic functions. Hence, $\mathcal{E}^{T}$ returns Error, which is a special element not in $T$ , when the type
expression does not have meaning in $T$ . Theorem 4 ensures that the meaning of a type expression
is not Error if it is a type of an expression. Because we are only interested in types of expressions,
we may safely say that $T$ is the semantic domain of type expressions. Note that Error is not an
element of $T$ though TWrong is.

We call Env $=Varrow D$ the set of environments and TEnv $=T\veearrow T$ the set of type environ-
ments. $\mathcal{E}$ and $\mathcal{E}^{T}$ has the following domains and codomains;

$\mathcal{E}$ : $Exparrow(Envarrow D)$

$\mathcal{E}^{T}$ : $TExparrow(TEnvarrow T+\{Error\})$ .

In the following, we use $[, ]$ instead of $(, )$ for arguments in syntactic domains. Let nil be the
bottom of $D$ , null be the bottom of $T$ .

First, we define $\mathcal{E}$ : the semantic function for expressions. Let $\mathcal{E}^{C}$ : $Carrow D$ be a given semantic
function for constants. $\mathcal{E}$ : $Exparrow(Envarrow D)$ is defined following the structure of expressions:

$\mathcal{E}[cI(\rho)=\mathcal{E}^{C}[cI$

$\mathcal{E}|[vI(\rho)=\rho(v)$

$\mathcal{E}[e_{1}e_{2}I(\rho)=if(\Phi^{D}(\mathcal{E}[e_{1}I(\rho))\in[Darrow D])$

then $\Phi^{D}(\mathcal{E}[e_{1}J(\rho))(\mathcal{E}[e_{2}I(\rho))$

else DWrong

$\mathcal{E}[\lambda v.eJ(\rho)=\Psi^{D}(f)$

where $f=lambda(d).\mathcal{E}[eJ(\rho[d/v])$

where $\rho[d/vI$ is the environment identical to $\rho$ except that it maps $v$ to $d$. We must prove that
the $f$ appeared in the above definition belongs to $DF=[Darrow D]$ .

LEMMA. lambda$(d).\mathcal{E}[eI(\rho[d/v])$ is a generic $fu$nction from $D$ to $D$ .
(proof) It is proved using structural induction on the formation of $Exp$ .

(end of proof)

Next, we define $\mathcal{E}^{T}$ : the semantic function for type expressions. Let $\mathcal{E}^{TC}$ : $TCarrow T$ be a given
semantic function for type constants that maps each element in FTC to $\mathcal{F}(T)$ . Before defining $\mathcal{E}^{T}$ ,
we define $\mathcal{E}^{F}$ : the semantic function for FTExp, and $\mathcal{E}^{O}$ : the semantic function for OExp. Their
domains and codomains are as follows;

$\mathcal{E}^{F}$ : $FTExparrow \mathcal{F}(T)+Error$

$\mathcal{E}^{O}$ : $OExparrow \mathcal{P}(T)$ .

$\mathcal{E}^{F}[ftcJ=\mathcal{E}^{TC}[ftcJ$

$\mathcal{E}^{F}[(A_{0}arrow B_{0}, A_{1}arrow B_{1}, \ldots,A_{m}arrow B_{m})I$

18
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$=if(\exists i.\mathcal{E}^{F}[B_{i}I=Error)$ then Error

else if ( $u_{i}\lfloor \mathcal{E}^{O}[A_{i}Iarrow\succ \mathcal{E}^{F}[B_{i}I\rfloor$ exists)
then $\Psi^{D}(u_{i}\lfloor \mathcal{E}^{O}[A_{i}Iarrow\succ \mathcal{E}^{F}[B_{i}I\rfloor)$

else Error
$\mathcal{E}^{O}[fte\uparrow I=if(\mathcal{E}^{F}[fteI=Error)$ then empty set

else $\mathcal{E}^{F}[fte\mathbb{I}\Uparrow$

$\mathcal{E}^{T}$ : $TExparrow(TEnvarrow T+\{Error\})$ is defined following the structure of expressions:
$\mathcal{E}^{T}[tcJ(\rho t)=\mathcal{E}^{TC}[tcJ$

$\mathcal{E}^{T}[tvJ(\rho t)=\rho t(tv)$

$\mathcal{E}^{T}[te_{1}te_{2}J(\rho t)=if$ ( $\mathcal{E}^{T}[te_{1}I(\rho t)=Error$ or $\mathcal{E}^{T}[te_{2}I(\rho t)=Error$ )
then Error

else if $(\Phi^{T}(\mathcal{E}^{T}[te_{1}J(\rho t))\in[Tarrow T])$

then $\Phi^{T}(\mathcal{E}^{T}[te_{1}I(\rho t))(\mathcal{E}^{T}[te_{2}Q(\rho t))$

else TWrong
$\mathcal{E}^{T}[\Lambda tv:0.teI(\rho t)=if$ ( $\mathcal{E}^{T}[teI(\rho t[u/tv])=Error$ for $\exists u\in T$)

then Error
else let $f=lambda(u).\mathcal{E}^{T}[teJ(\rho t[u1tv])$

if $(f!_{\mathcal{E}^{O}[\circ I}\in[Tarrow T])$

then $\Psi^{T}(f!_{\mathcal{E}^{O}[\circ I})$

else Error
$\mathcal{E}^{T}[te_{1}\vee te_{2}I(\rho t)=if$ ( $\mathcal{E}^{T}[te_{1}I(\rho t)=Error$ or $\mathcal{E}^{T}[te_{2}I(\rho t)=Error$ )

then Error
else if ( $\mathcal{E}^{T}[te_{1}J(\rho t)u\mathcal{E}^{T}[te_{2}J(\rho t)$ exists)

then $\mathcal{E}^{T}[te_{1}I(\rho t)u\mathcal{E}^{T}[te_{2}I(\rho t)$

else Error

PROPOSITION 16. $\mathcal{E}^{F}$ is the restriction of $\mathcal{E}^{T}$ to FTExp with respect to the embeddin$gfu$nctions
from FTExp to TExp and from $\mathcal{F}(T)$ to $T$ .

FTExp $\subset$ TExp
$\downarrow\epsilon^{F}$ $\downarrow\epsilon^{\tau}$

$\mathcal{F}(T)$ $\subset$ $T$

(proof) It is proved using structural induction on the formation of FTExp.
(end of proof)

In this way, we can give denotational semantics to expressions and type expressions on the
value domain and on the type domain, respectively. But we are only interested in the case that
the meaning of typeof is given by $\tau$ . Let $\rho$ be an environment. We define the type environment $\rho\#$

corresponding to $\rho$ as follows;

$\rho^{\#}(tv)=\tau(\rho(v))$ where typeofv(v) $=tv$ .

THEOREM 4. Suppose that every constan$tc$ satisfies $\mathcal{E}^{T}[typeofc(c)I=\tau(\mathcal{E}^{C}[cI)$ . Then every
expression $e$ satisfies $\mathcal{E}[typeof(e)I(\rho)=\tau(\mathcal{E}[eI(\rho))$ . Especially, $\mathcal{E}[typeof(e)I(\rho)$ is not Error.
(proof) It is proved using structural induction on the formation of $Exp$ .

(end of proof)
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This theorem shows that when $\mathcal{E}^{C}$ and $\mathcal{E}^{TC}$ satisfies $\mathcal{E}^{T}$ . typeofc $=\tau\cdot \mathcal{E}^{C}$ . The following

diagram commutes.

$T^{E}E^{x}x^{t_{P}of}\downarrow^{p_{ype_{\cross}^{\cross}}}$
$T^{E}E^{n}n^{v}v\downarrow*$

$-arrow-arrow\epsilon^{\epsilon_{\tau}}$
$D_{\tau}T\downarrow$

Especially for closed expressions, we have

$Exp$
$arrow^{\epsilon}$ $D$

$TExp^{\mathcal{E}^{T}}\downarrow type_{-arrow}of$
$T^{\tau}\downarrow$

.

6. Examples

In this section, we calculate the meaning of expressions and corresponding type expressions shown
in section 4.

As in section 4, we fix the symbols of LTI as follows,

$V=\{x\}$

$C=INT+REAL+\{nil\}+$ { $sqrt$ , trunc, $+$ }
TV $=\{t\}$

TC $=FTC=$ {int, real, null}

and the types of variables and constants as follows,

typeofv(x) $=t$

typeofc(e) $=int$ where $e\in$ INT
typeofc(e) $=real$ where $e\in$ REAL

typeofc(sqrt) $=$ ( $real\uparrowarrow$ real)
typeofc(trunc) $=(real\uparrowarrow int)$

typeofc(+) $=(int\uparrowarrow(int\uparrowarrow int)$ ,
$real\uparrowarrow(real\uparrowarrow real))$ .

We define the I-domain $M_{B}=(D_{B}, T_{B}, \tau_{B})$ as follows,

$|T_{B}|=$ {int, real, null}
$int\geq real$ , $real\geq null$

$|D_{B}|=INT+REAL+\{nil\}$
$1\succeq 1.0,2\succeq 2.0,$ $\ldots$ ,
$x\succeq nil$ where $x\in REAL$

$\tau_{B}(x)=int$ where $x\in INT$

$\tau_{B}(x)=real$ where $x\in REAL$

$\tau_{B}(nil)=null$ ,

20
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where INT is the set of integers and REAL is the set of real numbers. It is easy to verify that $M_{B}$

is an I-domain.
From $M_{B}=(D_{B}, T_{B}, \tau_{B})$ , we can construct an I-domain $M=(D, T, \tau)$ which satisfies

$M_{\frac{-arrow\Phi}{\Psi}M_{B}}+[Marrow M]+WRONG$.

In this example, we identify elements of $D_{B}$ with elements of $D$ through $\Phi^{D}$ and $\Psi^{D}$ . We also
identify elements of $T_{B}$ with elements of $T$ through $\Phi^{T}$ and $\Psi^{T}$ .

Let $\mathcal{E}^{C}$ : $Carrow D$ be a function defined as follows,

$\mathcal{E}^{C}$ is defined obviously to elements of INT and REAL.
$\mathcal{E}^{C}[n||I=nil$

$\mathcal{E}^{C}$ [sqrt] $=\Psi^{D}(sqr\Delta)$

where sqrt: $REALarrow REAL$ is a function which calculates the square root.
$\mathcal{E}^{C}$ [truncI $=\Psi^{D}(trunc\triangle)$

where trunc: $REALarrow INT$ , is a function which calculates the truncation.

$\mathcal{E}^{C}[+I=\Psi^{D}(fug)$

where $f=$ lambda(x). if $(\tau(x)=int)$ then $\Psi^{D}(h)$ else nil
where $h=$ lambda(y). if $(\tau(y)=int)$

then $x+iy$ else nil
$g=$ lambda(x). if $(\tau(x)\geq real)$ then $\Psi^{D}(h)$ else nil

where $h=$ lambda(y). if $(\tau(y)\geq real)$

then $x|_{real}+_{r}y|_{real}$ else nil

$where+_{r}$ : $REAL\cross REALarrow REAL$

$+i$ : $INT\cross INTarrow INT$

are addition functions on REAL and INT respectively.

Let $\mathcal{E}^{TC}$ : $TCarrow T$ be a function defined as follows,

$\mathcal{E}^{TC}$ [int] $=int$

$\mathcal{E}^{TC}[reaIJ=real$

$\mathcal{E}^{TC}$ [null] $=null$ .

$\mathcal{E}$ and $\mathcal{E}^{T}$ are defined from $\mathcal{E}^{C}$ and $\mathcal{E}^{TC}$ as in the previous section. It is easy to verify that every
constant $c$ satisfies $\mathcal{E}^{T}[typeofc(c)I=\tau(\mathcal{E}^{C}[cI)$ . In the following examples, we omit environment
arguments for closed expressions and closed type expressions.

EXAMPLE 1. $((+2)3)$

typeof$((+2)3)=$ ( $(+’$ int) int)
$where+’=(int\uparrowarrow(int\uparrowarrow int)$

$real\uparrowarrow(real\uparrowarrow real))$ .
$\mathcal{E}[(+2)I=\Phi^{D}(\mathcal{E}[+J)(\mathcal{E}[2J)$

$=(fug)(2)$ where $f$ and $g$ are as in the definition of $\mathcal{E}[+J$ .
$=f(2)ug(2)$
$=\Psi^{D}(h1)u\Psi^{D}(h2)$ where
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$h1=lambda(y)$ . if $(\tau(y)=int)$ then $2+iy$ else nil
$h2=lambda(y)$ . if $(\tau(y)\geq real)$ then $2.0+_{r}y|_{real}$ else nil

$\mathcal{E}[((+2)3)I=\Phi^{D}(\mathcal{E}[(+2)Q)(\mathcal{E}[3Q)$

$=\Phi^{D}(\Psi^{D}(h1)u\Psi^{D}(h2))(3)$

$=(\Phi^{D}\Psi^{D}(h1)u\Phi^{D}\Psi^{D}(h2))(3)$ ;strictness of $\Phi^{D}$

$=h1(3)uh2(3)$
$=5u5.0$
$=5$

$\mathcal{E}^{T}[+\prime I=$ $\Psi^{T}(\lfloor int\Uparrowrightarrow\Psi^{T}(\lfloor int\Uparrow\mapsto int\rfloor\rfloor))$

$u\Psi^{T}(\lfloor real\Uparrow\mapsto\Psi^{T}(\lfloor real\Uparrowarrow\succ real\rfloor\rfloor))$

From here on, we identify the elements of $[Darrow D]$ with elements
of $D$ and the elements of $[Tarrow T]$ with elements of $T$ for simplicity.

$=\lfloor int\Uparrowarrow\succ\lfloor int\Uparrow\mapsto int\rfloor\rfloor u\lfloor real\Uparrow\vdasharrow\lfloor real\Uparrow\vdash\div real\rfloor\rfloor$

$\mathcal{E}^{T}$ [$(+$ ’ int)] $=$ $($ $\lfloor int\Uparrowarrow\succ\lfloor int\Uparrow\mapsto int\rfloor\rfloor$

$u\lfloor real\Uparrow-\lfloor real\Uparrow\mapsto real\rfloor\rfloor)(int)$

$=\lfloor int\Uparrow\vdasharrow int\rfloor u\lfloor real\Uparrow\mapsto real\rfloor$

$;int\geq int$ and $int\geq real$

$\mathcal{E}^{T}$ [$((+$’ int) int)] $=(\lfloor int\Uparrow\vdash\prec int\rfloor u\lfloor real\Uparrow\mapsto real\rfloor)(int)$

$=intu$ real
$=int$

EXAMPLE 2. $\lambda x.x$

typeof$(\lambda x.x)=\Lambda t.t$ .
$\mathcal{E}[xI(\rho)=\rho(x)$

$\mathcal{E}[(\lambda x.x)J=lambda(d).\mathcal{E}[xJ(\rho[x/d])$

$=lambda(d).d$

$\mathcal{E}^{T}[tI(\rho t)=\rho t(t)$

$\mathcal{E}^{T}[(\Lambda t.t)I=if$ ( $\mathcal{E}^{T}[tJ(\rho t[t/u])=Error$ for $\exists u$ ) then Error
else let $f=(lambda(u).\mathcal{E}^{T}[teJ(\rho t[t/u]))$

if $((f!_{\mathcal{E}\beta nu}\circ||\dagger I)\in[Tarrow T])$ then $f!_{\mathcal{E}^{O}[nu}||_{\uparrow I}$

else Error
$=f!_{null\Uparrow}$ where f=lambda(u).u
$=lambda(u).u$

EXAMPLE 3. $\lambda x.(xx)$

typeof$(\lambda x.(xx))=\Lambda t.(tt)$

As example 2, we can calculate

$\mathcal{E}[(\lambda x.(xx))I=lambda(d).if(d\in[Darrow D])$ then $d(d)$

else DWrong

$\mathcal{E}^{T}[(\Lambda t.(tt))Q=lambda(u).if(u\in[Tarrow T])$ then $u(u)$

else TWrong
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EXAMPLE 4. $\lambda x.((+(trunc(sqrtx)))x)$

typeof$(\lambda x.((+(trunc(sqrtx)))x))=\Lambda t.((+’(trunc’(sqrt’t)))t)$

where sqrt’ $=(real\uparrowarrow real)$

trunc’ $=(real\uparrowarrow int)$

$+’=(int\uparrowarrow(int\uparrowarrow int)$ ,
$real\uparrowarrow(real\uparrowarrow real))$ .

$\mathcal{E}[(trunc(sqrtx))I(\rho)=trun\Delta$ (sqrtls $(\rho(x))$)

Using the fact that
if $(\tau(\rho(x))\geq real)$ then $\tau$ ($trun\triangle$ (sqrtlS $(\rho(x)))$) $=int$

else $\tau(trun\Delta(sqr\Delta(\rho(x))))=null$ ,
$\mathcal{E}[(+(trunc(sqrtx)))I(\rho)$

$=if(\tau(\rho(x))\geq real)$

then lambda(y). if $(\tau(y)=int)$

then $trun\Delta(sqr\Delta(\rho(x)))+iy$

else nil
$u$ lambda(y). if $(\tau(y)\geq real)$

then $trun\Delta(sqr\Delta(\rho(x)))|_{rea}\iota+_{r}y|_{real}$

else nil
else nil

$=if(\tau(\rho(x))\geq real)$

then lambda(y). if $(\tau(y)=int)$

then $trun\Delta(sqr\Delta(\rho(x)))+iy$

else if $(\tau(y)=real)$

then $trun\Delta(sqr\Delta(\rho(x)))|_{real}+_{r}y$

else nil
else nil

$\mathcal{E}[((+(trunc(sqrtx)))x)I(\rho)$

$=if(\tau(\rho(x))\geq real)$

then if $(\tau(\rho(x))=int)$

then $trun\Delta(sqr\Delta(\rho(x)))+:\rho(x)$

else if $(\tau(\rho(x))=real)$

then trunclX $(sqr\Delta(\rho(x)))|_{rea}\iota+_{r}\rho(x)$

else nil
else nil

$\mathcal{E}[(\lambda x.((+(trunc(sqrtx)))x))I=lambda(d)$ . if $(\tau(d)=int)$

then trunc$(sqrt(d|_{real}))+id$

else if $(\tau(d)=real)$

then trunc$(sqrt(d))|_{real}+_{r}d$

else nil.

$\mathcal{E}^{T}[sqrt’I=\lfloor real\Uparrow\mapsto real\rfloor$

$\mathcal{E}^{T}[trunc’J=\lfloor real\Uparrow\vdasharrow int\rfloor$

$\mathcal{E}^{T}[+/J=$ $\lfloor int\Uparrowrightarrow\lfloor int\Uparrow\mapsto int\rfloor\rfloor$

$u\lfloor real\Uparrow\vdash\div\lfloor real\Uparrow\vdash\div real\rfloor\rfloor$

$\mathcal{E}^{T}[tJ(\rho t)=\rho t(t)$

$\mathcal{E}^{T}[(sqrt’t)I(\rho t)=if(\rho t(t)\geq real)$ then real else null

23



139
$\mathcal{E}^{T}[(trunc’(sqrt’t))I(\rho t)=$ if $(\rho t(t)\geq real)$

then int else null

$\mathcal{E}^{T}[(+’(trunc’(sqrt’t)))I(\rho t)=if(\rho t(t)\geq real)$

then $\lfloor int\Uparrow\vdasharrow int\rfloor u\lfloor real\Uparrow\vdasharrow real\rfloor$

else null
$\mathcal{E}^{T}[((+’(trunc’(sqrt’t)))t)J(\rho t)=if(\rho t(t)\geq real)$

then if $(\rho t(t)\geq int)$ then int $U$ real
else if $(\rho t(t)\geq real)$ then real
else null

else null

$\mathcal{E}[(\Lambda t.((+(trunc’(sqrt’t)))t))I=lambda(t).if(t=int)$ then int
else if $(t=real)then$ real
else null.

This formula is equal to
$\lfloor int\Uparrowarrow\succ int\rfloor u\lfloor real\Uparrow\mapsto real\rfloor$ .

So we get the equality:

$\mathcal{E}[\Lambda t.((+(trunc’(sqrt^{l}t)))t)J=\mathcal{E}^{T}[(int\uparrowarrow int)\vee(rea1\uparrowarrow rea1)I\cdot$

If we can make a reduction system on type expressions which reduces the type expression
$(\Lambda t.((+’(trunc’(sqrt’t)))t))$ to $(int\uparrowarrow int)\vee(real\uparrowarrow real)$ , it will be applied to the type check-
ing of generic functions.

7. Further works

. Appropriateness of the model In this model, we defined that the value domain of an I-
domain is a cpo and that generic functions are continuous, which we used in solving domain equa-
tions. Though these conditions may not be natural, it seems that most type structure and generic
functions we are interested in satisfy them. We must continue investigating in the appropriateness
of the model.. Formal system We defined only the syntax and the semantics of LTI. In order to extend it
to a programming language, we need to define reduction on $Exp$ and TExp. As the expressions of
LTI are same as those of lambda-calculus, we can define $\beta$-reduction on $Exp$ and it can be proved
that $\beta$-reduction preserves the meaning of expressions. The author is also interested in reduction
on type expressions, because it can be applied to static type checking of generic functions. It is left
as an further work.. Method combination. Originally, this research aimed at designing semantically clear way of
doing method combination; that is, combining generic functions into one generic function by taking
the least upper bound. However, it has some difficulties concerning “Errors”. This problem will be
further investigated in the near future.. Extending the type system. We only defined function types in LTI. It is easy to add product
types to LTI and give semantics to it. The author is interested in adding types which are similar
to classes in object oriented languages, which will make the type system more powerful and show
the effectiveness of generic functions and method combination.
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. The relation with type theory. In Martin-Lof type theory, they deal with dependent types

such as $\Sigma$ and $\Pi$ . II is the type of functions the type of whose return values vary with the value of
the argument, in contrast to generic functions, the type of whose return values vary with the type
.of the argument. The author is wondering whether there is an interesting relation between these
concepts. [Rey85] has pointed out some open problems which appear when considering subtypes,
such as let construction, type checking algorithm, infinite, recursively defined types. The author
believes that formal semantics like the one given here can be the foundation for solving these
problems.

Acknowledgement

The author would like to express his deep gratitude to Professor Reiji Nakajima for his appropriate
advices, and to Mr. Masami Hagiya for many invaluable advices throughout this research and
careful reading of the paper.

Appendix

. An example that $\tau^{*}$ is not a surjective function
Define that

$M=(T, D, \tau)$ ,
$T=$ { $T_{0},$ $T_{1},$ $T_{2},$ $T_{3}$ , null}, $T_{1}\geq T_{0},$ $T_{2}\geq T_{0},$ $T_{3}\geq T_{0}$ ,
$D=$ { $a_{0},$ $b_{0},$ $a_{1},$ $b_{2},$ $b_{3}$ , nill}, $a_{1}\succeq a_{0},$ $b_{2}\succeq b_{0},b_{3}\succeq b_{0}$ ,
$\tau(a_{0})=\tau(b_{0})=T_{0}$ ,
$\tau(a_{1})=T_{1}$ ,
$\tau(b_{2})=T_{2}$ ,
$\tau(b_{3})=T_{3}$ .

$M$ is an I-domain.
$T_{1}=\{a_{1}\}\backslash$ $T_{2}=\{b_{2}\}|$ $/^{3}T=\{b_{3}\}$

$T_{0}=\{a_{0}, b_{0}\}$
.

Define a monotone function $u:Tarrow T$ that

$u(T_{0})=T_{0}$ ,
$u(T_{1})=T_{1}$ ,
$u(T_{2})=T_{1}$ ,
$u(T_{3})=T_{3}$ .

$u$ is not in the image of $\tau^{*}$ .

$\bullet$ An example that $[Tarrow T]$ is not a $cpo$ though $T$ and $T’$ are.
Define that

$T=\{U, S, T_{1}, T_{2}, \ldots,T_{w}\}$

$U\leq S$ , $U\leq T_{1}\leq\ldots\leq T_{n}\leq\ldots\leq T_{w}$

$Val(U)=\{u_{1}, u_{2}, \ldots,u_{n}, ..., u_{w}\}$

$Val(S)=\{s_{1},$ $s_{2}$ , .. $s_{n}$ , .. . $\}$

$Val(T_{1})=\{t_{1,1},t_{1,2}, \ldots,t_{1,n}, \ldots, t_{1,w}\}$

$Val(T_{2})=$ $\{ t_{2,2}, \ldots,t_{2,n}, \ldots, t_{2,w}\}$
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$Val(T_{n})=$ $\{ t_{n,n},\ldots,t_{n,w}\}$

$Val(T_{w})=$ $\{ t_{w,w}\}$
$D=Val(U)+Val(S)+Val(T_{1})+\ldots+Val(T_{w})$

and define the order on $D$ as

$s_{i}$ $\succeq u_{i}(i=1,2, \ldots,n, \ldots)$

$t_{1,i}$ $\succeq u_{i}(i=1,2, \ldots,n, \ldots , w)$

$t_{n,i+1}\succeq t_{n,i}(i=1,2, \ldots, n, \ldots,w)$

$(D, T, \tau)$ is an I-domain.

$\{ t_{w,w,|} \}=T_{w}|$

$\{$

$t_{n_{i}n}$

, $t_{n,n,1^{+1}}|$ ..., $t\{\begin{array}{l}|w\}=T_{n}|\end{array}$

$\{ |. t_{2}|_{n} t_{2,n}|_{+1} ..., t_{2}|_{w} \}=T_{2}|$
$S$

$=\{s_{1}, \ldots,s_{n}, \ldots\}$

$t_{21^{2}}$
’ .. .,

$|$ $|$

...,
$|$ $|$

$\{ t_{1}|^{1} t_{11^{2}}, ..., t_{1}|^{n} t_{1,n,1^{+1}}, t_{1}|^{w} \}=T_{1}|$
/

$\{ u_{1}, u_{2}, u_{n}, u_{n+1}, ..., u_{w} \}$ $=U$

We show an example of $f_{i}$ : $Tarrow T(i=0,1,2, \ldots)$ in which $\{f_{i}\}$ is a directed set and
$f_{i}\in[Tarrow T]$ , but the l.u. $b$ . of $F=\{f_{i}\}$ does not exist in $[Tarrow T]$ . Define $f_{n}(n=0,1,2, \ldots)$ as

$f_{n}(S)=S$

$f_{n}(U)=U$
$f_{n}(T_{i})=T_{n}(i=1,2, \ldots,n-1)$

$f_{n}(T_{i})=T_{i}(i=n, n+1, \ldots, w)$

$f_{n}$ are monotonic functions and $\{f_{n}\}$ is a directed set. Define $g_{n}$ : $Darrow D(n=0,1,2, \ldots)$ as

$g_{n}(s_{i})=s_{n}$ $(i=1,2, \ldots,n-1)$
$g_{n}(s_{i})=s_{i}$ $(i=n,n+1, \ldots)$
$g_{n}(u_{i})=u_{n}$ $(i=1,2, \ldots,n-1)$
$g_{n}(u_{i})=u_{i}$ $(i=n,n+1, \ldots,w)$
$g_{n}(t_{k,i})=t_{n,n}(i=1,2,$ $\ldots,n-1$

$k=1,2,$ $\ldots,n-1$ )
$g_{n}(t_{k,i})=t_{n,i}(i=n,n+1,$ $\ldots,w$

$k=1,2,$ $\ldots,n-1$ )

$g_{n}(t_{k,i})=t_{k,i}(k=n,ni=n,n+^{+}1^{1}, \ldots,w^{w})$

$g_{n}$ is an generic function and $\tau^{*}(g_{n})=f_{n}$ . $uF$ satisfies
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$uF(S)=S$
$uF(U)=U$
$uF(T:)=T_{w}(i=1,2, \ldots,n, \ldots , w)$

There is no generic function $g$ which satisfies $\tau^{*}(g)=uF$.
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