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Abstract

This paper presents a declarative semantics of Flat GHC programs.
The semantics presented here is based on the failure/deadlock set of a
Flat GHC program, namely the set of the I/O histories representing
computations which fail or fall into deadlock within finite steps.

Introduction

221

We reported the success set semantics of Flat GHC programs [Murakami 88].
The semantics presented in the paper is an extension or a modification of
the model theoretic semantics of pure Horn logic programs [Apt 82, Lloyd
84], namely the semantics of a program is a model of the set of formulas that
define the program. We defined that a goal clause is true on the model if
and only if the goal clause is w—successful (the goal clause can be executed
without deadlock or failure). The domain of I/O history is introduced instead
of the standard Herbrand universe. The denotation of a program, the w—
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success set is defined as a set of I/O histories. Using the semantics, the
solutions of programs that contain perpetual processes controlled by guard
commit mechanisms can be characterized as the logical consequence of the
programs.

However, in the case of programs of committed choice language such as
GHC, the set of successful goals and the set of goals which have possibility
to fall into deadlock or failure can have non-empty intersection. Thus it is
impossible to discuss whether a goal clause can fall into deadlock or fail with
success set only [Falaschi 88]. Thus [Falaschi 88] reported a new approach
to give a semantics to committed choice logic languages. In that paper, the
semantics of program is defined as a tuple of the success set and the failure
set. A goal clause is true if it can be fail in that approach. However in
that paper, the model is defined as a set of formulas which contain only the
information of the final results which are obtained when the computation
is terminated. Thus non-terminating computations cannot be discussed in
that approach For instance, a goal clause gy, g, 1s not true if g; does not
‘terminate and g, fails.

In this paper, we define the fallure/ deadlock set, the set of goals which
can fall into deadlock or finite failure. Namely, we deﬁne that a goal clause
is true on the model of a program when on of the goal clause has possibility
of deadlock or finite failure with the program. The set of failure/deadlock
set of a program is defined as the least model of the program..

Thus the semantics of programs defined as a tuple of the w— success
set and failure/deadlock set as [Falaschi 88]. Existence of processes which
have possibility of failure/deadlock can be discussed for the programs with
perpetual processes.

2 Guarded Streams

In this section, we define the notion of the guarded streams. Guarded streams
are introduced in [Murakami 88] first. However, in that paper, only computa-
tions without failure/deadlock are represented with guarded streams. A new
definition of guarded streams is presented in order to discuss computations
‘with failure/deadlock.

Let Var be an enumerable set of variables, I'un be a set of function sym-
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bols. Each element of Fun has its arity. Let Terms be the set of terms defined
from Fun and Var in standard way. A term 7 is simple if it is a 0-ary func-
tion symbol or the form of f(Xj,...,X,) where f € Fun and Xy, ..., X, are
different variables. Substitutions on Terms are defined as usual. ‘

In this paper, we consider programs on the domain of lists of {a, b} as
examples, thus a,b,cons € Fun. The arity of a, b and nil is 0, and the
arity of cons is 2. cons(X,Y’) is denoted [X|Y] and nil is denoted [ | as
usual. ‘ | : o

Def. 1
Let 7 be a simple term and X € Var.

X=r

is a substitution form. X = X is denoted true.
A substitution o is denoted using a finite set of simple substitution forms,
for example, ' -

o={X = cons(Y, Z), Y = a}.

Def. 2

Let ¢ be a set of simple substitution forms. If o is a substitution or
equal to Ug_,o, 0% defined below for some substitution #, then o is be an
w—substitution.

0o =0
Ory1 = 0:U :
{X = 7|X occurs in 7’ for some (Y = 7') € by,
(X =7") ¢ 0, and no variables occurring in 7
occur in the left part of 0}

A w—substitution defines a mapping from a term to an infinite term.

The notion of I/O history introduced in this paper corresponds to the
notion of element of the Herbrand base for pure Horn logic programs. 1/0
“history is an extension or modification of a guarded atom of [Levi 88]. An
I/O history is denoted as follows with head part H, which denotes a form
of a process, and the body part GU, which denotes a trace of inputs and
outputs of the process:
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H:-GU.

GU is a set of tuples < o|Uy > where ¢ is a substitution which is required
to solve the guards that appear before committing some clause and U, is a
expression which express an execution of unification in the body part of the
clause to which the goal committed. Intuitively, < o|U, > means that if the
arguments of the process are instantiated with o then unification U, can be
executed. For instance, in the following program:

p1(X,Y) - X
pl(X,Y) :- X

[AlX1], A = a
[BIX1], B=b

Y = [BIY1], B
Y = [AlY1], A

b, p1(X1,Y1).
a, pt(X1,Y1).

1
.

The following is an example of I/O history which denotes the computation
such that p1 reads a in input stream X first, writes b in output stream Y,
then reads b and writes a.

p1(X,Y) : —{< {X = [A|X1],A = a}|Y = [B|Y1] >,
< {X=[A]X1],A=a}B=D >,
< {X = [A|X1],A = a,X1 = [B1]X2],B1 = b}|Y1 = [A1|Y2] >,
< {X = [A|X1],A = a,X1 = [B1|X2],B1 =b}|ALl =a >,...}

An I/O history of a process H represents a possible execution of the
- process. Thus, there exist different 1/O histories for different executions
which commit to different clauses. There may be different 1/O histories for
different scheduling. ,
In this paper, we informally define that a computation fails or falls into
deadlock when a goal commits to some clause such that there is no (w—)
success{ul computation after the commit. A computation which fails or falls
into deadlock is represented by a guarded stream which contams 1 instead

ot U,.

For instance, consider the following program:

]

aly
aly

pX, ¥Y) :- X
p(X, Y) :- X

b, 21, q1(2).
[a, 2], q2(2).

]
1

q1(Z) :- true | Z = b, r(W).
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q2(Z) :- true | Z = b.
(W) :- W=a ] true.

‘For this program, a goal p(a, Y) cannot avoid deadlock if it commits
to the first clause. This situation is represented with the following guarded
stream. '

{<{x=a}{ L>}

On the other hand, if it commits to the second clause, the computation
continues. This situation is represented with the following guarded stream.

{<ﬂ:aﬂhﬂgﬂ>xJX:QM:b>}
Def. 3 '

Let 7 be a simple term and X € Var.
Xl=r71

is a simple test form or a test form simply.
Def. 4 _

Let ¢ be a substitution and uni(X,7) be a substitution form X = 7 or a
test form X7 = 7 for X € Var and a simple term 7. < o|U > is a guarded
unification where U is uni(X,7) or L. o is the guard part of < ¢|U > and
U is the active part. ' ‘

Intuitively, if uni(X,7) is a substitution form, it denotes a unification
which actually instantiates X, and if it 1s a test form, it denotes a test unifi-
cation. If the active part is L, it means that a goal such that failure/deadlock
is unavoidable i1s invoked.

Def. 5 _ ,

Let < o|U > be a guarded unification. | < o|U > | is the set of substitu-
tion/test forms defined as following. |

| <olU>|={U}Uc

if U is a test form or a substitution forni, and
|<olU>|=0¢

)
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it U =1.

The body part of an I/O history represents a execution of Flat GHC pro-
grams, thus GU is well founded with the partial order of execution, namely,
for any < o1|Uy >, < 03|Us, >€ GU, if 01 C 04, then Uy, is executable
before Up,. ’ : | ’

Def. 6 o
Let GU be a set of guarded unifications. For < o1|u; >, < o3lus >€ GU,

< oyfuy >=<< oglug >

holds if and only if oy C o3 and oy # 0.

It is easy to show that < is a well founded ordering.
Def. 7 A

A’ set of guarded unifications GU is a guarded stream if the following are
true.

1) For any < 01|U;y >,< 03Uy >€ GU, if < 01Uy >#< 03|U; >
and U; and U, have same variable on their left hand side, then.
U, or Uj is a test form and their right hand sides are unifiable.
Furthermore if U; 1s a substitution form and U, is a test form
then

< 09|Uy ><< 0q|Uy >

does not hold.
2) T < o|U >€ GU, then (X =7) ¢ o for any < 0|X =71 >€ GU.

3) For any < 0|X? =7 >€ GU, if 7 and 7' are not unifiable, then
(X =1") ¢ o for < o|U > GU.

4)‘F.6r any < o1|U; >, < 0|U; >€ GU, if (X = 7) € 0y and

(X = 1') € 02, then 7 and 7’ are unifiable.

Conditions 1),...,4) mean that all variable in GHC programs are logical
variables and if they are instantiated, the values are never changed.
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The following notion is defined to obtain the guarded stream representing
the computation of a goal clause from the guarded streams which represent
the computation of each goal in the goal clause.

U denotes a substltutlon form, test form or L

Def. 8
Let GUy,...,GU, be guarded streams, and Guy(l < k) be as follows:

Gul — {< UIU > 132,3 < O'IU >€ GU,',
V(X = 1) € 0,¥), < /| X = 7 ¢ GUj)

Gugyy = Gug U {< o|lU > |3z 1< o'|U>e GU;,¥(X =T1) € ¢,
| (Vi,< o"|X =7 >¢ GU;)V
< "X =71 >€ Gug)A
o=(c' —{X=71|<d"X =7>€ Guk})
{UIU € 0" < d"|X =1 >€ Gui}}

and let GU be as follows.

k—o0
If GU is a guarded stream and if
{U| < o|lU > GU} = {U|Ft < o|U >€ GU;}
then GU is a synchmmzed merge of GU,,.. CUn, and is denoted

- GU|...||GU,.

If n = 1, then the synchronized mer ge can a,lways be defined and it is
equal to GU1 1tself. ‘ S

Def. 9
Let GU be a guarded stream and 0 be a set of simple substitution form.
‘The set GU M @ is a set of guarded unifications defined as follows.
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GUNXO={<o|lU>|<d|U>GU,0 =0U0c'}

Def 10
Let GU be a guarded stream and V be a , finite set of vauables The
restriction of GU by V :GU | V is the set defined as follows.

GU |V = {< olU > | < o|lU > GU,if U = uni(X,7) then X €
Vi for some k}

~ where
Vo= ‘
Vier = Vi U{X|3gu € GU, Funi(Y, 1) € |gul,

X appearsin 7,Y € V; and Vgu' € GU,
if gu’ < gu, then X does not occur in gu}

If GU is a guarded stream theri GU | V is also a guarded stream.

3  Model The'c‘)ret)ic Semantics

This section introduces notions which correspond to the Herbrand base and
unit clauses for parallel logic language based on the notion of guarded streams.
First, a parallel language based on Horn logic is presented. The language 1s
~ essentially a subset of Flat GHC [Ueda 88] with only one system predicate, =

unification of a variable term and a simple term. Furthermore all clauses are
assumed to be in a normal form, namely all arguments in the head part are
different variable terms. However itis not difficult to show that the language
presented here does not lose any generality compared to Flat GHC using the
modification of the transformation algorithm to the strong normal from [Levi
88]. We denote set of predicate symbols as Pred.

Def. 11 Let H, By, B,, ..., B, be atomic formulas constr ucted with Terms

and Pred where all arguments of H are different variables, and U, ..., Uy,
Up, ..., Upp be simple subst1tut10n forms. The following f01 mula is a guarded
clauae

CH:—Up,...,UplUs,--.,Um; Bi, By, .., B,
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A program is a finite set of guarded clauses. .

We define Var(H) = {X;1, Xz,...,Xi} when H is p(X;, X, ..., Xi).
Def. 12 o

Let p be an element of Pred with arity k, X1, Xs,..., Xx be different
variables and ¢ be an w— substitution. Then op(Xy, Xo,. .., X) is a goal.
Def. 13 o |

A sequence of goals: gy,..., ¢ is a goal clause.
Def. 14 . o

For a guarded stream GU and an atom p(Xy, X3, ..., X:), a I/O history:
i1s ' . LT ' o :

; p(Xl,Xz,...,Xk):—GU
- where p €P red with arity k, X1, Xs, ..., X, are different variables, and

 GU | Var(p(Xi, Xa,. o Xk)) = GU
p(X1, X2, ..., Xk) is called the head part of t and GU is called the body
part of {i. Intuitively, GU only contains variables which are wisible from
outside through the head part.

The concept of I/O histories corresponds to the concept-of unit clauses of
the standard model theoretic semantics of pure Horn logic programs. How-
ever in I/O history, the same computation can be represented in several ways.
In other words, if ¢y and t; are identical except for the names of variables
which do not appear in the head parts, they are considered to represent
the same computation. Thus the equivalent relation based on renaming of
variables should be introduced. In the following, we denote the set of rep-
resentatives of equivalence classes of all 1/O histories defined from Fun, Var

and Pred as I/Ohust.

Def. 15 . :
 Let H: —GU be an 1/0O history. If U is a substitution form or a test
form for all < o|U >€ GU, then H : —GU is a successful history. If there is
a < o|U > such that U is L, then H : —GU is a unsuccessful history.
I/Ohist is divided into two disjoint subsets, I/Ohist,: the set of all
successful histories and I/Ohist,: the set of all unsuccessful histories.

Def. 16
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Any subset of I/Ohist, is an co mterpretatzon Any subset of I/thstl
is a L interpretation. : .
Def. 17 ,
Let ¢ be an 1/0 history and ¢ be a goal H : —GU is a trace of g if the
following (1),. ..,(3) hold., ,

(1) There exists an w— substitution o such that o H = g.
(2) For any < 0|U > GU, 0 C 0. |

(3) For any < 0|U >€ GU, if U is a substitution form X = 7, then
o does not instantiate X, and if U is a test form then ¢ X = o7.

o does not instantiate a variable X if X = Y(Y € Var) and there does
‘not exist Z such that 0Z =Y except X.

Let ¢ be a trace of a goal g. If ¢ is a successful history, it is a successful
trace of g. If tis a unsuccessful history, it is a unsuccessful trace of g.
- Def. 18

Let I, be a L interpretation and ¢ be a goa.l. g is true on [, if there exists
an w— substitution, ¢ and there exists an unsuccessful frace of g € 1,. ¢
is true on a successful interpretation I, when there exists a successful trace
of og € I, for some w—substitution: o. ‘

Def. 19

Let I be a successful interpretation and gi,...,9» be a goal clause.
g1,.-.,0n is true on I, if there exists a trace t; € ] for every ogi(1 <
1 < n) for some w—substitution: o, and there exists a synchronized merge

. GUy|| ... ||GU, where GUy,...,GU, are body parts of t,...,1,.

The empty goal clause is true on any successful interpretation.
Def. 20 - - _

Let I, be a L interpretation and I, be a oo interpretation. I, and I,
is consistent if for any 0 such that o C0,if I, dose not contain any trace of

0H then
H:—<o|ll>el.

Let (I1,Is) be a consistent tuple of L interpretation I, and I inter-
pretation [,. '
‘Def. 21

10
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A goal clause g;,..., 9y, is true on (I, [) if there exists an w— substi-
tution: o such that for each ¢;(1 <1 < n), a trace of ag;: ¢; is in I} U I,
there exists j(1 < j < n) such that ¢; € I, and there exists a synchi‘onized
merge GU||...||GU, where GUy,...,GU, are body parts of t1,...,1,.

The empty goal clause is false on any (I, /).
Def. 22 :
A guarded clause:

H . —-Ugl,. .. ,UngUbl,'.. .,L[bh,B1,.. . ,Bk

is true on (1, 1) if the following condition is true.

If there exists an w— substitution: o which does not instantiate variables
which are invisible from outside through A and makes By, ..., By true and
GU is a guarded stream then : '

H —'GU € I_L,
where GU is a set of guarded unifications such as:
GU = {< {Ugla' t e Ugma }lUbl DR < {Ugh sy Ugm7 }'Ubh >}U
(GUL|| .- N|GUp) M {U,1, .-, Ugm }) | Var(H)

and GU; is a body part of a trace (€ I, U I) of a goaj oB;.

w— success set of progfam D is the maximum model of D defined in
[Murakami 88]. ‘
Def. 23

Let D be a GHC program, M2 be the w— success set of D. L interpre-
tation: I, is a Lmodel of D if following conditions are true.

(1) I, and MZ is consistent.
- (2) All clause in D is true on (I, MZ2). |
(3) Let H : =Ugp,...,Upn|Usi, ... Uppy By, :.., By € D, and o be

a w— substitution. IFor any w— substitution: 0 such that ¢ C 0
and 0 does not instantiate variables which are invisible from H, if
0'By,...,0 By is not true on M2 where 0/ = 0U{U,,,..., U} U
{Us1,-..,Upp} then ' v

Hi=<oUUp,. ., Up) Uil U}l L>€ I1.

11
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The following proposmon is easy to show from the definition of models.
Prop. 1
Let M;(: € Ind) be a class of L models of D for a set of indices Ind.

Then,
(N M
»iEInd

is also a L model of D.

From Prop. 1, it is easy to show that there exists a uni>que least L nmdel .
for a given D. The least 1 model of D is the failure/deadlock set of D and
denoted as MP. The semantics of D is defined with (MP MD).

4 Conclusion: Relatlon to the Operational
Semantics

This paper presented a new model theoretic semantics for IFlat GHC pro-
grams based on w— success set and failure/deadlock set.

We defined the notion of true for goal clauses and sets of guarded clauses
to characterize failure/deadlock of programs. We denote failure/deadlock
with the symbol L. Note that 1 does not mean that failure/deadlock has
happened at this moment. | means that a goal made a commit which makes

~ deadlock/fail unavoidable. In other words a goal clause is true on (MP, M2)
if and only if a subgoal g can be spawned which makes a commit such that
any instantiation to the arguments of ¢ cannot keep the computation from
failure/deadlock any longer. Actually fail/deadlock will happen within finite
steps after the commit. 7

Yet another model theoretic characterization of failure/deadlock may
be possible. We expect further discussion on the characterization of fail-
ure/deadlock. A fixpoint characterization of the falhue/ deadlock set 1s also
expected in the future. '
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