0000000000
07090 19890 143-165 | 143

Executable and formalized logic programming language
based on time interval logic

Naoyuki Nide

Educational Center for Information Processing,
Kyoto University

Abstract

The tense logic is an extensions of the classical logic which is actively studied. 1In
particular, the time interval logic, or the logic based on intervals of time, has been supported
since it fits human intuitions as to time continuity. There are several interval-logical
languages but none of them seems to allow both construction of an underlining axiomatic formal
system and executability. This paper introduces such a language, on . whose formal system model-
theoretic soundness and completeness (restricted on the propositional logic for the present) are
proven. Besides, it is possible to attain efficient real-time execution by capturing the changes
of predicates’ +truth values as events and performing inferences about them when an external

event occurs.

144
§1 introduction

Congsidering situations where we apply a logic programming language to a practical use which
essentially includes time notlon, such as real-time process controlling, it’s natural to work
with tense logic, since it can explicitly describe facts about time. Besides, tense logic ig
useful for Al applications such as knowledge represéntation.

Roughly speaking, tense logic is separated into two groups—time point logic and time interva]
logic. Looking at the real situations where we are reasoning facts concerning with time or we
are progremming using a logic programming language which includes time notion, time interval
logic is tend to be used more often. For example, "An elevator continues to move from the time
it starts to the time it arrives at another floor”, "The door of the elevator is closed while
the elevator is moving”, etc. These statements seem to be naturally expressed by languages which
are based on time interval logic.

Interval logics are formulated mainly in two major ways. One is to treat formulas which have
truth values not on time points but. on time intervals, and regard "includes” and "before”
relations between intervals as modalities[1]1[2]. The other way is to give truth values to each
formula on every time point, and then determine truth values on every time interval[3][4]. The
former, which composes formal systems from axioms and rules, gives 'us brief, concise and strict
system, and some good properties like soundness and completeness make the systems easier to
treat. When we discuss possibility of using them as real time programming language, however,
there is a difficulty that we can’t refer to future states in conditional formulas. On the other
hand, the latter is formulated from the first so that it can be real-time executed. Looking at
logics based on it, operational semantics are given to them, but it seemed that in many cases
formal systems aren’t given. Moreover, if we choose discrete set of time points in such a logic,
there may be some descriptions which mismatch our intuition that time is dense (brief discussion
about such examples is in §6).

If there is a language which have merits of both, it can be more widely applicable than

conventional ones. For example, time representation have been done quite separately in the two
ways above. If we can treat them uniformly, there will be some new suggestions for time
representation. Moreover, in such a language, we can possibly use same program or process
commonly in both real-time execution and static execution (for example, inference using
historical knowledge), because a real-time program itself can also regarded as a database of
knogledges about time. (As an example we briefly referred to possibility of program checking in
§8).
On such purposes, an time-interval logic system, named AYA, is formulated in this paper. In
AYA, predicates’ truth values are defined on time intervals, and changes of them are regarded as
" events. By coupling two events, we can compose a new formula which holds on a time interval from
the first event to another event. In such way, we can form the system which can describe events
without introducing time point nor time-point predicate. Besides, a formal system based on
axioms and rules, which is independent of its model theoretic semantic, can be formulated by
regarding coupling of events as modalities. Further, soundness and completeness can be proved on
it. This paper also refers to the possibility of using this system as a real time programming
language.

The contents of this paper is as follows: in §2, we give a brief explanation of AYA’s
features using simple example and some comparison with other works. The definition of AYA's
syntax is given in §3, and formulation of a model is described in §4. Next, AYA's formal
system is constructed in §5, and soundness and completeness (which currently restricted on
propositional logic) are given in §6. Then, in §7, we refer to execution of AYA as a real-time
programming language, and in §8, an example of execution is given, which based on simple
example ‘again. Finally, in 89, we discuss about problems to be solved.

§2 A sample

As an example of real-time control, we choose a simple elevator controlling. In this example,
the elevator has a box which carries people between the 1st(ground) floor and the k-th floor.
In every floor there are -an upward-call button and a downward-call button. The box has

145

destination buttons which correspond to each floor.

Elevator is real-time automatically controlled and a human indicates his destination by the
buttons when necessary. Yhen the elevator arrives at the demanded floor, it stops and the door
opens. Once a button is pushed, it has to remain in the "pushed” state until the elevator
arrives at the appropriate floor.

To survey AYA, in this section we give only a small part of the program of elevator
controlling. Detailed discussion about whole elevator-controlling program is given in §8.
Moreover, we give only an intuitive and informal explanation in this section. See the succeeding
sections for more details about AYA’s syntax and semantics.

First of all, as an example we take up a sentence of the elevator-controlling program written
in AYA.

fihREd) A &Y kM) > E/EFR (D

Atomic formulas in AYA is defined in just the same way as the original first-order logic. For
example, "{THRWYE(n)” is an atomic formula. Symbols such as A and > (imply) are also
introduced as usual. (1) represents that "if the elevator must go to the n-th floor and it’s
higher than the current place, then there is an upward demand.”

One of the forms proper to AYA is the limitation of time section by "=". For example the
following sentence is a formula in AYA.

VB DAFRRIEM) = H (EBEFVTFREDA-ETH) > BikHh) (2)

Generally, if A, B are formulas, } A=t B is also a formula. (} A is an event which
represents A finishes to hold,” and 1t B is an event "B begins to hold.” They are not
formulas themselves.) This formula holds on every time interval from the time when A finishes
holding until the time when B begins holding. This sentence represents that "the elevator stops
at the n-th floor, where it had to go, from when it finished moving to there, until the door
closes and a demand from another floor occurs.” In this case, an interval on which #ikd(n)
holds is just on the right (i.e. the future) of an interval on which BEHh &, AT ()
holds. Like this example, natural expressions are enabled in situations we express relations
between time intervals directly.

Let us try to express the same thing by a- time point logic, for example, [7]. Here we use the
following abbreviations:

"B (x,n) &ITAREE (n)” to A
"(LREA | TREA)&~F7H” to B

where the symbols &, |, ~ indicates ”and”, "not”, ”or” in [7]. Since [7] has. an "until”
operator, it seemed to be possible to express the same situation by the following formula.

~A - Eikdi(n) until B

But actually it has a problem. Even if the elevator is moving to a floor other than the n-th
floor, ~A holds, therefore f&i:#(n) also holds. It must be expressed as

QA & ~A = Eikdh(n) until B

where @ is an operator in [7] which represents "the tlme ponnt just before now”. It is more
natural to-use time interval rather than to use "@®”.

There is another problem which may occur in logical languages with time notion. The previous
example of [7] refers to the truth value of A at “a moment before”. In our feeling, time points
are dense, so the time A finishes holding and the time ~A starts holding is same. But in that
example it is written as if. ~A started holding at "a moment after” the time A finished
holding, which doesn’t match our . intuition. Problems: like this tend to occur in time logics
based on discrete time points. ‘

A similar problem also occurs in [4] a tlme~1nterva1 logic on discrete time points. [4]
introduces a symbol " 41”. "4 X” means that in a certain time interval, at first a binary signal
X's value is 0 and it changes to 1 halfway, finally it is 1. "4 X” is defined as follows.

3

146

F 4 X = (X ~~ 0); skip; (X ~~ D]

note: the symbol ~~ is accurately doubled wavy lines.

»:” ig the chop operator. "~~" means its both sides are identically equal on the given

interval. :
This formula uses the predicate "skip,” which holds on every interval of length 1. Therefore ”

4 X holds in a certain interval I” means that "in a interval L which is the beginning of a
certain interval 1, X ~~ 0 holds, and the interval from the ’next moment’ of the end of L
to the end of 1, X ~~ | holds.” In our intuition, the time X ~~ 0 finishes holding and
the time X ~~ 1 'starts holding are same, but this formula uses ”skip”, which makes it
slightly different from out feeling.)

To express a similar situation C(however, not accurately same) in AY A, we can write as

follows.
H(HtA=2{(X=0) = {A) » X=1

Hereupon A has almost the same meaning as %X in [4]. This can express more directly than [4]
that the intervals on which X ~~ 0 and on which X ~~ 1 are adjoin.

From here we discuss about: some differences and similarities between AYA and other time
logics, and merits and demerits of AYA.

For the first, [8] is very similar to AYA. The reason is AY A refers to [6] from the
first. [6] defines “interval propositions” which holds on time intervals, then take notice of
changes of their truth values, and formulate inference rules about them. Some features are
common to [B8] and AYA, for example, both regards changes of truth values as events, and
enable real-time execution on computers by performing inferences about events.

From the viewpoint of executable language, there also have common merits. For example, in [5]
or [7] inferences must be performed for each time point, meanwhile processor of AY Aor [6]
must execute inferences only when external event occurs. This suggests we can get efficient
processor of those.

Another feature of AY A and [B8] is that we don’t have to keep all the histories of truth
values, which also seemed to improve efficiency of their processors. By contrast, In [3], for
example truth value of a proposition "[0G” at a certain time depends on G’s truth value of all
the time since a program starts until the current time. Therefore the processor of it have to
- keep all the history of truth values. It seemed to be considerably large overhead.

One of the differences between [6] and AYA is that [8] is event oriented. In [6] inference
rules about occurring of events can be written directly in a program, but in AY A there is an
axiomatic formal system and a program is a set of formulas. Programs written in AYA can be
executed not only by real-time execution which constructs a model but also by static execution
inferring formulas from rules (just like Prolog) . Thus for the example, there is a possibility .
to useAY A to check a spec of a program written in AYA itself. It can be regarded as an
advantage of AYA in comparison with current [6].

There is another difference between them in the viewpoint of model theory. In making a least
model, [6] uses the following order: (to say roughly) a model with a smaller number of changes
of truth values is smaller. It is more elegant than AY A. The reason of it is that programs in
(6] are event driven, but AY A is not completely event driven. In [6], an event directly
changes a formula’s truth value. But in AYA, a program is in the form of inference rules. For
example suppose that a program in AY A has the following two clauses: "} A=>{B—> C” and ”
Y A’=1B’ = C”., Then an event ? B not necessary changes C’s truth value, because "1 A'=
4 B’” may be hold there. Therefore a least model of AY Acan’t made in the same way to [6]. It
uses an order similar to [6], that a model with less predicates which are true is smaller.

From a viewpoint of formal system, we can formalize AY A as a modal Jogic in the same way as
[1] and [2]. The main difference between AY A and [1], [2] is that AYA tried to incorporate
a merit of [3] and [4], i.e. the executability on computers. To do so, AYA cut down a big
merit of ‘[1] and [2]. In [1] and [2] there are minimum restrict in’ making model, but in AYA
there are strong restrict, as described in the next chapter. For example, let us think about a
predicate "walk(n)” which is true on a time interval while which a man walks just nkilometers.
If we use the chop operator (expressed as "A° ” in [1]. In this paper it doesn’t used) , we

147

can use the following situation.
walk(n) A° walk(m) = walk(n+m)

It is an expression of a knowledge that "if a man walks n kilometers, and then walks m
kilometers, totally he walks n-+m kilometers”. But current AY A can’t treat this, because
two intervals on which a same predicate holds can’t overlap, so it can’t express the situation
in which two intervals on which walk(m) holds overlap.

This is a problem when we try to construct a system which also has a merit of executability on
computers. However, applications of time logic isn’t restricted on real-time execution such as
process controlling. There is wider use of it, for example knowledge expression about time. It
will be of use to treat both in same theory in the future work, though it seemed to be difficult.

§ 3 Syntax of AYA
Here wé give the definition of formulas of AYA.
<1> atomic formula p(tl, t2, *+, tn)

p is a predicate symbol and each t, is a term. Terms are constructed
by variables, constants and function symbols, just like the ordinary
first-order logic.

<2> formula

(1) every atomic formula is a formula.
(2) If A, B are formulas and x is a variable,
A—->B, —A, VYxA, dxA are formulas.

AV B, AAB, JxA are defined as aliases of "A—>B, -(A-=>—B),
—Vx—A. Ve suitably use parenthesis to show combination order.

(3) If u, v are event expressions u=v is a formula,
Hereupon event expressions are defined as follows:

(a) &, ’'start’ are event expressions.

(b) If A is a formula, + A, { A, ~ A, _ A are event expressions.

(c) If u, v are event expressions, uflv, ~u are event expressions.

(d) If u is an event expression, after(u), before(u) are event expressions.

e abbreviate ~(~uN~v) to uUv. In this case also,
we suitably use parenthesis.

Now we describe semantics of these formula, simply and informally.

Each formula holds on time intervals. We don’t regard any time point as an interval. In § 4,
an interpretation function is defined as a function from a formula to intervals on which it
holds. Note that in this paper we give the following restriction on the interpretation function.

(1) 1f a formula holds on two intervals, they don’t overlap nor have
their borders in common.

(2) 1f a formula holds on more than one formula, their border points
don’t accumulate.

An event expression represents time points at which a certain event occurs. For example 1 A
expresses time points when A changes from false to true. There are two special event

Iy
v

148

expressions ¢, and ’'start’. Under every interpretation, ¢ corresponds to the empty set of time
points, and ’'start’ corresponds to the origin of time axis. Note that an event expression isn’t
a formula itself. A formula made of two event expression combined by "=>" denotes time intervals
from an event occurs until another event occurs. (Don’t confuse ”=” with the implication
symbol ”—>”. These are perfectly different things.) For example a formula t+ A=1% B holds on
every time interval from when A begins holding until when B begins holding. We can also regard
it as a formula made of a binary modal operator ”$=>1%" which takes two arguments A, B.

Practically speaking, t A and % B may occur at a same time. So actually we define that 1 A
=>4 B holds from when % A occurs and 1 B doesn’t occur until when 1 B occurs and t A
doesn’t occur. If you rather want to express intervals from when % A occurs (4 B may occur at
%Pe same time) until when 4 B occurs but 1 A doesn’t occur, it’s sufficient to write + BN~

A. :
Let’s see another example. A=¢ is a formula which begins to hold when % A occurs, and
holds forever. Using these examples, we can represent some situations similar to [561’s OO, until,
atnext. For example "[JA-—>B” in [5] can be written as "} A=>¢ ~> B”, "A->B until C” can
be expressed as "1 A=41 C = B”. Besides, "A—>B atnext C” corresponds to "} (1 A=+ C)>
{B = B”".

Since an event expression isn’'t a formula itself, AYA doesn’t have any time point
predicates (predicates whose truth values are defined on time points) .

To show "an example of interpreting of formulas, we now illustrate a sample situation a few
formulas’ truth values.

start

cvees " - time axis

A —_— —_— —_—

B - y — _ —

AVB - _—
+ A=>1B —

*start’ denotes the origin of time axis. It also represents the beginning of a real-time
- execution of a program. Truth values of each predicate is defined also before 'start’, but they

doesn’t change there. :

There’s another kind of event expressions in AYA. An event expression ~ C denotes time
points on which ¢ is continuously holding. So " AN~ C = 41 B” is another example of formula.
It starts holding when % A .occurs while C is holding, and finishes holding when % B occurs.
Also in this case, we can regard it as a modal operator "4 N " =>%" with three arguments. Fronm
this point of view, we can regard AY A as a modal logic with infinite many modal operators.

However, permitting event expressions like ~ C spoils the guarantee that an event expression
always represents a discrete set of time points. One method of preventing this problem 1is to
limit event expressions to ones which represents discrete time points under all interpretation
functions, but it makes formalizing difficult. So we take another method in § 4. Ve give
meaning to every formula u=v, irrespective of whether u and v represent discrete time
points. That’s why <2>-(3)-(d) is prepared in the definition above. "after(u)” represents a set
of time points which satisfy the following condition: "its sufficiently small left (i.e. past)
neighbor is included in u”, and "before(u)” is defined similarly by the right neighbor. Here
we abbreviate "~after(u)N (uU before(u))” to "head(u)”, then it always denotes discrete
set of time. Especially, if u itself is discrete, u equals to head(u). So generally we define
interpretation of head(u)=>head(v) equal to that of u=v.

149

§ 4 composing a model

In this paper, we treat [0, o) as a set of time. As described in § 8, to say intuftively, a
formula is interpreted as a set of time intervals on which it holds.

First, we call the following thing an "interval sequence” or simply ”"sequence”:

~ ((pl,qD), (p2,42), (p3,q3), -+ '
Hereupon pl<ql<p2<q2<p3<q3<

Here pn,qn€ {t [t=—o0 or 0=t=oc} . A sequence may be infinitely long. If not, we say the
sequence is finite. Though we treat [0, =), we also allow —oc and == to be a value of pn or qn.
The reason why we do so is that we want to treat all time points wuniformly. We’ll give a
detailed explanation for it later. Practically speaking, only pl can be —e=o and only qn (when
the sequence is finite) can be =, We call pn and qn (except —oo and =) the edge points of

this sequence.
An interpretation function f is a function which maps an atomic formula to an interval

sequence. In this paper, however, we put the following restriction on the definition of
interpretation function.

If f is an interpretation function, then for any predicate symbol p,
{edge points of f (p(tl,*,tn)) | p’s arity is n, t1~tn moves among all terms}
doesn’t have any accumulating points.

For example f (A)= ((1,2), (8,4)) means that A holds on two intervals (1,2) and (3,4).
Note that (p,q) doesn’t mean open interval. We simply expréss an interval by a pair of numbers.

Since AY A doesn’t use any differences between open interval and closed interval, we don't
have to tell them apart when making a model.

If an interpretation function f is given, we can extend it to a function from a formula to a
sequence by the following way.

OSuppose f (A)= ((pl,ql).(pz,qz),--;) . Then

£ (—mA)= ((—oo,pl),(al,p2), -, (an,=2)]
where n is the length of f (A).

if pl==—c, (—oo,pl) is omitted.
if qn=o0, (qn,=) is omitted."
if £(A) is infinitely long, so is f(—A).

OSuppose f(—A)= ((p’'1,4’1),(p’2,9°2),***) and
f(B)= ((rl,sl),(rz,sz)‘,"'l . Then

f (A=>B)= ((t1,ul),(t2,u2),*]

Hereupon
tl=min(p'l, rl)

un is the minimum element of {q'l, sl, q’2, 82, =}
which satisfies:

tn < un and Vi not(p’1=un<q’l or r1=un<sl)
if such a u, doesn't exist, un is = and f (A—>B) is finite.

if n=2, tn is the minimum element of {p’l, rl, p'2, r2, -}
which satisfies:

Un—-1 < tn

150

if not exist, f(A—>B) is finite.

Olet f (A(t)) be C((p1(t),ql(t)), (p2(t),q2(t)),**) for every term t.
£ (VXAGO)= ((pl,al), (p2,q2),)
pn is the minimum point ﬁhich satisfies:

YVt 3n pn(t)=pn=qm(t) and It Im pn(f)=pn
and if (n>l) pn>qn—1

if not exist, f(VxA(x)) is finite.
an is the minimum point which satisfies:

YVt 3m pn(t)=qan=qnm(t) and It 3m qu(t)=qn and an > pn
if not exist, an is e and £ (VxA(x)) is finite.

Note: We can define f (WxA(x)) in such way because we gave non-accumulating condition in §

3.

Next we define f(u=>v), where u, v is event expressions. As a preparation, we regard f
to be also a function from an event expression to a set of time points (subset of {t| —oo<t
<eo}).

f (¢)=enmpty set
f (start)= {0}

lf f(A)"' E(Pl,ql) (p2,q2),'"])
f(tA)= {pl, ---} = {—o°}
(4 A)= {al, »} = {==}
(TA)={t] Eln pn<t<qn}
(_A)=f("—-A)

f(unv)=f(u)Nfv)
f(~u)= {t1te€R} —f(u)
(In the right sides N,— are set operators. R is the set of real numbers)

= h

f (1 A) and f (4 A) represent time points at which A’s truth value changes, and f(~ A), f
(_ A) are other points. Clearly from the definition, for all A, f(+ A) and f({J A) don't
include any points smaller than 0. In other words, before the origin of time axis, no predicate
changes its truth value. For all that, 0 canbe f (1 A)'sor f({ A)'s element, because we
allowed —oo ag a start point of interval. In such way we uniformly treat the time point 0 and
other points. Similarly, we allow o as an end point of interval to treat the point at infinity
and other points uniformly. :

Definitions relating to "after”, “before” are as follows:

f (after(f A))=f (before($ A))=empty set
f (after(§ A))= f (before($ A))=enpty set
f(after(" A)D=f(" A U {A))

f (before(" AN=f(A U 1A)

f (after(_A)D=f(_A U 1A))

f (before(_A))=f(_A U }A))

f (after(~u))=f (~after(u))
f (before(~u))=f (~before(u))

151

f (after(unNv))=f (after(u)Nafter(v))

f (before(uNv))=f (before(u) Nbefore(v))

f (after(after(u)))=f (after(before(u)))= f (after(u))

f (before(after(u)))= f (before(before(u))) = f (before(u))

Then head(u), introduced in § 8, is interpreted as a set of points which satisfies:

The point's left neighbor is included in ~u and
it or its right neighbor is included in u.

Besides, it is discrete (because interval sequence doesn’t accumulate) . Therefore, we can
define f(u=>v) as follows:

If f (head(u))— f Chead(v))= {tl, t2, t3,:+} and
f (head(v))— f (head(u))= {sl, s2, 83,3},

f(u=v)= ((pl,ql), (p2,q2),)

Here pl=tI,
an is the minimum element of {sl, s2, s3,-} which is larger than tn
if n>1, pn is the minimum element of f {t1, t2, t3,+}
which is larger than q.-,

We have extended the domain of f to the set of all formulas. Since each formula is composed
finitely, it can be said that if for every predicate symbol P, the edge points of f (P(x)) for
all x don't accumulate, then for every formula A the edge points of f (A) doesn’t accumulate.

When £ (A) is ((—o,2)), we say A is true under f. If for-all f, A is true under f,
then we call A to be valid. For example AV A is valid. =(41 AN~ A=>¢) is another valid
formula in AY A, because expression + AN~ A’s interpretation is always empty.

§ 5 Construction of AY A’s formal systenm
From here we use the following abbreviations:
If u, v are event expressioné, then
empty(u) is short for —((start N after(u)) U’head(yu) = ¢)
uCv is short for empty(~vNu)

usv ig short for uCv A vCu

In this section we give a system restricted on propositional logic. First we give AYA's
axioms and inference rules as follows, then we show its soundness and completeness.

In the following, u, v, w are event expressions andA, B are formulas. Al~7 are axionms

and RI~3 are rules.
As usual, we write T" FA if we can get a formula A from a set of formula I' and axioms by Rl

~3, Especially when I is_empty we write FA and call A a theorem of AYA.

Al 1 emp‘ty(¢)

Al.2 u € uNu

AL.L3 uNnNv C u

Al.4 uNnNv C vNu

ALLS ~(unNviN(unNw) C ~vNw

A2.1 (FA U VA C (start U 7 (start=¢)) .
A2.2 start C t(u=>v) U _(u=>v)

152

A3 empty(~tA N ~yAN~"AN~_A)

AM.1 empty(fA N " A)

Ad.2 empty(PA N JA)

A4.3 empty(PA N _A)

AM.4 empty(JA N " A)

A5 empty(JA N {A)

Ad.8 empty("TA N _A)

A5.1 t=A C A

A5.2 A C tA

5.3 A C _A

A5.4 —-AC A

p6.1 t(A-B) C (CANtB) U ({ANntB) U (HJAN_B)

06.2 {(A=-B) C ("TANIB) U (tANIB) U (AN _B)

A6.3 (A-B)C _AU "BU(tANtB) U (1ANIB)

A6.4 (A-B)C "AN _B :

A1 A (u=v) C (_(u=v)U Lt (u=v)) N head(u) N ~head(v)

A7.2 {(u=v) € (C(u=v)U(u=v)) N ~head(u) N head(v)

A7.3 " (u=v) C (T (u=v)IU{(u=v)) N (head(u)U~head(v))

AT.4 _(u=>v) C (_(u=vIU Lt (u=v)) N (~head(u)Uhead(v))
Note: - As described above, head(u) is
short for ~after(u)N(uUbefore(u)).

A8.1 empty(after(t A) U before(t A) U after(4 A) U before(iA))

A8.2.1 after(” A) = A UilA

A8.2.2 before("A) = "A U tA

A8.2.3 after(_A) = _A U tA

A8.2.4 before(_A) = _A U J A

A8.3.1 after(~u) = ~after(u)

48.3.2 before(~u) = ~before(u)

A8.3.3 after(unNv) = after(u) N after(v)

A8.3.4 before(uNv) = before(u) N before(v)

A8.4.1 after(after(u)) = after(u)

A8.4.2 after(before(u)) = after(u)

A8.4.3 before(after(u)) = before(u)

A8.4.4 before(before(u)) = before(u)

A8.5 empty(after(start) U before(start) U after(¢) U before($))

Rl If LA, then Fempty(~~ A).
R2 If fstart € ~ A and Fempty(J A), then FA.
R3 If Fempty(u) and v C u then |empty(v).

“empty(u) semantically represents that 'under every interpretation function u is empty.’ (
Actually it is proved in the next section.) Therefore these axioms can be regarded as inclusion
relations between the set of time points represented by event expressions.

A2~8 are so formed that event expressions can be decomposed to sub expressions (descrlbed
later) . ,

Al and R3 can be composed from Russell’s classical by the following transformation.

‘or’ to 'N’

*imply’ to C’ in the opposite direction
"true’ to '@’

1= X' (X is a theorem) to ’empty(X)’

Since the system before transformation is complete, in the system composed by only Al and R3,

/70

153

which can be got by simply transferring it, we can show the following facts:

If an event expression w satisfies g(w)=0 for every function g
from event expressions to {0, 1} which satisfies:

g(¢) 0
Yu,v gunv)=g(u)g(v)
Y u g(~u)=1—g(u)

Then |[empty(w) can be inferred only from Al and R3.

For example, since 1 A N ~ % A satisfies this condition, we can prove |empty(4 A N ~1%
A) only from Al, R3. Later, in the proof of this system’s completeness, we use this fact

without proving.

As you can see, this system has too many axioms and rules. One of the future works is to
compose a simpler system composed of much fewer axioms and rules which is equivalent to this one.

Now we list some examples of theorems and rules which.can be inferred in AYA.
(1) Let’s see the following rule. ’
If H(4AU1B = +C) = P, then H(1 A = 1C)> P.

It can be read as "if P holds - from when A or B becomes true until when C becomes true,
then P holds from when A becomes true until when C becomes true”. If this rule can be proved,
the following thing, for example. can be inferred directly (DRI in (2) above is used) .

It Htx2fih U RS :> P IERIRE > B,
then }_1 7'77\?)%3’1 = 1lErh#ﬁﬂE %?E.

In other words, we can directly infer "an alarm continues to ring from a gas leak occurs until
restoration” from the fact that ”an alarm continues to ring from a-gas leak or an electric leak
occurs until restoration”. .

Actually, this rule can be proved from Al, B, 7 etc.

Like this, we can directly express and infer facts about time intervals and predicates hold on
intervals.

(2) The following theorems and rule can also be proved.

Tl A->(B—>A)
T2 (A=>(B=>C))->((A->B)=>(A—>C))
T3 (~B->~A)>(A->B)

DRI If FA, FA—>B then FB

To show an example, we give a proof of Tl. Theorems and rules which can be inferred only from
Al and R3 are used without proof.

F TANTBNLA C TANVA (AL, R3)
- enpty(~ AN A) (M)
- empty(" AN BN A) (1, 2, R3)

- empty(TANABNEA)
- empty(" AN4YBN_A)

1
3

4, 5 can he proved like 3.
;

8 If F empty(Cu), F empty(v), F empty(w) then | empty(ulUvUw)

/7

154

(A1, R3)
7 Femty(TANTBNIA U TANEBNYA U TANTBN_A)
- (3,4,5,8)
8 FI(B-A)C "BNIA U {BN{A U tBN_A | (A8)
9 If FtCuUvUw then F sNt € sNu U sNvU SﬂV\(IM .
10 F "ANV(B=A) C - An Bm “ANABNIA U
NtBN (8, 9)

11 Fempty(" ANV (B—A)) 7, 10)
12, 13 can be proved like 11,
12 | empty(+ ANV (B—A))
13 | empty(+ AN _(B—>A))

-4 Femty("TANI(B—A) U tANI(B->A)U tAN_(B=>A))

(11,12,13,86)
15 F $(A=>(B—=A)) C "ANI(B=A) U tANI(B>A) U
tANn_(B—A) (A6)
16 F empty(4 (A=>(B—>A))) , (14, 15, R3)

17, 18 can be proved similarly to 186.
17 | empty(_ (A=>(B—A)))
18 | empty(t (A=>(B—A)))

19 | empty(~t N~uN~vN~w), }— empty(t), | empty(u), | empty(w)

' then | empty(~v) (A1, R3)
20 F empty(~" (A=>(B-A))) (186~19, A3)
21 | startC " (A—=>(B—->A)) (20, A1.3)
22 | A->(B-A) (16, 21)

As described above, AY A includes the classical. propositional logic.

§ 8 Completeness and soundness of the formal system
Theorem 1 If A, then A is valid.
Proof

Note the following fact. (We omit the proof)

<1> For every event expression u,
if 3t<0 t€f(u), then Vt<0 te€ f(u).

First, we prove:

<2'> Suppose that f is an interpretation function. f(u) is an empty
set iff f((start N after(u)) U head(u)) is empty.

To show “only if” is easy, so we show the "if” part. If f ((start N after(u)) U head(u))
is empty, f (start N after(u)) is, too. From <1>, f(u) is a subset of {t 0=t} . From
this and the fact that f (head(u)) is empty, using non-accumulate property of f (u), we get
the conclusion that f (u) is empty.

From <2’> we can get:

/2

155

<2> For an interpretation function f, f(u) is empty iff .
f ((start N after(u)) U head(u) = ¢) is () (empty interval sequence) ,
in other words empty(u) is true under f.

Next we. prove that Al~8 are all valid. All of them are in one of these forms: }empty(u) or
Fempty(u)Aempty(v). So it's sufficient to check "V f, f(u) and f(v) are both empty” for
all of Al~8. .

For Al it is clear. For A2.1, it can also be said, because f (1t AU} A) doesn’t have any time
point before 0, from the definition. Now see A2.2. Since f (head(u)) doesn’t have any point
before 0, if f(u=>v)= ((pl, al),*) then 0=pl. Therefore f (start), i.e. {0}, is
included in f(t(u=vIU_(u=v)). _

Other axioms can be checked according to the extended definition of interpretation function.

Thus the soundness of axioms has been proven. From here we prove the soundness of rules. R3
and Rl are clear. For R2, if startC A is valid, we can get f(~ A)DO0 from <2>. Therefore if
f (A)= ((pl,ql),*), pl must be —o=. Besides, if empty(} A) is valid, f(} A) is empty and
then ql=oo., Thus A is valid. It finishes the proof of the soundness of rules.

Therefore this system’s soundness is warranted.

(End of proof)

Theorem 2 CIf A is valid, FA.

The outline of the proof is as follows: first, we show that for every event expression u,
empty(start N u) a theorem if it is valid. From this we can show that if ~ A at 0, then we
can infer Fstart € ~ A from-the axioms and rules. Next, for all event expression in the form
of § A, we show that if empty(J A) is valid we can reduce its proof into a proof of a formula
which is in the form of empty(start N u) or a formula inferable from only Al and R3.

If both |start € ~ A and |lempty({ A) are proven, we can get A from R3.

To begin with, note that if F u=v then } uCv and vCu. It is because AYA
includes classical predicate logic, so if FAAB then FA and |[B. Besides, as a binary
relation of u and v, FuCv is transitive (from Al and R3) . Thus, as a binary relation of

two event expressions, Fu=v is an equivalence relation. From here we say that u and v are
equivalent if Fu=v. '

Lemma 1
If we replace € in A5,6,7 with =, they remain being theorenms.
Proof

Here we show the proof of A5.1 only. Others can be proved similarly.

1 FVAC~tAU~"AU~_A (A3, A1, R3)

2 F~tAC~I-A P~ AC~_—A, F~_AC~"-A
(A5, Al, R3)

8 F~tAU~TAU~_AC~I-AU~_—AU~"2A

, (2, AL, R3)

4 F~I-AU~_—AU~"—=ACtoA (43, AL R3)

5 FIAC 1A (1, 3, 4, Al, R3)

8 FIA=1-A - (1, 5, AL, R3)

(End of proof)

From here we replace A5,6,7 with themselves after the previous replacement. In preparation
for lemma 2, we. define sub expression, sub formula as follows:

1.1) u is a sub expression of u

1.2) If w is a sub expression of u,
w is also a sub expression of ufNv, vNu, —u.

/3

156

1.3) If w is a sub expression of u, ’
w is also a sub expression of after(u), before(u)

2.1) A is a sub formula of A
2.2) If C is a sub formula of A,
 C is also a sub formula of AAB, B/\A, —A. :
2.3) If oneof 1A JAe Ae _A is a sub expression of u, and
- C 'is a subformula of A,
C is also a subformula of u=v, v=u.

Lemma 2

Let t, t’' be event expressions and assume that we can get t’ from t
by replacing a sub expression u of t with u’.
If Fusu’, Ft=t’.

Proof

¥e use induction related to the structure of event expression.

It is easy to show that if Fu=u’ then F~u=~u’, FunNv=u’Nv, FvNu=vNu’.
Now we prove if Fu=u' then |}before(u)=before(u’). It can be done as follows: by
induction of the structure of event expression, for every u there is an event expression v
which is composed without using “after” or “before” and satisfies before(u)=v. Similarly,
before(u')=v’ for a v’'. If Fu=u’, then u=u’ is valid (theorem 1), thus ¥ f f(u)
= f (u’). Then we :can check f (before(u))=f (before(u’)) from the definition. Thus before
(u)=before(u’) is Valid, so vCv'’ and v’Cv are also ‘valid. v e v’ are constructed
without using "before” « "after”, so vCv' and v'Cv can:-be inferred only from Al *R3. ..
before(u)=before(u’). About ”after”, we can make a smnlar proof.

(End of proof)

Lemma 3

Empty(start N u) is valid iff it is a theorem.

" Proof

The "if” part can be shown by theorem 1, so we show the "only if” part. From A2.2 and A7 we
can prove: -

F(start N t (u=>v))
F(start N { (u=v))
F(start N ~(u=>v))
F(start N _(u=v))

tart N head(u) N ~head(v)

,,eue-“

TR

art N ~head(u) U head(v)

Using these and Ab* B8, we apply lemma 2 recursively. Then, by induction of structure of a
formula, we can get an event expression e which is equivalent to (sta_rt N u), and composed
from only "start” and event expressions in the formof tA* JAe* Ae _Aby ~en. If
empty(start N u) is valid, so is empty(e), thus it can be proved only from al and r3.

Therefore (start N u), equwalent to e, is also provable.
(End of proof)

From this and <2> which is used in proof of theorem 1, the following fact can be shown:

Lemma 3’

Empty(start N u) is a theorem iff for every f, f(start.N u) is empty.

(Proof is omitted)

’%

157

Now, completeness restricted on formulas in the form of empty(start M u) has been shown. Our
next aim is to replace J A with an event expression u, which equivalent to § A and' satisfy
that “empty(u) is provable”. ‘

Lemma 4

foir every formula A which satisfy |startC A, .
there exists an event expression e in the form of the followinsg.

e=wlUw2UUwn (n can beVO. If so, e=¢)
Hereupon

wis u N-Nu Nv NeNv
k k1 ki k1 ki w

ukn is (_BU?1B), B is A’s sub formula (— may be added)

and if n #n then u #u
1 2 kn, - knz

The form of vkm is one of $C,4C, C,_C
where C is A’s sub atomic formula

if vkm is +C or _C then {ukl, uk2,-} 3(_CU4C)
if vkm is § C or ~ C then {ukl, uk2,--} 3(_—-1CUT—|C)_

Proof

Using A5,8,7 (as described above, C’s have been replaced with ='s) and A8, apply lemma 1 to
} A recursively. However, do not apply it any more to sub expressions in the form of (1 BU _
B) or ({ BU " B) which is got by applying A7. This process terminates finitely and we get an
event expression e’ which is equivalent to | A and composed only from the following
constituents bound by ~ and N.

S= {Start, $, 1C,4C, C,_C, tBU_B, {BU B |
B is A’s sub formula, C is A’s sub atomic formula}

Besides, we can get e” in the form of the following, which is equivalent to § A, by Al,R3
and lemma 1. CL :

e”= w'l U w’2 U:
Here w’'k = ukl' N uk2 N ukd N uij € S

After these replacements, if there is ~start in {ukl, uk2, -}, omit it. Moreover, if
there is. ”start” in it, omit wk itself. The reason why we can do so without losing the
equivalency to 4 A is as follows: from . the assumption we get |startC ™ A, thus |empty(start
NV A) and F§ A=startN{ A, which lead to }empty(startNw’k) and }w’k= startNw’k.

Next, if there is ~¢ in {ukl, uk2, -} omit it, and if there is ¢, omit wk. Then
replace any formulas. in the formof (BUJ B) with (_—BU % —=B). Further, for every
attomic)C, if there is + C or _C add (_CU1C), and if there’s § C or ~C, add (_—~CU

—-C). - : . P o
Last, omit duplicate elements of {ukl, uk2, -} and rearrange them into the required order
to get e. It’s easy to show these operations also keep the equivalency to § A.

(End of proof)

/S

158

Lemma 5 .

Suppose that fstartC ™ A.
The necessary and sufficient condition to satisfy "f(} A) is empty for all f”

is as follows:
For every wk which appears in the previous lemma, if webwrite

A =B VB V-VB here u =_B U1*B
k k1 k2 ki kn kn kn

and A'=AIAA2A-, then the following things hold.
Fstart € “A’ and VI, f(JA’) is empty

Proof

Since ” fstart € " A’ iff f(” A’)30”, it can be shown using the definition of interval
sequence that "f(_A’ UTA) is empty iff both }-start C "A’and f(JA).”
From here we use symbols in common with lemma 4.

f(JA)=Ff(wi)U f (w2)e-e
fw)i)=Ff(_AUtA)INT(v IN-=NTf(v)
K ko k ki i

Since T(_A’UTtA)=Ff(_AIU+ADUf(_A2U % A2)U--, we can show that if f(_A’U
4+ A') is empty, £(J A) is, too. On the other hand, if £(_A’U 4+ A’) is not empty for an
f, 3k f(_AkU %t Ak) is not empty. Then there’s an f’ such that f’(wk) is not empty. The
reason is as follows. If vkmis $Cor _C, (_CU%C) € {ukl, uk2, -}, and if vkm
is §C or “C, (TCUIC) € {ukl, uk2, =} . So, for apEf(_A’U4tA’) and its
sufficiently small right neighborhood N, we can make an interpretation f’ from f, which
satisfies p€ f (wk), by changing the interpretation of C (which is atomic) in N. Here,
f’(} A) is not empty, and this finishes the proof
(End of proof)

~ Lemma 5’ _
Suppose |startC ~ A. |lempty(4 A) if FA’. (A’ is got in lemma 5)

Proof

Using Rl we can get |empty(_ AUt A’) from FA’. From the definition of A’and Al*R3, |
(JA C _A’U?tA’) can be proven. Thus |empty(} A).
(End of proof)

Now, suppose that a formula A is valid, Then for all f f(~" A N start) is empty, so F
start € ~ A from lemma 3. Therefore, from lemma 5 and 5, whether |-A or not is resolved into
whether FA’, where A’is valid. This process of resolving is applied recursively. If we prove
that it terminates finitely, it finishes the proof of theorem 2, In other words, for a formula
A (which may not valid) , we recursively apply that process and get a sequence A, A’
, A", (From here we abbreviate A’’ '+’ with n apostrophes to A(n).) If A isn’t valid,
then for a number n, we can know that | start € A(n) doesn’t hold. Otherwise, at some time,
e (which is got in lemma 4) will be & and }FA is proven.

Lemma 6
1 A(n) is composed of A’s sub formulas by A and — only.

2 If | start € ~ A(n) and | start € ~ A’(n) then

F (start=>{ A(n)) = (start=>1} A(n-1))
F i (start=3 A(n)) C ~ (start=} A(r-1))

7 b

159

Progf

1
For A’ it is clear from how to make it. Besides, it can be easily checked that if it holds

for A(n-1) it holds also for A(n).

2 ‘
It’s sufficient to check about A and A’.

We can get' |(start=>} A’')—>(start=>_A'U*t A’') easily. Since F{ A C_A'UtA’, |
(start=>_ A’Ut A’)->(start=>{ A) (1) can also be proven. From this, |- (start=>{ A’) -
(start={ A). Further, from (1), F J(start=>} A’) C " (start=>} A)U | (start=>} A). Using
FVA C_A’U1?t A’again, Fempty(4{ ANJ A’) can be proven, so |{ (start=>} A’) C (start
={A). , ‘

(End of proof)

It has been already checked that AY A includes the classical propositional logic. Let us
write E==F when we cansay " FE iff FF” using only classical logic. Then == is en
equivalence relation. Since A(n) is composed of A’s sub formula by only A and —, there
exists a formula A’(n) which satisfies:

A'(M=EIANE2A- If i#j then Ei#EJ
En=FnlV Fn2V-- Fnm is A’s sub formula (— may be added)
If i#j then Fni# Fnj
(Both En’s and Fnm’'s are in
suitable lexicographical order)
A'(n) == A(n)

Suppose that A has k sub formulas (they must be finite) . The set of formulas which are
composed of A’'s sub formulas by A and — is divided into at most k' equivalence classes by ==,
where

k! = 2%, - .

Now we assume that the resolving process described above continues infinitely without proving
"not | (start =A(n))”, and lead to contradiction. For some n and m (n<m) , A(n) == A(m),
because equivalence class of {A(n)In Z0} by == is finite. If E == F, K(start=>} E)—>
(start = F), thus from 2 and 3 of lemma 6, |} (start=>{ A(m)) C ~ (start=>} A(m)) is a
theorem, although it is not valid. It contradicts to the theorem 1.

Therefore the process of resolving terminates finitely. Especially if A is valid, we can
infer A in finite application of rules.

(End of proof of theorem 2)

The following theorem also holds, but we omit the proof.

Theorem 3

If ' is a set of formula and A, B are formulas.
If TU {A} }B, then ' F A>B.

In this section we’ve proven completeness and soundness of the system restricted on
propositional logic, but in the following sections, for convenience we -expand it into a
predicate logic by adding following axioms and rules. The proof of soundness can also be done
similarly after expansion. Completeness is expected to be proven similarly, but it is one of the
future works.

A9.1 . VxA() = A(L)
A2 A(L) = FIxAM)

/7

160

R4.1 If F B—>A(a) then FB—=>VxA®X)
R4.2 If FA(a)=>C then F3axA(X)->C

Here 'a’ is a free variable and B is a formula which doesn’t contain 'a’. A(t) is a formula
made by substituting all a’s in A(a) by a term t. IxA(x), VxA(x) are made by substituting
a’s in A(a) by a binding variable x and quantifying.

In § 8 we further assume the Peano’s axioms of natural numbers and the following rule about
the equal sign.

If t1=t2, then FA(t1)=>A(t2)

§ 7 How to execute

- In the original first order predicate logic, by regarding a set of Horn clause as a program we
can make up a programming language Prolog. In a similar way, we can use AYA as a real-time
programming language. :

First we take a set D where
D= {F-->AI|F is a formula (may be empty) , A is an atomic formula}

A program P is a finite subset of D.

if under an interpretation f, all formulas of P are true, then we call f a model of P. An
execution of P is to make a model of P. It is possible to make a model in turn according to
real-time external events, and we show an example of it in § 8. In this way AY A is real-time
executable.

For a set P, let S be a set of all predicate symbols of all atomic formulas in I’.'and let
Vbe {tp, yPpIPES}. He call every element of V an event symbol. If A=p(xl,x2:),
we say ? p and } A correspond. ¥ p and § A also correspond.

When we do a real-time execution, A subset of events which correspond to each element of V is
. the set of external events, and the rest are internal events.

Lemma 1)

Suppose that F1=A, -, Fn—=A are all elements of P which has a goal
A. Both F4 AC_FU1tF (where F=FIVF2V+) and
F{AC_FUIF can be inferred from P.

It can be proved simply by applying A6 and Al recursively. We call {1 F the deciding event of
+A. VF is | A’'s deciding event.

By this lemma, when we determine states of all atomic formula at the origin of time axis (i.e.
for every atomic A, decide which one of t A, ~A, _A, VA includes the time point 0) so
that they don’t conflict, and give each moment of occurrence of external events in turn, then we
can make a model of P by the following way.

1) For every event symbol of internal event,

find the deciding event of the predicate corresponding to it.
2) When an external event occurs,

for each atomic formula A, do:

if - A holds in a left neighbor of current time, reason whether the
decide event of 1 A occurs, and if so, conclude % A.

if A holds in a left neighbor of that point, do the same thing about | A.
But if 2 A and } A are not internal, it is not necessary.

/%

161

Here in 2), axioms and rules given in § 5 are used. Let + F be- 1 A’s deciding event. At a
time p, we conclude t A if the following condition is satisfied. o

If we assume empty(_ BU % B) for every formula B which holds in a
left neighbor of p, empty(~ 1 F) can be inferred.

By this, truth values of all atomic formulas can be decided. In the case of real-time
execution, according to the passage of time, external events come in order, and truth values are
decided real-time. Truth values of non atomic formulas can be decided using those of atomic

formulas.

Reasoning in 2) only have to be done when at least one external event occurs. Besides, we only
have to keep the information of ‘truth values of the time just before now. We don’t have to store
up all the histories of truth values since the program starts.

Let us think whether a model made in this way is least in a suitable meaning.
We introduce an order between models as follows. It is essentially equivalent to that of [5].
First, for F which is got from A as in lemma 1, we can make an event expression which is

equivalent to t F as follows:
tF =wlUw2U--Uwn

wis u NeNu Nv NeNv
k k1 ki k1 KJ

ukn is (_BU4B)\ B is F’s sub formula (— may be added)

n #n then u #u
1 2 kn1 kn2

vkm is on of +C,$C, C,_C where C is F’s sub atomic formula

If vkm is + C or _C then {ukl, uk2,} 2(_CU1$C)
If vkm is 4 C or _C then {ukl, uk2,} 3(_—-CUt—=C)

In addition, if event symbols corresponding to 1 Ce J Ce t A
are respectively p, p’, a, we define two order between event symbols

as follows: p&+ q, p’'<- q.

e can apply similar process on § F. In this case, if event symbols corresponding to 1 C ¢ {
C * t A are respectively p, p’, d, we define p<- q, p’'<+ q.

If we write the transitive closure of (&+ or €~) as &, then it is a partial order. € can
be regarded as a dependency relation between event symbols. Further, if we define p=gq iff p

€q or q<p, it is-an equivalence relation. v
Let pl, p2, -, pk be equivalence classes of V’s internal events by =, and suppose that

if i<Jj then not pj € pi. Further, let p0 be the set of external events of V. Now we define
a partial order of models as follows. ’

For two models f, f’, if the following condition holds, then f < f’.

Ji,t 0si=k te€ {t10=t} (t represents time point)
Interpretations of all atomic formulas by f, f’are same until the
time point t. In a sufficiently small right neighbor of t,
truth values of predicates corresponding to event symbols inherent in
p0, pl, **, p,-, are same under f and f’, and a predicate
corresponding to an event symbol p which is inherent in pi is false
under f, true under f°’. .

/7

162

Then the following condition is estimated to be an sufficient condition that the model which is
constructed as above is least. '

For no event symbols p, 4 inherent to pi, p<- q.

A proof is expected to be done like in [5].

§ 8 An example of real-time programming

Let’s go back to the example of elevator controlling. This time we give more detailed
description to show an example of real-time execution. .

To begin with, we describe the detail of the elevator system.

The elevator has a box which carries people up and down from the 1st (ground) floor to the
k th floor.

At each floor there are two buttons—up-call and down-call, and -in the box there are
destination buttons corresponding to each floor.

Predicates " LIFCHI(n)” "TFIRECHM(n)” "47 % %#M(n)” represent that each button is in the
state 'pushed’. Predicates " L[l %” " %” denote the direction of the elevator.

" i1 (n)” expresses that the elevator stops at the n~th floor now and "&b (e, n+1)” the
elevator is now moving upward from m-th floor to m+l-th. If it is moving downward, "¥2Hih(m+1,
m)” holds. In practice, just one of these three holds at every time. If In—al #1, B (,n)
never holds. ” F 7[l” denotes the door of the elevator is now open.

7R M)” represents the elevator must go to the n-th floor. “& Y E(M)”,”& D TF(n)”
indicate whether the n-th floor is higher or lower than the current position of the elevator.

External events are "4t EFECHT(n)”,” ¢ FIEOHH(n)”,” $ 472 EIF()”, "V F7H” and ” § BEhrh
(n,m)”. In other words, instructions of destination or calling come from external devices. A
process which shuts the door is separated from this program. Furthermore, since this progran
does not control the speed of the elevator, the information that "it finished passing a floor”
comes as an external event, "} f@id(n,n)”.

To make the program simple, it doesn’'t check the arxuments of "1 ERECHH(n)”,” § FEEU

(n)”,” 4 17 & %M)",

Program (Quantifiers of free variables are omitted)

4 _EREC(n) = kP ()N - EmE - FIECH(n)

1 RIECM(n) = 4 kS (n)N T T - FIEEUHH(n)

PAF&&MGO) = 4 Bikdh () > f7&%#(n)

V(B (L DA TS RIEZG) = 1((.tﬁ¥’ﬁV"F%¥’ﬁ')/\;£;?ﬂg %1

VEERMN T EHE U 4 (@IWJ‘I-’(n—l.n)/\~ﬁ7bxnli(n))1;=>ib i %mm;n.m)
- n,n+

VEERPMN " FRE U @R 0+HL,0)A~T2»RE0N) = | B8d(n,n-1)
- Bidh(n,n-1)

17 & %4 (n) -> i RE(0)

TEECHI() A ~{@THhREMmIA -a>n) - Fhhid(n)

ERECING) A ~(ThREEmA n<ln) - fThadh)

(Bl (m)VED R (n, e+ DVED) R (n+1,m)) A n<ln - &9 E(n)

(k) VB D (m,n-D VIR (-1,m)) A a>n - &Y TF()

FhrhEh) A &v k) - LEREH

FhrFEh) A XY TFh) - THEH

§ FTiE = t (~ELREHF A THEH) - Fm%

} ki = t (~THEHA N LRER) - T %

163

gkt () = § F7B - F7B X2

For example formulad¢l expresses that if the box finishes moving to n-th floor and it must
stop there, it stops until the door is closed and the elevator is in the state that it is called
from another floor. By 32 " F7Jl” holds from it stops until the door closes. (As described
above, the process which closes the door is actually separated to other controlling unit.)

After that, when an external event "the door is closed” comes, ”— ¥ 7Bfi” becomes true. Then
if it is called from another floor, the interval on which ”{1kdh(n)” ends and the elevator
begins to move. Otherwise, it remains there until called from anothér floor.

Execution of the program shown above is as follows. In the following figure, each predicate
holds on intervals indicated by lines.

t3
to tl tzl t4 ts t8
time axis Vv Vo
ANGE;
Fia) &
TFUROHT(4)
17 % 5E4(3)--
TFUECH(2) .
}c‘y[}ﬂ [P S
Predicates
about cur- *
rent place ik = | & ||« B =& l‘—F?thﬁ(d):¢
1 B ® 1k %
) Ib rp)
3 th

e (3)
i, 2)(2 3) (3,4)

As described in § 7, execution is performed by making deciding events of all internal events
and reasoning whether they occur at each time when external events occur.

The origin point of the time axis is t0, at which the program starts. In the previous figure,
at the initial state the box is at the Ist floor and the door is open, in addition the downward
button at the 2nd floor and the destination button of the 3rd floor is pushed. (If you want to
specify the initial state in the program, you may write, for example, start C ~ F7B.)

At t1, the door closes. Since an external event occur, reasoning about internal events is
performed.

For example let us see whether | {1k occurs. the deciding event of it is:

VO BT AT REM) = t (LHRERV TRESA-FTEHD)

While reasoning whether it occurs, it is checked whether § (LRERV TFTHESH) occurs. Since
deciding events of { LBIEH and § TFHETT only occur when the elevator arrives at some floor,
V (FBEFYV THESR) does not occur at this time.

From this 1 ((LMEAVTFREA)IA- N TH) is inferred. Therefore by the formula 1, &Ik
f1(1) occurs, and by the formula in the next line of I, tf8E#(1,2) also occurs. That is to
say, the elevator begins to move upward. ,

When the elevator approaches the 2nd floor (at t2) , the external event | &+ (1,2) causes a
reasoning whether it stops there. In the left neighbor of that time, since 47X %&#(3) holds, 47
MR (3) also holds, so 7AW (2) doesn’t hold. Thus an event § (REIH(1,2)A~{THRIF(2))
occurs, then -t #lH(2,3) occurs and the elevator passes the.2nd floor without stopping.

And so on. The elevator stops at the 3rd floor, then at t8 arrives at the 4th floor. Since

A

164

there are no longer any destinations -above, § LIil% occurs and the elevator changes its
direction to downward.

As is clear from this example, in AYA it isn’t required that both standing up wand down of
a predicate’s truth value are external. One of the examples which actively use this point is the
description of "Ry (n,n+1)”. Standing up of it is an internal event which occurs by other
events such as closing of the door or called from other floor, but it stands down by an external
signal. From another point of view, it expresses that on an adjoining interval to a particular
time interval (in this case an interval on which the elevator stops at the n-th floor of moving
to n-th floor) , "f@h#(n,n+1)” holds. That is to say, we can express a similar state to one
which can be expressed by a modal operator R which expresses "holds on the right-next interval”,

for example " ik:(n)—=> R #Wth(n, m)”.

Since AY A’s program is a set of formulas, other than real-time executing we can also think
about possibility of static reasoning. For example let us think about a program which is got by
a little change of a formula in the previous program.

change %2 to t&ukdh() = | F70 «— F7H
where A<-—>B is short for A==BAB<«<A.
(Executed by a method in § 7, actually it also holds.).

-Then F 7Bk (n) can be inferred. In other words it is guaranteed from the progranm
itself that the elevator stops while the door is open.

Like this, it is possible to use AY A asa tool of checking programs written in AYA
itself.

§ 9 Conclusion

In this paper we formulated a system of interval logic, named AYA. In AYA, truth values
of predicates are changed according to events which occur at time points. One of its main
feature is that relations between time intervals such as "includes”, "next to” can be naturally
expressed and treated. Besides, completeness of the system (at least on propositional logic)
can be shown. Moreover, it can be used as a real-time programming language and executed
efficiently. .

One of the future works is realization of its processor. In the example in § 8 we expanded
the system given in 8 5 into an predicate logic for the present, but we have to formalize the
expansion more closely before making a real system. Besides, when making a processor in practice,
some weak points of this language must be improved. For example, in AY A events are restricted
to changes of predicates’ truth values. Other kinds of event may be needed if we write event-
oriented real-time controlling program. For example, ”"at a certain time wake up a process”,
"send a signal some minutes after”, and so on. [6] includes an element to express the latter,
but This paper omit it to make the system simple.

To simplify the system is another important work. Currently AY A’s formal system is so
complicated. If we can compose a system of rules and axioms such as (1) in § 5, it will be more
simple and easy to grasp intuitively. Further, proof of completeness for predicate logic is also
left.

Besides them, it is also hoped to generalize the definitions of time point or interval, etc.
In designing AY A, we consider not only executability but also formalization as a tense logic.
One of the merits of [1] and [2] is that they compose formal systems without putting strong
restriction on the definition of time, but currently AY A puts a strong restriction on the set
of time point and time interval. As an executable language, it is not so serious, but as a
language for time representation, there is a room for improvement in the power of expression, as
described in the latter part of §2.

Acknowledgement

ZZ

165

The author express his deep gratitude to Prof. Reiji Nakajima, Takashi Sakuragawa, Masani
Hagiva, Takashi Hattori, Takashi Susuki for their appropriate suggestions and introductions to
peneficial literatures.

References

[11 I.L.Humberstone: “INTERVAL SEMANTICS FOR TENSE LOGIC” ,
Journal of Philosophical Logic 8
[2l Peter Roper: “INTERVALS AND TENSES” ,
Journal of Philosophical Logic 9
[3l KIFTEAY » HrE o TR "R S0 75 3 v S E#Tenplog” ,
HAYV 7 by« 7RFXH | BARRE
41 Ben Mozkowski: “A Temporal Logic for Multilevel Reasoning about Hardware” ,
, COMPUTER, February 1985
(5] ReJIET]: “Temporal Prolog” ,
AVE2—F)T Y =T Yol.4 No.3, 1887
6] BNET]: “A4 B84 v bouPyrEAvy—reuyys” (RE),
To appear
(71 B)NEE] o Areh—ild o BN o FHMZ o IREBHEE:

“RACCO: HEIFM o2l AF L2ADOEFNERODORERB S v ss5 I v IEHE” ,
AVvEL—F eI+ Y27, Yol.5 No.3, 1988

23

