goooboooogn
07090 19890 116-142

116

A Denotational Model of Type Inheritance and Generics
Hideki Tsuiki

Research Institute for Mathematical Sciences
Kyoto University
Kitashirakawa, Sakyo, Kyoto 606, Japan

Abstract

A denotational semantics is given to type inheritance and higher order generic functions,
where a type is defined to inherit another type if there exists a coercion function between them
and a function is defined to be generic if it preserves types and coercions. The semantic domain
is constructed in the category of I-domains (domain with type inheritance), whose objects are
mathematical models of domains with hierarchical type structure, and whose morphisms are math-
ematical models of generic functions. This category is cartesian closed and such domain equations
as M = Mp + [M — M] are solvable in this category. On the solution of this equation, the
semantics of a simple functional language with hierarchical type structure and higher order generic
functions is defined.

1. Introduction

Coercion and type inheritance

Most programming languages have type structures. Values are classified into types according
to their representation on memory and the operations applicable to them. Many programming
languages, in addition, have type structures with inheritance.

There seems to be several viewpoints on the meaning of type inheritance. [Car85] constructs
a denotational model of type inheritance, in which a type is a non-empty weak ideal of the value
domain, and inheritance relation is defined by set inclusion between ideals. The denotational model
we construct is essentially different. Types correspond to disjoint sets of values, that is, each value
belongs to only one type; and inheritance relation is defined by the existence of a coercion function

“from the more specified type to the more general type, instead of by set inclusion.

As an example, consider the inheritance relation between int and real which many program-
ming languages have. In those languages, 1 which belongs to int and 1.0 which belongs to real
are treated as separate values, and when a function defined on real is applied to 1, it is coerced to
1.0 automatically and the function is applied to 1.0. In this case, int can be regarded as inheriting
real through this coercion function from int to real.

As another example, consider record types with typed slots . Record types are important
because they are used as classes in some dialects of lisp with object oriented facilities. Consider
the following types:

deftype person <age — integer,
name — string,
sex — boole >

deftype female-student <age — integer,
name — string,
sex — true,
school — string >

i Though we do not deal with record types in order to make the theory simple, the contents of
this paper can be easily extended to record types.

1

117

where true is a type which inherits boole and contains only t, the value which means female in this
example. For each value belonging to female-student, there exists a value belonging to person,
where the coercion from female-student to person is obtained by ignoring the value attached
to the slot school and by coercing the value attached to the slot sex from true to boole. Thus

2
female-student inherits person through this coercion function t.
Consider the following additional type definitions:

deftype female <age — integer,
name — string,
sex — true >

deftype student <age . — integer,
name — string,
school — string »>.

Female-student inherits both female and student. Thus record types shown here have multiple
inheritance, which means that, by defining order relation > as A > B when the type A inherits the

type B, the set of types is a partially ordered set (in short a poset) \Ls. Moreover, female-student
is the least upper bound of female and student, that is, any type which inherits both female and
student inherits female-student. In this example of record types, a set of types which has an
upper bound has the least upper bound. We call posets with this property semi-coherent. As for
the value domain, the set of values is also a poset with the order relation > defined as @ > b when
a is coercible to b. It is also semi-coherent, that is, when a set of values has an upper bound, it
has the least upper bound. The semi-coherentness ensures that ((a Li b) LI ¢), if exists, is equal to
(au(bUc)) in value and type domain, where we write a U b for the least upper bound of a and b.

‘We construct, as a ‘semantic domain, a triple (D, T T)T , where D is the set of values, T is
the set of types, and 7 is the function from D to T which assigns a type to each value. T and
D are semi-coherent posets, and 7 is a monotonic function which is surjective and satisfies some
conditions in order that the coercion of a value to a type is uniquely determined. We also require
that D be a complete partial order (in short cpo), which we need in solving domain equations. We
call the triple (D, T,) which satisfies these conditions an I-domain —~ domain with type inheritance.
We call D the value domain and T the type domain. We say that z belongs to ¢t when 7(z) = t.

Generic functions

A Generic function is a function that is applicable to more than one types and whose behavior
depends on the type of the arguments supplied to it. We can find generic functions in many
practical languages with type inheritance. For example, in some languages, the addition function
+ with two arguments is applicable to arguments both in int and real, and returns a value in
int when both of the arguments are int, and real when either of the arguments is real. As
another example, there is an extension of lisp called CLOS (Common Lisp Object System), which
is the standardization of merging object oriented programming to Common Lisp [BDG87]. CLOS
implements message passing using generic functions. '

In the model (D, T,T), we are only concerned with the function space which consists of total
generic functions from D to D. In order to treat partially defined generic functions as total generic

t* The coercion function from female-student to person is not injective, which dld not appear
in the example of real and int.

J‘_ Note that we define the order relation in such a way that bigger types have more information.
. v
" We use italic fonts for semantic objects.

118

functions, we consider a special type null which inherits every type and a special value nil belonging .
to null. Thus, a generic function defined only for some types can be extended to a total generic
‘function by assigning nil as the return value for illegal arguments.

Generic functions are very useful in writing programs. However, if a generic function behaves
completely differently for different types of arguments, it will cause programming errors which are
difficult to detect. In fact, it is difficult to give clear semantics to generic functions if their actions
for different types are unrelated. Therefore, we restrict generic functions from D to D so that
they preserve types and coercions; where we say that a function preserves types if it maps values
belonging to the same type to values belonging to the same type, and that a function preserves
coercions if it maps coercible values to coercible values. Thus, generic functions are not simply
overloaded functions. We also require that generic functions be continuous, which we need in
solving domain equations. We call a continuous function from D to D which preserves types and
coercions a generic function of I-domains with respect to 7" and 7 .

[Rey81] gives semantics to generic functions using natural transformations, where generic func- -
tions are treated not as values but as operators; so they cannot be used as arguments to other generic
functions. The I-domain (D, T,T) we want to construct as a semantic domain is the one in which
a generic function from D to D is treated as an element of D and can be used as an argument or a
return value of other generic functions. In other words, we consider higher order generic functions.
In order to do that, we must assign a type to each generic function. In the model of typed lambda
calculus, the type of a function is given by a pair of types: the source type and the destination
type. The type of a generic function is not a pair of types, but a function from T to T which, to
each type A, assigns the type of return values to arguments belonging to A. ;

We construct, as a semantic domain, a reflective I-domain M = (D, T, 7) from a given I-domain
Mg = (Dp,Ts,78): Tp consists of basic types such as int and real, D g consists of values belonging
to Tg such as 1 and 1.0, and 75 is the type assignment function from Dg to Tg. D consists of Dy
and generic functions from D to D, and T consists of Tp and monotonic functions from 7T to T
which are types of generic functions. Therefore, M satisfies the following equations: '

D = Dp + [D — D]
"
T = Ts + [T - T) (%)

where [D — D] denotes the set of generic functions from D to D with respect to T and 7, [T — T}
denotes the set of monotonic functions from 7" to T which are types of generic functions, and 7* is

the type assignment function from [D — D] to [T — T]f.

To give some examples of generic functions, consider an I-domain (Dpg,Tg,78); T is equal to
{int, real,null}, Dp is equal to INT + REAL + {nil} where INT is the set of integers and RFAL
is the set of real numbers. 7 : Dg — Tp is defined obviously. There is an embedding function
from INT to REAL, and the collapsing function from REAL to {nil}. Taking these functions as:
the coercion functions, the order on Ty is defined as

int > real > null.

Suppose that an I-domain M = (D, T,) which satisfies () has been constructed.

f In this paper, we also deal with the value DWrong and the type TWrong which mean type .
mismatch, which is omited here for simplicity. :

119

Let square be a function from D to D which calculates the square of the argument and returns
it as an integer if the argument belongs to int, and as a real number if the argument belongs to
real, and returns nil if the argument does not belong to int nor real. Clearly, square is a generic
function. The type of square is a function from T to T which returns int to int, real to real, and
null to other arguments. We denote this function by '

[intﬁH int] U |realfy— real].

The meanihg of this notation is defined as follows. |[t{t+ s| denotes the function which returns s
if the argument is bigger than ¢ by the order on T, and returns null if it is not.

t_tl’ﬂ"—) 81J ...y I_tn’ﬂ'l—-) SnJ

denotes the least upper bound of [t1ft+ s1],...,[tnft— S| by the order on [T — T] induced by
that on T. We use this notation only when the least upper bound exists.

Instead of adding product types, we treat a generic function with more than one arguments
as that with one argument by currying it. Therefore, the generic function + which calculates sum
has the type

Lintft— |intf— int]| U [realft— |realft real],

which returns to int the function
lintft— int] U |realft— real],

and returns |realft— real] to real.

A function which is defined as a lambda expression using generic functions are also generic.
For example, let sgrt be the generic square root function which belongs to |realft real], and let
trunc be the generic truncation function which belongs to |realff int|. Then

ldmbda(z).((+(trunc(sqrt z)))z)
is a generic function whose type is
|intf— int] U |realfy— real].

Note that not all the types of generic functions can be written using this notation. For example,
the identity function on D defined as (lambda(z).z) is generic and its type is the identity function
on 7.

Outline of the paper

In order to construct an I-domain which satisfies (x), we first show that I-domains make a
category. In this category, a morphism is a pair of functions: one is between value domains which
is a generic function, and the other is between type domains which is the type of the generic
function. Next, we prove that the triple [M — M] = ([D — D],[T — T],7*) is also an I-domain,
and that I-domains make a cartesian closed category with exponent [—]. After that, we solve the
domain equation M = Mp + [M — M], which is equivalent to (*), in this category.

On the I-domain M which is the solution of this equation, we define the semantics of a simple
functional language LTI (Language with Type Inheritance) in the denotational manner. The syntax
of LTI consists of a triple (Exp, TExp, typeof), which corresponds to (D, T, 7). Exp is the set of
expressions which are lambda expressions with constants. TExp is the set of type expressions which

4

120

are extension of lambda expressions in that it has constants and that one can express such function
on types as

Lintf— int] U |realft real].
Let Env be the set of environments and let TEnv be the set of type environments. The semantics
of LTI is defined by the pair of semantic functions (£,€T). € : Exp — (Env — D) is the

semantic function for expressions and £ : TExp — (TEnv — T) is the semantic function for type
expressions. £ and £7 make the following diagram commute.

Exp x Env ——i—-) D

ltypeof l# lf
8T

TExp x TEnv — T

2. I-domain

‘In this section, we define I-domain (domain with type inheritance) and DTI (the category of
I-domains), and examine some properties of them.

2.1 I-domain

An I-domain is a mathematical model of values and types with type inheritance, where a type
is defined to inherit another type if there exists a coercion function from the set of values belonging
to the former type to that of the latter type. Before giving precise definition of an I-domain, let us
give another definition of it slightly informally in order to show that it is a natural model of type
structure with inheritance. '

An I-domain consists of a set D called the value domain, a set T called the type domain, and a
surjective function 7 from D to T called the type assignment function. Each element of D is called
a value and each element of T is called a type. When a value z and a type ¢ satisfy 7(z) = ¢, we
say that z belongs to t. The set of values belonging to a type t is denoted by Val(t). Val(t) is
equal to 771(¢). Val(t) and Val(u) does not intersect when ¢t # u. ,.

The type domain has inheritance relations on it. Let us denote t > u when ¢ inherits u. We
‘do not deal with a type structure in which two types can inherit each other. Therefore, we require’
that > be a partial order, that is,

t>1
ift>uand u>vthent>w
1ft>uandu>tthent-u

for t,u,v € T We also require that 7 be semi- coherent

DEFINITION. A poset O is semi-coherent if every subset which has an upper bound in O has the
least upper bound in O.

By taking the empty set, semi-coherent poset has the least element. In a poset O, the greatest
lower bound of a subset U, if it exists, is equal to the least upper bound of {¢|t < u, Vu € U}. For.
‘every non-empty subset U of O, {t|t < u, Yu € U} has every u € U as an upper bound. So when
O is semi-coherent, every non-empty subset U of O have the greatest lower bound.

As for values, we require that when a type t inherits another type u, there be a coercion.
functzon bt,u from Val(t) to Val(u) such that :

8¢t = idyaiy) (the identity function of Val(t)) :
ift > uand u > v then 8, 4 - 0¢,4 = 04 0. (*)

5

121

Then we can define an order relation > on D as follows J‘.
Let ¢ and u be 7(z) and 7(y). If t > u and 6; ,(z) = y then z > y.

It is easy to verify that > is an order relation. We require that (D, >) be semi-coherent. We also
require that D be a cpo, which we need in constructing a reflective I-domain.

One can verify easily that the triple (D,T,7) satisfying these conditions has the following
property:

If 7(z) = t and t > u, then there is a unique y such that 7(y) = v and z > y. (%)

This means that the coercion of a value z to a type that the type of = inherits exists and is unique.
So far, we defined the order relation on D using the coercion functions é; ,,. Conversely, suppose
that D is a semi-coherent cpo, T is a semi-coherent poset, and 7 is a monotonic function from D
to T which is surjective and satisfies (++). Then we can define §;, which satisfies (*) by defining
6:,4(2) as the y in (#x), which is uniquely determined by z. So we define I-domains as follows.

DEFINITION. Let (D,>) be a semi-coherent cpo, (T,>) be a semi-coherent poset, and 7 be a
monotonic function from D to T which is surjective and satisfies (+*). We call the triple (D, T,7)
an I-domain (domain with type znherztance) We write y in (%*) as é; 4(2) and call it the coercion
of z to u.

8:,u(2) is also denoted by z|,. We denote the least upper bound (L.u.b.) of U by UU, and greatest
lower bound by MU. We abbreviate U {eJu € U} to U,ecr e where e is some expression which
depends on u. We also abbreviate it to L, e when the set U is apparent.

I-domains have the following properties.

PRrOPOSITION 1. Let (D,T,7) be an I-domain.

1) Let nil and null be least elements of D and T, then 7(nil) = null. nil is the only value which
belongs to null.

2)Ifr(z)=7(y)=t and z = y, then z = y.

3) Let v be the L.u.b. of a subset U of T, and let z be an element belonging tov. Then z = Uyey 2|y-
4) T preserves all the existing least upper bounds. That is, when X is a subset of D which has the
least upper bound z, U T(X) exists and is equal to 7(z).

5) T preserves greatist lower bounds. That is, when X is a subset of D, (N X) = Nr(X).

(proof) 1) It is obvious because 7 is surjective and monotonic.

2) Clear from the uniqueness of §; +(z).)

3) Since z > 2|, (Vu € U) and D is semi-coherent, there exists z = U, 2|, < z. Since 7 is
monotone, 7(z) satisfies v > 7(z) and 7(z) > u (Yu € U). So 7(2) = v = 7(«), which means z =z
by 2).

4) Since 7(2) > 7(z) (Vz € X), v = U7(X) exists and 7(2) > v. We have 22 2ly = 2lo(e) =
¢ (Vz € X), which means z = z|, and so 7(z) = v.

5) We must show that 7(U {z]z X z, V2 € X}) = U{u|u < 7(2), Vo € X)}, which is obvious
using 4).

(end of proof)

t We use > for type domain, and > for value domain. .

- 6

122

3) means that if v is the L.u.b. of a set of types U, then every value belonging to v is uniqilely
determined by its coercions to types in U. 4) means that the type of the Lu.b. is determined by
the types of each value.

2.2 Generic functions

DEFINITION, Let (D,T,t), (D',T'",7') be I-domains. A function f from D to D' is generic with
respect to T,7,T',7' if f is continuous and preserves types. Here we say that f preserves types if

7(z) = 7(y) implies 7'(f(2)) = 7'(f(y)) for z,y € D.

A generic function is monotonic because it is continuous, which means that if 7(z) > u then
f(zlu) = f(z)l+(s(z).))- In other words, f preserves coercion. Preserving types and coercions
" are natural properties of generic functions as we mentioned in Introduction. Generic functions
are defined to be continuous, which is a stronger condition than being monotonic. We need this
condition in constructmg a reflective I-domain.

Let M = (D,T,7), M' = (D’ T',7") be I-domains, and let f be a generic function from D to
D’ with respect to T,7,T" and 7'. Then we can define a function 77"*(f) from T to T" as follows.

()0 = (@) where (z) = ¢

Here, we can take z which belongs to ¢ because 7 is surjective, and 77"*(f)(¢) does not depend on
the choice of 2 because f preserves types. We call the function 77*(f) the type of f. We denote
7™*(f) by 7*(f) when M is equal to M'. 77*(f) makes the following diagram commute.

I

D —— D'\
lf) l"
T D,

Conversely, 77"*(f) is the only function from T to T” that makes this diagram commute, which
‘leads to the following definition of a homomorphism between I-domains.

DErINITION. Let M = (D,T,7), M' = (D',T',7') be I-domains. We call a pair of functions

(92, #T) a homomorphism from M to M' if ¢D is a continuous function from D to D' and ¢T isa

function from T to T' which satisfy ¢ - 7 = 7' - ¢.

When f is a generic function, (f, 77'*(f)) is a homomorphism. Conversely, it is easy to check |

that when (¢P, ¢T) is a homomorphism, ¢? is a generic function and #T is the type of ¢P. So there
is a one-to-one correspondence between homomorphisms and generic functions. Homomorphisms
" satisfy the following Proposition.

ProrosiTION 2. Let (¢P,4T) be a homomorphism from M = (D, T,t) to M' = (D', T',7").

1) ¢T preserves limits of directed sets. That is, if U.is a directed subset of T which has LU, then |

L ¢T(U) exists and is equal to ¢ (U U). Particularly, it is monotonic.
2) Suppose that z € D, u € T, 7(z) > u, then ¢P ()47 (4) = #P(z]u).

(proof) 1) Because 7 is surjective, there exists a value ¢ which belongs to LIU. We have ¢ (LU)
T (1(c)) = 7'(#P(¢)). On the other hand, ¢ = Uy (¢|s) by Proposition 1 (3) and so

7'(#P(e)) = 7'(¢° (U (clu)))

123

Since {c|, |u € U} is directed and ¢” is continuous,
= (U (67(clu)))
= U, (7'(¢P(cl))) ; Proposition1(4)
= Uu (¢7 (7(clu))). |
= Uu (67 (w)).

2) Since ¢P is a generic function, ¢P(z}u) = ¢P(2)|r1(40(z1))- T'($7(2lu)) is equal to ¢T(u) from
the definition of homomorphisms.
(end of proof)

PRroPOSITION 3. I-domains with homomorphisms make a category with the composition defined
as

(85 ¢7)- (87, ¢7) = (o7 6", ¢T-¢")

and the identity homomorphism of M = (D, T, T) defined as idps = (idp,idr) where idp and idr
are identity functions of D and T, respectively. We call this category D'TI (the category of domains
with type inheritance). : '

DEFINITION. A homomérphism (¢°,4%) from M = (D, T,7) to M' = (D', T',7") is strict when
P maps the bottom of D to the bottom of D’.

When (¢ ,>¢>T) is strict, ¢T maps the bottom of T to the bottom of T”.

DEFINITION. A homomorphism (¢, #7) from M = (D,T,7) to M' = (D',T",7') is additive when
¢P preserves all the existing l.u.b’s. That is, if X is a subset of D for which U X exists then
U ¢P(X) exists and is equal to ¢P (L X). ,

By taking the empty set as X, additive homomorphisms are strict. When (¢ ,/¢T) is additive,
$T also preserves all the existing l.u.b’s.

2.3 Some properties of DTI

In this subsection, we prove that DT is a cartesian closed category. First, we discuss products
and sums of DTI. '

Let M = (D,T,7) and M' = (D',T",7") be I-domains. We define the product of M and M’
as M x M' = (Dx D', TxT,rx7"). Here, D x D' is the product of two cpos, T x T" is the
product of two posets, and 7 x 7' is the product of functions between posets. It is easily proved
that M x M’ is an I-domain. The projection from M x M’ to M is the pair of projections from
D x D' to D and from T x T' to T. The projection to M' is defined in the same way. Actually,
M x M' is the categorical product of DTI.

We also define the sum of M and M' as M+ M' = (D+ D', T+ T',7 +1'). Here, D + D'
is the sum of two cpos with their least elements identified, T + T" is the sum of two posets with
their least elements identified, and 7 + 7’ is the sum. of two strict functions between posets. It is
also easy to prove that M + M’ is an I-domain. The injection from M to M + M’ is defined as the
pair of injections from D to D + D’ and from T to T + T”. The injection from M’ is defined in
the same way. Actually, M + M’ is the categorical sum in DTI, , the subcategory of DTI whose
morphisms are strict homomorphisms.

124

Let Lposger be the poset which consists of only one element, and let L, be the only function
from Lposer to LposgTr. Then the I-domain (LposeT, LPosET, Lr) is the terminal object of
DTI. This I-domain is denoted by Lp~r.

Next, we prove that the set of homomorphisms make an I-domain. Let M = (D, T,7), M' =
(D', T',7") be I-domains. Let [D — D'] denote the set of generic functions from D to D’ with
respect to T, 7, T' and 7'. We define order relation > on [D — D'] which is induced by that on D',
that is, '

frg<=f(z) = g(z) (Yz€ D).

> 1s an order relation.

ProOPOSITION 4. 1)[D — D'} is a cpo.
2) [D — D'] is semi-coherent.
(proof) 1) Let F be a directed subset of [D — D']. We define UF as UF(z) = User (f(z)) (since
F is directed, {f(z)|f € F} is directed for every z). It is easy to prove that LIF is continuous and
preserves types. It is clear that UF is the L.u.b. of F.

2) Let F be a subset of [D — D'] which has an upper bound g. ¢g(z) = f(z) (Vf € F). So
there exists the least upper bound ¢(z) of {f(z)|f € F} for each z. It is easy to prove that ¢ is
continuous and preserves types. It is clear that ¢ is the L.u.b. of F'. ;

(gnd of proof).

Let (T — T') be the poset which consists of monotonic functions from T to 7’. The order
relation on (" — T") is induced by that on T'. There exists a function 77 from [D — D'] to
(I' — T'). Though 77'* is monotonic, the triple ([D — D'],(T — T'),77'*) is not an I-domain
because 77'* is not surjective. An example that it is not surjective is given in Appendix. We need
to restrict the type domain to the image of 77'*. Let [T — T"] be the image of 77"*. We prove that
[T — T'] is semi-coherent.

LEMMA. Let f € [D — D'] and u € [T — T'] such that 7r"*(f) &= u. Then f|, : D — D' defined
as flu(z) = f(@)|u(r(z)) is 2 generic function.
(proof) First, we prove that f|, is continuous. Let X be a directed subset of D.

flu(uX) = f(U X)lu(r(ux))
= (U f(X)u(ru xy)-
Since u is in the image of 77, u(r(U X)) = w(U7(X)) = Uu(r(X)) by Proposition 2(1). Since
U f(X) = U flu(X), we only need to show that /(U (f|.(X))) = Uu(r(X)), which is trivial because.
(U (flu(X))) = UT'(flu(X)) = Un(r(X)). fl. preserves types because 7'(fl|,(z)) = u(r(z)),
which only depends on 7(z).
(end of proof)

PROPOSITION 5. [T — T'] is semi-coherent.

(proof) Let U be a subset of [T — T] and v be an upper bound of U. We have to show that U
has the least upper bound in [T — T). Take f € [D — D'] which satisfies 77"*(f) = v. Since
flu(z) X f(z)(Yu € U), there exists Uyer (flu(z)). Define g(z) = Uy (flu(z)). We will show
that g is a generic function whose type is LIU. g is continuous because g(Ll X') = U, (fl.(L X)) =
Uy Uz (flu(z)) = Uz g(z) for a directed subset X of D. g preserves types because :

T(9(z)) = 7'(Uu (flu(2)))
= Uy 7'(flu(z))
= Uy u(7(z)),

9

125

which only depends on 7(z). 77*(g) is the least upper bound of U because

re*(g)(t) = '(o(2)) (where 7(2) = 1)
= Uy »(7(2))
= U, u(t)

(end of proof)

‘ [T — T'] is not a cpo even if T and T' are. An example that it is not is shown in Appendix.

THEOREM 1. Let M = (D,T,7),M' = (D',T',7') be I-domains, then [M — M'] = ([D —

D'|,[T — T'),r7"™) is an I-domain.

(proof) It is sufficient to prove that 77'* satisfies (), which is obvious by the lemma above.
(end of proof)

Moreover, DTI is a cartesian closed category (in short ccc). -

THEOREM 2. DTI is a ccc.

(pTOOf) Let M = (D’T, T)vMI = (D,a TlaT,)yMl = (DlaTla Tl)aM2 = (D2a Ty, 7-2))M3 =
(D3, T5,73) be I-domains. We have proved that there exist products and terminal object. Let
evP : [D — D'|xD — D' be evP(f,d) = f(d), and let evT : [T — T'|x T — T' be evT (u,t) = u(t).
Then ev? is continuous and ev? - 77 x 7 = 7' - ev?; s0 ev = (ev?, evT) is a homomorphism from
[M — M'| x M to M'. Let f = (f?, fT) be a homomorphism from M; x M, to M3. fP is from
D1 X Dy to D3 and fT is from T3 X Ty to T3. It is easily proved that AfP: the curry of fP in
the category of cpos , is a function to [Dy — Ds), and AfT: the curry of fT in the category of
posets, is a function to [T — T3]. It is easy to verify other conditions for Af = (AfP,AfT) to be
a homomorphism from M; to [My — M3]. f = ev - (Af X idp,) because, as mentioned below, it
suffices to prove the equality of D-components of the homomorphisms.

(end of proof)
There is a faithful functor F' from DTI to CPO such that
F(M)=D
F(f) = fP where f=(fP,fT)e Hom(My, M,).
This means that when we prove the equality of two homomorphisms, it suffice to prove the equality

of D-components. F preserves the terminal object, product and ev. Since CPO has a faithful
functor to Set, DTI has a faithful functor to Set, that is, DTI is a concrete category.

2.4 Limits in DTI

Next, we will see that every w°P-chain MB<f—°M1 <—f1—M2<i?— -+ has a limit.
PROPOSITION 6. Let A = (Mi, fi) (M; = (D;,T;, 1), fi = (fp;, fr;)) be an w°P-chain. Then A has
the limit (M, g;). ' '

(proof) (Di, fP),(T:, fI') are w°P-chains in the category of cpo and poset respectively. Therefore,
there exist their limits (D, gP) and (T, ¢f). D and T are actually constructed as follows,

D= {< dOadla"' > Idt € D, f'rlz)(dn-*-l):dn \('n’: 091325---)}
T ={<to,t1,... > [ti € Ts, fX(tn41) =1tn (n=0,1,2,..)}.

10

126

Since 7; are functions between w°P-chains, there exists their limit 7 from D to T. 7 is actually
defined as follows.

T(< do,;dy,... >) =< To(do),Tl(d1),. >
Since T is not, in general, surjective, we define T as the image of T .

We show that T is semi-coherent. Let U = {u(’) =< uf,l),ugl), Lo>le L} be a subset of T
which has an upper bound s = < sg, 81,... > € T. We have to show that U has thel.u.b. in 7. Take
s =< T89,%81,... > € D such that 7(zs) = s. By Proposition 2 (2), f,?(:l:sn+1|u(x)) = z8n| .

. n+1 n
So, zul) =< a:so|u(1),:ztsl]u(;),... > is in D. There exists a, = L ($5n|u(1)) because each D, is

. 0 1 n f
semi-coherent. : :

Define homomorphisms f;, = (f,?n,fg‘n) =fo fapr1oeofici My > My (0 < 4). Yo =
Ui>n 5, (a;) exists because {f,f’n(ai)} is a directed set in D,,. f2(yYnt+1) = yn (R = 0,1,...) because
fP is continuous, which means that y =< yo,%1,... > is in D . It is easy to verify that y is the
Lu.b. of {wu(')}.

Tn(yn) = Tn(UiZn fil,)n(ai))‘
= Uiz Tn(f50(a:))

= Ui>n f,-:,rn(r,-(a,-)) ; fi,n is a homomorphism.
I
= Uisn fE(L ui")

it follows that 7(y) =< 7o(%0),T1(¥1), ... > is the Lu.b. of U. From this proof, it is obvious that D
is semi-coherent. It is also easy to verify that 7 satisfies the condition for I-domains. Now we have -
proved that M = (D, T,t) is an I-domain. '
g: = (gP, g¥) is a homomorphism from M to M; and (M, g;) is the limit of A. ‘
‘ (end of proof) .

The functor F' from DTI to CPO also preserves limits of w°P-chains.

‘3. Construction of a reflective I-domain

In this section, we construct an I-domain M which satisfies
M= Mp+[M — M]

where Mg = (D, TB,7B) is a given I-domain. [SmP82] gives general conditions under which such
recursive domain equations are solvable. We construct an I-domain M using their results. Here,
we refer to their results as “Facts” and omit proofs. See [SmP82] for their proofs. '

DEFINITION. (Definition 5 of [SmP82]) A category, K, is an O-category if and only if (i) every hom-
set is a poset in which every ascending w-sequence has a l.u.b. and (ii)composition of morphisms
is an w-continuous operation with respect to this partial order. -

PROPOSITION 7. DTI is an O-category.

(proof) 1) Let My = (D1,T1,71), My = (D;,T3,7;) be I-domains. Hom-set from My to M, is
isomorphic to [Dy — Ds], which is a cpo. Composition of morphisms is w-continuous because of
the definition of the order on [D; — Dy].

(end of proof) |

11

127

DEFINITION. (Definition 6 of [SmP82]) Let K be an O-category and let f: A — B,g: B — A be
morphisms such that g- f = id4 and f-g < idp. Then we call (f;g) a projection pair from A to
B, f an embedding and g a projection.

It can be proved that one half of a projection pair determines the other. When f is an
embedding, we write f¥ for the corresponding projection. We write KZ for the subcategory of K
which has the same objects as K and which has only embeddings as morphisms.

FacT 1. (Theorem 1 of [SmP82]) Let K be an O-category which has a terminal object, L, and
in which every hom-set hom(A, B) has a least element, 1 4 g. Suppose too that composition is
left-strict in the sense that for any f : A — B we have Lpc - f = Lac. Then L is the initial
object of KE. :

PROPOSITION 8. DTIZ has an initial object.
(proof) Lpr is the terminal object of DTI. Easy using Fact 1.

(end of proof)

FACT 2. (Theorem 2 of [SmP82]) Let K be an O-category and A = (A;, g;) be an w-chain in KE.
Then AFe? = (A;, gF) is an w°P-chain in K. If AR®¥ has a limit in K, then A has a colimit in KZ.

DEFINITION. (Definition 3 of [SmP82]) A category, K, is an w-category if and only if it has an
initial object, and every w-chain has a colimit.

PROPOSITION 9. DTIF s an w-category.

(proof) From Proposition 6, Proposition 7, 8 and Fact 2.
(end of proof)

DEFINITION. (Definition 4 of [SmP82]) Let F : K — L be a functor. It is w-continuous if and only
if it preserves w-colimits, that is, when A is an w-chain and (4, g) is its limit, then (F(4), F(g)) is
the limit of F'(A).

FacT 3. (Derived from Lemmal, Lemma2 of [SmP82]) Let K be a w-category and let F : K — K
be an w-continuous functor. Let 1x be the initial object of K, and 14 be the unique morphism
from 1k to A. Define the w-chain A to be (F"(1x), F™*(1rux))) and (A, g) to be the colimit of A.
Then F(A) =2 A

DEFINITION. (Definition 10 of [SmP82]) Let K, L, M be O-categories. A covariant functor T :
KOF x L — M is locally continuous if and only if it is w-continuous on the hom-sets; that is, if
fn : A — B is an increasing w-sequence in K°P and g,, : C — D is onein L then T(Uy, fr, Un gn) =
UnT(frs gn)-

FacT 4. (Derived from Theorem 3 and Corollary to Theorem 2 of [SmP82]) Suppose a covariant
functor T : KOF x L. = M is locally continuous, and every w®P-chain has a limit both in K
and L. Then the functor T¥ : K¥ x L¥ — MP deﬁned as T¥(A,B) = T(A, B) for obJects and
TE(f,9) = T((fF)°F, g) for morph1sms is w-continuous.

Using Fact 4, We will prove that an functor F : DTI? — DTI® defined for objects as
F(M)= Mp+[M — M]is w-continuous, and that their exists an I-domain -M which is isomorphic
to F(M) using Fact 3.

12

128

PROPOSITION 10. Let M; = (D;,T;, ;) (i = 1,2,3,4) be I-domains and f = (f°,f7) : My —
M,, g=(g",¢"): M3 — My be homomorphisms.
1)Define ¢P : [Dy — D3] — [D1 — Dy and ¢T : [T, — T3] — [Ty — T4] as follows:

¢P(d:[D; — D3))=g° -d- fP
ng(u - Ts) = gT cu-fT.

Then ¢ = (¢P, ¢T) is a homomorphism from [M; — M3)] to [M1 — M4).
2)We can define a functor HOM : DTI®? x DTI — DTI as follows:

HOM(My, M,) = [My — M;]
HOM(f,g)= ¢

(proof) 1)Since ¢ is continuous, we only have to prove that 7§ - ¢P = ¢T - 75, Suppose
d €[Dy — D3] ,t€Th. :

(murg - ¢D)(d)(t) =1(¢7(d)(=)) ;3 Definition of mr]
where x € Dy such that ri(z) =1
=14(gP - d- fP(z)) . ;; Definition of ¢P
= (g7 -13-d- fP)(z) ;59 18 @ homomorphism.
(T)@ = (97 - mri(d) - F1)(2) ;; De finition of ¢T
= (g7 - n73(d) -) (FP(2)) ;3 f 18 @ homomorphism.
where € Dy such that 11(z) =t
= (g7 - m)(d(fP())) ;3 Definition of 73,
2)Easy.
(end of proof)

* ProPOSITION 11. 1)The functor HOM : DTIOP X DTI — DTI defined above is locally continu-
ous.

2)The product functor PROD : DTI x DTI — DTI is locally continuous.

3)The sum functor SUM : DTI; x DTI; — DTI, is locally continuous. Where DTI, is the
subcategory of DTI whose objects are I-domains and whose morphisms are strict homomorphisms.

(proof) 1) Let f, = (fP,fF) : My — M, be an increasing w-sequence in DTI??, and g, =
(g2,9%) : M3 — My be one in DTI, We only have to prove the equality of D-components, that is,
Un (g2 -d- fP) = (U, ¢2) - d - (U, fP), which is obvious.

2),3) Easy.

(end of proof)

COROLLARY. The functors HOME, PRODE, SUM? : DTI¥ x DTI® — DTI¥ are w-continuous.

(proof) For H OMP, it is a direct consequence of Proposition 11 and Fact 4. We can consider PROD
be a functor from IDOP x (DTI x DTI) to DTI, and SUM be one from ID°” x (DTI, x DTI,)
to DTI, , where ID is the category with one object and one arrow. By Fact 4, PRODF is a functor
from DTIZ x DTIF — DTI®, and SUMT is a functor from DTI, ¥ x DTILE - DTI®. DTIL,?
is isomorphic to DTIZ,

(end of proof)

13

129

PROPOSITION 12. The functor F : DTIZ — DTI® defined as

F(M)=Mp+[M — M|
F(f : My — M) = SUM®(idpr,, HOME(f, f)).

is w-continuous.

THEOREM 3. 1) M, the colimit of A = (F"(LpT1), F™(Lr(1))) in DTI®, and Mg +[M — M]
are isomorphic; that is, there are homomogphisms ’

® = (&P, 97T): M - Mp+[M — M)
V= (¥2,9T): Mp+[M—->M] — M

which satisfies]
@ -V = 1d(Mp+[M-M)

U - =idpy.

2) Moreover, ® and ¥ are additive.

(proof) 1) From Proposition 9, 12 and Fact 3.
2) Since ® and ¥ are morphisms in DTI®, they are embeddings in DTI. In DTI, all the
embeddings are additive, because it holds in cpo.

(end of proof)

4. The syntax of LTI

In this section, we specify the syntax of the language L'TI. Before that, we introduce some notions
on posets which we use in giving semantics to LTI in the following sections.

4.1 Preliminaries

DEFINITION. Let T be a poset. An element £ is finite if for every directed subset U of T" whose
L.u.b. is greater than ¢, there exists an element v € U such that ¢ < u. The set of all finite elements

of T is denoted by F(T).

DEFINITION. Let T be a poset. A subset V of T is open if it satisfies the following conditions: (1)
if V3 tthen V 5 u forall u>t. (2) for every directed subset U of T' which has the Lu.b. in V, U
and V intersects. The set of all open sets of T' is denoted by O(T).

ProrosiTioN 13. Let T be a poset.
1) If t; U ty exists for ty1,ty € F(T) then t, U to € F(T). _
2) Let u € F(T). Then ufy={t € T|t = u} is an open set of T'.

DEFINITION. Let u be a finite element of 7. Then we call uf} in Proposition 13 the principal open
set of T generated by u. The set of principal open sets and the empty set is denoted by P(T).

PROPOSITION 14. Let T be a poset and T' be aposét with least element null, and let O € P(T),u €
F(T"). Then we define [O v u| : T — T" as follows.

|O — u](t) =if (t € O) then u else null
|O — u]is a finite element of (T — T") -

14

130

ProposiTION 15. Let M = (D, T,), M' = (D',T',7") be I-domains and let nil and null be the
least elements of D' and T' respectively.

(1) Let u € F(T), v €T, and f : Val(u) — Val(v). We define fAP : D — D’ and fAT : T - T
as follows.

fAP(z) = if (r(z) > u) then f(z|.) else nil

FAT(t) = if (t > u) then v else null
Then A = (AP, fAT) isa homomorph1sm from M to M'. '
(2) Let f = (f?, fT) be a homomorphism from M to M’, and O € O(T). We define fD’o D—-D
and fT'o : T — T' as follows,

fPlo(z) =if ((z) € O) then fP(z) else nil

fTo(t) =if (t € O) then fT(t) else null.

Then flo = (fPlo, fFlo) is a homomorphism from M to M'.

Let T be a poset, T! be a poset with least element null, O € P(T), and f be a function from

T to T'. We also write f!p for the function defined as
flo(t) =if (t € O) then f(2) else null.

Let M = (D,T,7) and M' = (D',T',7') be I-domains, and let O € P(T) and u € f(T') Take -
a z € D’ such that T’(z) = u and define fD lambda(z).z and fT = lambda(t).u. Then (fP, fT)

is a homomorphism from M to M'. By Proposition 15, f!p is a homomorphism from M to M'.
You can see that fT!5 is equal to |O — u]. It follows that |O > u| is a member of [T — T].

4.2 The syntax of LTI

The syntax of LTT consists of Exp: the set of expressions, TExp: the set of type expressions, |
and typeof: a function from Exp to TExp.
This language depends on the choice of following sets of symbols.

Vv :‘The set of variables

C :The set of constants

TV :The set of type variables

TC :The set of type constants

FTC :The set of finite type constants

We assume the existence of one to one correspondence typeofv from V to TV. C contains af
special constant nil. FTC is a subset of TC and contains a special type constant null. FTC is the set:
‘of type constants which are assigned finite types as their meaning. In most practical cases, FTC is:
same as TC.
First, we define Exp: the set of ezpressions. Exp is the set of untyped lambda-expressions with'
constants from C.

ceC
veV
e,e1,e3 € Exp

en=c|v|Av. e|e; e

We use parentheses additionally in order to make the order of association clear.

15

Lot inniarenibriinanbl e iy iz

131

Next, we define TExp: the set of type expressions. We also define FTExp: the set of finite type
expressions and OExp: the set of open set expressions along with defining TExp. In the semantics,
a finite type expression denotes a finite element of the type domain, and an open set expression
denotes a principal open set of the type domain.

tce TC
tveTV
ftee FTC
te,ter,tez € TExp
0,A; € OExp (¢ =0,1,...,m)
fte,B; € FTExp (:=0,1,...,m)

te = tc|tv| Atv : 0. te|teg tez|tey V tey
fte == ftc| (Ao — Bo,Al — Bi,...,Am — Bp)

0= ftel

teq V tey is a type expression which denotes the least upper bound of the types denoted by te;
and tes. Atv : o. te is a type expression which denotes the type of a function whose return value
belongs to the type denoted by te when the type of the given argument is a member of the set
denoted by o, and otherwise returns nil, the value denoted by nil. We abbreviate Atv : null] . te
as Atv. te. (Ap — Bo,A1 — Bi,...,An — By) is an abbreviation for (Atv : A;. By) V (Atv :
As. B3) V...V (Atv : Ap,. Bp,). Thus, FTExp is a subset of TExp. Closed expressions and closed
type expressions are defined in the usual manner.

Finally, we define the function typeof from Exp to TExp. Suppose that there is a function
typeofc from C to the set of closed .type expressions such that typeofc(nil) = null. typeof is defined
as follows; o ! ' '

typeof(c) = typeofc(c) where c € C

typeof(v) = typeofv(v) where v € V
typeof(Av. e) = Atypeofv(v). typeof(e)
typeof(e; ey) = typeof(e;) typeof(ez).

We call typeof(e) the type of e.

The syntax of LTI depends on what we take as the symbols and how we define typeofv and
typeofc. Here is an example of them.

V= {z}

C = INT + REAL + {nil} + {sqrt,trunc,+}
TV = {t} ‘
TC = FTC = {int, real, null}

where INT is the set of symbols denoting integers such as -2, -1, 0, 1, 2, and REAL is the set of
symbols denoting (a subset of) real numbers such as 1.0, 2.0, 2.45.

16

132

typeofv and typeofc are defined as follows;
typeofv(z) = ¢

typeofc(e) = int wheree € INT
typeofc(e) = real where e € REAL
typeofc(sqrt) = (realf — real)
typeofc(trunc) = (realf — int)
typeofc(+) = (int] — (intT — 'int),
reall — (real{ — real)).

The followings are expressions:

((+ 2)3)
Az.

Az. (z z)
Az. ((+ (trunc (sqrt z))) z).

The types of these expressions are as follows;

typeof((+ 2) 3) = ((+' int) int)
typeof(Az. z) = At. ¢
typeof(Az. (z z)) = At. (1 t)
typeof(Az. ((+ (trunc(sqrt z))) z)) = At. ((+' (trunc’ (sqrt’ z))) z).
Here, we used the following abbreviations:
sqrt’ = (reall — real)
trunc’ = (reall — int)
+' = (intf — (int] — int),

reall — (realf — real)).

5. Semantics

In this section, we give a denotational semantics to LTI. The semantic domain is an I-domain
M = (D, T,7) which satisfies the equation

. |
MZ——=Mp+[M — M]+ WRONG
v

where Mp = (Dp,Tg,TB) is a given I-domain which consists of the set of fundamental values Dp,
the set of fundamental types Tz, and the type assignment function 75 from Dp to Tg; WRONG
is an I-domain whose value domain is { DWrong, nil} and type domain is {TWrong, null}. The' ;
semantics is given by a pair of functions (£,E7T); € is a semantic function for expressions, and £T
is a semantic function for type expressions. We construct them assuming that a semantic function
for constants £¢ : C — D, and a semantic function for type constants £7¢ : TC — T are given t

I Note that £7€ is an function to Tp in the examples given in the following sections.

17

133

DWrong and TWrong mean type mismatch; that is, DWrong means that an element of Dpg
is applied, as a function, to an argument, and TWrong means that an element of Tp is applied,
as a function, to an argument. There is another notion of ’error’ in this semantics; that is, not
every type expression has meaning in T. TExp includes a type expression te; V te; which denotes
the least upper bound of the two types denoted by te; and te;. However, in the type domain T,
not every two types have the least upper bound. So te; V te; may not have meaning in T. Neither
may Atv : o.te have meaning in T, since one can express functions on types which are not types of
generic functions. Hence, £T returns Error, which is a special element not in T, when the type
expression does not have meaning in 7. Theorem 4 ensures that the meaning of a type expression
is not Error if it is a type of an expression. Because we are only interested in types of expressions,
we may safely say that T is the semantic domain of type expressions. Note that Error is not an
element of T though TWrong is. -

We call Env = V — D the set of environments and TEnv. = TV — T the set of type environ-
ments. £ and €T has the following domains and codomains;

£:Exp — (Env— D)
ET : TExp — (TEnv — T 4 {Error}).

In the following, we use [,]| instead of (,) for arguments in syntactic domains. Let nil be the
bottom of D, null be the bottom of T.

First, we define £: the semantic function for expressions. Let £ : C — D be a given semantic
function for constants. £ : Exp — (Env — D) is defined following the structure of expressions:

£[el(p) = £°Tc]
£[o](p) = plv)

Elles e2]l(p) =if (2P (£[ex](p)) € [D — D}

then @2 (£[e1](0))(E[e2(p))
else DWrong

[v.el(p) = ¥P(f)
where f = lambda(d).E[e](p[d/v])

where p[[d/v] is the environment identical to p except that it maps v to d. We must prove that

the f appeared in the above definition belongs to DF = [D — D).

LEMMA. lambda(d).E[le](p[d/v]) is a generic function from D to D.
(proof) It is proved using structural induction on the formation of Exp.

(end of proof)

Next, we define £7: the semantic function for type expressions. Let £T€ : TC — T be a given
semantic function for type constants that maps each element in FTC to F(T'). Before defining £ T
we define £F: the semantic function for FTExp, and £°: the semantic function for OExp. Their
domains and codomains are as follows;

EF . FTExp — F(T) + Error
£° : OExp — P(T).

EF[fte] = ETC ftc]
E7[(Ao — Bo, Ay = By, ..., An — Bn)]

18

134

= if(3i.£F[B;] = Error) then Error
else if (U; |EC[A:] — EF[B:]] exists)
then ‘I’D(Lli I_(‘:O[[A;]] — SF[IBi]]_I)
else Error
EC[ftel] = if (EF[fte]] = Error) then empty set
else EF[ftelr
ET : TExp — (TEnv — T + {Error}) is defined following the structure of expressions:
T [tell(pt) = E7[te]

ET[tv](pt) = pi(tv)
ETte; tex](pt) =if (ET[te1](pt) = Error or ET[tex](pt) = Error)
then Error
else if (BT (E7[te1](pt)) € [T — T))
then &7 (ET[[te1](pt))(ET [te2(pt))
else TWrong
ET[Atv : o.te](pt) =if (ET[te](pt[u/tv]) = Error for 3u € T)
then Error
else let f = lambda(u).ET [[te](pt[u/tv])
if (fleogq € [T — TY)
then ‘I’T(f!go[Io]’)
else Error v
ET[tey V tex](pt) =if (ET[te1](pt) = Error or ETtex](pt) = Error)
then Error ‘ :
else if (ET[te1](pt) U ETtes]|(pt) exists)
then £T[te;][(pt) U ET[tex](pt)
else Error

"PRrOPOSITION 16 . EF is the restriction of €T to FTExp with respect to the embedding functions
from FTExp to TExp and from F(T') to T.

FTExp C TExp

er [

FT) c T

(proof) It is proved using structural induction on the formation of FTExp.
(end of proof)

In this way, we can give denotational semantics to expressions and type expressions on the
value domain and on the type domain, respectively. But we are only interested in the case that
the meaning of typeof is given by 7. Let p be an environment. We define the type environment p#
corresponding to p as follows;

p* (tv) = 7(p(v)) where typeofv(v) = tv.

THEOREM 4 . Suppose that every constant c satisfies £T [typeofc(c)] = T(£€[c]). Then every
expression e satisfies ET[[typeof(e)[(p#) = T(E[el(p)). Especially, ET[typeof(e)](p#) is not Error.

(proof) It is proved using structural induction on the formation of Exp.
(end of proof)

19

135

This theorem shows that when £° and £T€ satisfies £T - typeofc = 7 - £C. The following
diagram commutes.

Exp x Env —£f oD
ltypeof l# ' lT
ST
TExp x TEnv —=—— T

Especially for closed expressions, we have

Exp —f . D
ltypeof lf
gT
TExp ——— T.

6. Examples

In this section, we calculate the meaning of expressions and corresponding type expressions shown
in section 4. ’
As in section 4, we fix the symbols of LTI as follows,

V= {z}

C = INT + REAL + {nil} + {sqrt,trunc,+}
TV = {t}
TC = FTC = {int, real, null}

and the types of variables and constants as follows,

typeofv(z) = ¢

typeofc(e) = int where e € INT
typeofc(e) = real where e € REAL
typeofc(sqrt) = (real] — real)
typeofc(trunc) = (reall — int)
typeofc(+) = (int] — (int] — int),
reall — (real] — real)).

We define the I-domain Mg = (Dp,Tg,78) as follows,

|Tg| = {int, real,null}
int > real,real > null

|Dg| = INT + REAL + {nil}
1>1.0,220,...,

z = nil ‘ where ¢ € RFEAL
(z) = int where z € INT"
T(z) = real where z € REAL

Tp(nil) = null,

20

136

where INT is the set of integers and REAL is the set of real numbers. It is easy to verify that Mg
is an I-domain.
From Mp = (Dp,Tg,TB), we can construct an I-domain M = (D, T,7) which satisfies

®
MZ—/—"Mp+[M — M]+ WRONG.
o _

In this example, we identify elements of Dg with elements of D through &P and ¥P. We also
identify elements of T with elements of T through ®7 and ¥7.
Let £€ : C — D be a function defined as follows,

EC is defined obviously to elements of INT and REAL.
ECil] = nil
EC[sqrt]) = ¥P(sqrin)
where sqrt : REAL — RFAL is a function which calculates the square root.
ECtrunc] = ¥P(truncA)
where trunc : REAL — INT, is a function which ca,lculates the truncation.

E°L+] = ¥P(fug) |
where f = lambda(z). if (7(z) = int) then UP(h) else nil
where h = lambda(y). if (7(y) = int)
then z +; y else nil
g= lambda(w) if (1(z) > real) then UL (h) else nil
where h = lambda(y). if (t(y) > real)
then |reai +r Y|reas lse nil

where +, : REAL x REAL — RFEAL
+;:INT x INT — INT
are addition functions on REAL and INT respectively.

Let £TC : TC — T be a function defined as follows,

ETClint] = int
ETCreal] = real |

ETCnull] = null.

€ and €7 are defined from £€ and £7€ asin the previous section. It is easy to verify that every
constant ¢ satisfies £ [typeofc(c)] = 7(£€[[c]). In the following examples, we omit environment
arguments for closed expressions and closed type expressions.

ExampLE 1. ((+ 2) 3)
typeof((+ 2) 3) = ((+' int) int)
where +' = (int] — (int] — int)
realf — (reall — real)).

£+ 2)1 = @P(£[+D)(El2D)
= (f U ¢)(2) where f and g are as in the definition of £[+] .

= f(2) U 4(2)
= ¥P(h1) U ¥P(h2) where

21

137

hl = lambda(y). if ((y) = int) then 2 +; y else nil
. h2 = lambda(y). if (1(y) > real) then 2.0 +, Y|real €lse nil

EN((+2)3)] = @2 (£[(+ 2MD(EBD ,

= &P(¥P(h1) u ¥P(h2))(3)

= (®P¥P(h1) u P UL (K2))(3) ;strictness of &P

= h1(3) U h2(3) :

=5U5.0 -
ET[+'] = UT(linth— T (Linth— int]]))

U¥T(|realf— ¥T(|realf— real]]))

From here on, we identify the elements of [D — D] with elements
of D and the elements of [T — T'] with elements of T" for simplicity.
= |intf lintf— int]] U |realft |realft+ real]]

ETI(+" int)] = (linth— |intf— int]]
U |realf— |realft— real]|)(int)
= |intf int] U |realf real]
sint > int and int > real
ETI((+ int) int)] = (Lintfh— int] U |realftr> real])(int)
= int U real
= ini

EXAMPLE 2. Az.x’
typeof(Az.z) = At.t.
E[z](p) = p(z)

El(Az.x)]= lambda(d).gﬂm](p[z/dj)
= lambda(d).d
ET[t)(pt) = pt(t) -
ET[(At.1)]=if (ETN ptt/u]) = Error for 3u) then Error
else let f = (lambda(u).ET [te](pt[t/u]))
if ((f!eounullrn) €T — T]) then f!so[[nulhn :
else Error ‘
flouiy where f = lambda(u).u
lambda(u).u

EXAMPLE 3. Az.(z)
~ typeof(Az.(z)) = AL.(t t)
As example 2, we can calculate

E[(Az.(z 2))] = lambda(d).if (d € [D — D]) then d(d)
' else DWrong

ETM(AL()l = lambda(u).if (v € [T — T1]) then u(u)
‘ else TWrong

22

138

EXAMPLE 4. Az.((+(trunc(sqrt z))) z)
typeof (\z.((+(trunc(sqrt z))) z)) = At.((+'(trunc'(sqrt’ 1)) 1)

where sqrt’ = (reall — real)
trunc’ = (reall — int)
+' =(int] — (int] — int),
realf — (reall — real)).

£[(trunc(sqrt z))](p) = truncA (sgrid (p(z)))
Using the fact that

if (r(p(x)) > real) then T(trunc (sqrtd(p(z)))) = int
else T(truncA (sqrid (p(z)))) = null,

E[[(+(trunc(sqrt)))](p)
= if (r(p(z)) > real)
then lambda(y). if (7(y) = int)
then truncA (sqrii (p(z))) +iy
else nil :
U lambda(y). if (r(y) > real)
then truneA (sqriA (p(2)))|reat +r Ylreal
else nil
else nil
= if (r(p(z)) > real)
then lambda(y). if (r(y) = int)
then trunc (sqrid (p(z))) +iy
else if (7(y) = real)
then trune (sqrid (p(z)))lreat ++ ¥ A
else nil
else nil

£[((+(trunc(sart £))2)](p)
= if (T(p(x)) > real) .
then if (7(p(z)) = int)
then truncA (sqrid (p(z))) +:i ()
else if (T(p(z)) = real)
t{len tzuncA (sqrtA (p(z)))|reat +r p(2)
else nil

E[(Az.((+(trunc(sqrt z)))x))] =lambda(d). if ((d) = int)
then trunc(sqri(d|reqa)) +i d
else if (1(d) = real)
then trunc(sqrt(d))|reat +r d
else nil .
£T[[sqrt’]] = |realft real] »
ET[trunc']) = |realft— int]
ET[+] = |inth— linth— int]]
U |realft— |realf— real||
ETL t)(pt) = pi(t)
ET[(sqrt’ t)](pt) = if (pt(t) > real) then real else null

23

139

ET[(trund!(sqrt’ 1))](pt) = if (pt(t) > real)
then int else null

ETT(+'(trunc'(sqrt’ 1)))1(pt) = if (pt(t) > real)
then |intfy s int] U |realft— real]
else null
ETI((+' (trunc'(sqrt’ 1)))t)(pt) =if (pt(t) > real)
then if (pt(t) > int) then int U real:
else if (pt(t) > real) then real
else null
else null

ETI(AL.((+'(trunc(sqrt’ 1)))t))] =lambda(t).if (t = int) then int
else if (t = real)then real
else null.
This formula is equal to

lintft— int] U |realft real].

 So we get the equality:
ETIA t.((+'(trunc(sqrt’ 1)))t)] = ET[(int] — int) V (realf — real)].

If we can make a reduction system on type' expressions which reduces the type expression
(At.((+'(trunc(sqrt’ t)))t)) to (intT — int) V (realT — real), it will be apphed to the type check-
ing of generic functions.

7. Further works

o Appropriateness of the model In this model, we defined that the value domain of an I-
domain is a cpo and that generic functions are continuous, which we used in solving domain equa-
tions. Though these conditions may not be natural, it seems that most type structure and generic
functions we are interested in satisfy them. We must continue investigating in the appropriateness
of the model.

o Formal system We defined only the syntax and the semantics of LTI. In order to extend it
to a programming language, we need to define reduction on Exp and TExp. As the expressions of
LTI are same as those of lambda-calculus, we can define S-reduction on Exp and it can be proved
that B-reduction preserves the meaning of expressions. The author is also interested in reduction
on type expressions, because it can be applied to static type checking of generic functions. It is left
as an further work. '

e Method combination. Originally, this research aimed at designing semantically clear way of
doing method combination; that is, combining generic functions into one generic function by taking
the least upper bound. However, it has some difficulties concerning “Errors”. This problem will be
further investigated in the near future.

o Extending the type system. We only defined function types in L'TT. It is easy to add product
types to LTI and give semantics to it. The author is interested in adding types which are similar
to classes in object oriented languages, which will make the type system more powerful and show
the effectiveness of generic functions and method combination.

24

140

o The relation with type theory. In Martin-Lof type theory, they deal with dependent types
such as ¥ and II. II is the type of functions the type of whose return values vary with the value of
the argument, in contrast to generic functions, the type of whose return values vary with the type
of the argument. The author is wondering whether there is an interesting relation between these
concepts. [Rey85] has pointed out some open problems which appear when considering subtypes,
such as let construction, type checking algorithm, infinite, recursively defined types. The author
believes that formal semantics like the one given here can be the foundation for solving these
problems.

Acknowledgement

The author would like to express his deep gratitude to Professor Reiji Nakajima for his appropriate
advices, and to Mr. Masami Hagiya for many invaluable advices throughout this research and
careful reading of the paper.

Appendix

o An example that ™™ is not a surjective function
Define that

M =(T,D,r),

T = {To,T1, T3, T3,null}, Ty > Ty, T2 > To, Tz > Ty,
D = {ag,b0,0a1,b2,b3,n1ll},a1 = ao, b > bo,b3 = bo,
T(ao) = T(bo) = To,

T(al) = Tl,
T(bg) = Tz,
T(b3) = T3.

M is an I-domain.

Ty = {a1} Ta={b} T3={bs}

To = {ao, b0}
Define a monotone function u : T — T that
’U,(To) = To,
'u'(T'l) =T,
uw(Ty) =T,
u(Tg) = T3.

% is not in the image of 7*.

e An ezample that [T — T] is not a cpo though T and T' are.
Define that

T ={U,8,T.,T,...,Tu}

U<S, USTi<...<Tp<...<Ty
Val(U) = {u1, Uz, . stny -« Uy}
Val(S)= {s1, S2, ---ySny ...}

Val(Tl) = {t1,17t1,27" .)tl,n"' . 7t1,w}
Val(Tz) = { t2’2,. .. ,tg’n,. . ,tgyw}

25

141
Val (T,) = { tnnse - - stn,w}
Val(Ty)={ C tww)
D = Val(U) + Val(S)+ Val(Ty) + ...+ Val(Ty)
and define the order on D as

si ru; (1=1,2,...,n,...)
ty = ug V(z.::l,2,...k,n,...,w)
tn g1 tn,i(l =12,.. .,n,...,'w)

(D,T,) is an I-domain.

{ ‘ tw,w } =Ty, :
| |
| o
{) t‘n,na tn,-n.+15 ey t'n,'w }: Tn
R R R
| | | | | | |
{ t22, .oy tam, ton41, ooy f2w =T S ={s1,---y8n,..-}

I | l | |
{ t11, t2, -y tn tpgts oovy tiw =T /
| | | | | |

{ Uy, U2, .-y Up, Untl, 005 Uy }=U

We show an example of f; : T — T (i = 0,1,2,...) in which {f;} is a directed set and
fi € [T — T}, but the Lu.b. of F = {f;} does not exist in [T — T]. Define f, (n=0,1,2,...) as

fa(S)=5

U)=U '
(L) =T, (i=12,...,0n-1)
T =T(G=nn+1,...,w)

fn are monotonic functions and {f,} is a directed set. Define g, : D — D(n = 0,1,2,...) as

gn(si)=s, (1=1,2,...,n—1)
gn(si)=s (i=n,n+1,...)
gn(ui)=un, (1=1,2,...,n-1)
'gn(u’i):ui (i:n»n+17---1w)
gn(tk,i) =tan (2 =1,2,...,n—1
k=1,2,...,n-1)
gn(tei) =tni G=n,n+1,...,w
k=1,2,...,n—1)
gn(tki) =tk (k=n,n+1,...,w
i=n,n+1,...,w)

gn is an generic function and 7*(g,) = fn. UF satisfies

26

142

UF(S) =
uF(U) =
UF(Ti) =Tw (= 1,2,...,1m,...,w)

There is no generic function g which satisfies 7*(g) = UF.

References

[AiN86] H. Ait-Kaci and R. Nasr (1986), LOGIN: A logic programming language with built-in
inheritance, in ”J. Logic Programming, 3,(3),185-215”

[A1t86] H. Ait-Kaci (1986),An algebraic semantics approach to the eﬁectwe resolution of type equa-
tions, in " Theoretical Computer Science, 45, 293-351”

[Bar81] H. P. Barendregt (1981), ”The Lambda, Calculus: Its Syntax and Semantics”, North-
Holland, Amsterdam. ‘
[BKK86] D. G. Bobrow, K. Kahn and G. Kiczales (1986),Commonloops: Merging Common Lisp
and Object-Oriented Programming, in ”OOPSLA 86”

[BDG87] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. Keene, G. Kiczales and D. A. Moon
(Feb. 1987) ”Common Lisp Object System Specification”, ANSI X3 Draft

[BrC87] J. P. Briot and P. Cointe, A Uniform Model for Object-Oriented Languages Usmg the Class
Abstraction, "IJCAT'87” :
[Car85] L. Cardelli (1985),4 Semantics of Multiple Inheritance, in ”Lecture Notes in Computer
Sciences, vol. 173, 51-68”

[CaW85] L. Cardelli and P. Wegner (1985),0n understanding Types, Data Abstraction, and Poly-
morphism, in ” ACM Computing Survey, vol. 17, No. 4”

[MPS 86] D. B. MacQueen, G. D. Plotokin and R. Sethi (1986),An Ideal Model for Recursive
Polymorphic Types, in ”Information and Control,71,95-130” '
[Mey82] A. R. Meyer (1982), What is a Model of the Lambda Calculus?, in ”Information and Control
32,87-122.

[Mil78] R. Milner (1978),A Theory of Type Polymorphism in Programming, in ”J. Comput. System.
Sci.,17,N0.3, 348-375.”

[Rey85] J. C Reynolds (1985), Three approaches to type structures, in ”Lecture Notes in Computer
‘Science, vol. 185, 97-138” ' ,

[Rey81] J. C. Reynolds (1981),Using Category Theory to Design Implicit Conversions and Generic
Operators, in ”"Lecture Notes in Computer Science vol. 94,211-258”

[SmP82] M. B. Smyth and G. D. Plotokin (1982), The category-theoretic solution of recursive domain
equations, in ”SIAM J. Comput.,11,No.4, 761-783.”

27

