
247
Expert System for Specification Process

in Software Development System Pure TELL

東工大・工・情工 佐伯 元司 (Motoshi Saeki)
富士通・国際研 蓬莱 尚幸 (Hisayuki Horai)
富士通・国際研 榎本 肇 (Hajime Enomoto)

ABSTRACT
The method to extract the structure of software modules based on object oriented
model from a natural-language specification is presented. We have analyzed the pro-
cess of constructing a formal specification based on an object-oriented model through
several experiments, and collected the strategies for designing software modules into
a knowledge base. We concentrate on types of verb patterns occurring in sentences
and on types of relations among actions represented by verbs. In principle, each word
such as nounS and verbs in a natural-language specification corresponds to a software
module. Choosing candidate words for modules, determining kinds of them, and re-
lating modules to other modules hierarchically depend on types of verb patterns and
on types of the relations. These rules for extracting module structures are collected as
some knowledge in our expert system for specification process, and we applies them to
simple example “Floating Buoy System”. For the target specification, we use the for-
mal specification language of software development system called Pure TELL, which
we are developing now. This language is based on strongly restricted English.

Keywords
Natural Language, Formal Specification, Software Process,

Expert system, Object Oriented Design

1. Introduction
To produce softwares of good quality, many researchers have studied methodologies

of formal specffication software design [5,7,11]. Almost of them, however, have not
yet obtained as much success as we expected, because they gave only rough outlines
and have left us to design the numerous mistakable parts of softwares. The process of
specifying and designing softwares is one of the most intellectual and complex works
done by human beings. Thus it remains to clarify when and what knowledge is used
in the process, in contrast to the fields in which ordinary expert systems work well.
Of course, making it clear will lead us not only to the improvement of software pro-
ductivity but also to the the elucidation of the intellectual activity of human beings.
Reusable software components [14] are considered concrete and simple domain-specific
knowledge in the process, but many components are needed to produce practical soft-
wares in the general area because reusable ones are too specific. We think that there
are some domain-independent knowledge or generic strategies to specify and design
softwares, and that they can be related to words occurring in informal requirement
specffications of softwares written in natural language.

Although persons have only vague and ambiguous images of softwares which they

1

数理解析研究所講究録
第 709巻 1989年 247-265

248
require, they can describe their images as informal specifications using natural lan-
guage. Of course, the informal specifications may contain errors, and incomplete or
inconsistent parts. One of the reasons why they can be written down in natural lan-
guage is that the lexical and semantical structures of words in them are similar to the
structures of the software components, i.e. modules. They are extracted from the sub-
stance of the images in natural form, and have many keys to their formal specifications
or programs $[6,7]$. One of our aims is to establish a technique to obtain formal speci-
fications from informal ones written in natural language. In this paper, we investigate
what features of words, especially nouns and verbs, in natural-language specifications
we take interest in to design the modules, and then extract a design strategy from
the investigation results as knowledge. Furthermore we have implemented an expert
system based on the strategy. By means of the interactions with users, which have
understood informal requirement specifications, our expert system can acquire the in-
formation enough to construct their formal specifications. Our expert system generates
queries based on the design strategy so that a suitable structure of software modules
can be obtained.

In section 2, to extract a design strategy, we analyze and classify nouns and
general verbs occurring in informal specifications. Especially we concentrate on verbs
and their case structures, i.e. verb patterns [12]. Section 3 shows how to extract the
structures of modules from informal specifications using features of words discussed
in section 2. We use object oriented model to specify softwares formally. Section 4
gives an implementation of our expert system, and illustrates an formal specification of
“Floating Buoy System” [5], to which our system is applied. It is written in Pure TELL
specification language we are developing now.\cdot Its syntax is a strongly restricted and
unambiguous English, and the specifications written in it are translated into temporal
logical formulas automatically.

2. Verbs and Nouns in Informal Specifications
In this section, we analyze informal specifications written in English, and classify

nouns and general verbs in them. Especially we concentrate on verbs and their case
structures, i.e. verb patterns [12].

2.1. Relation between Words and Software Modules
As mentioned in section 1, a lump of natural concept which software contains is

attached to each word in the sentences of its description written in natural language.
We think that it is possible to decompose and refine hierarchically the complex concept
of software into smaller concepts which the words have, by means of word-oriented
formalizations [3]. More concretely, each word corresponds to a decomposed software
modules, and the relations among the modules are determined by the occurrences of
the corresponding words in the sentences. Formal specifications result after clarifying
the meaning of all the words in the descriptions. Our hierarchical decomposition and
refinement technique is based on lexical decomposition [1], that is to say, we explain
the content of software in simple natural-language sentences and then, in the same
manner, specify successively all the key words we used. Each key word defined in the
refinement process is considered a decomposed software module.

What words do we pay attention to in specifications written in natural language?

2

249
Natural-language specifications are described as a collection of declarative sentences,
and も$h6ifmeaning_{S}$ are detb伽 ined by ご$onnecti6n$ relatibns among their $s6ntences$ and
meanings of their sentences. Meaning ofa sehtence depends greatly on its main verb.
A smal set of verb6批e used in speci丘 catioお, and the patterns of sentences containing
$\ovalbox{\tt\small REJECT} he$血 are restrided. We call these pattems verb patter血s . Thus it is useful to collect
and classify verb patterns fbr exploring keys to $fOmal$ specifications.

In addition $t6$ our lexical decomや $\circ Siti\circ nmeth\circ d_{\text{ラ}}$ what $m6del$ do we employ to
view $fOrmally$ software systems in real world? In object oriented fぬmbwork such as
SMALLTALK-80 [13], a softwafe syste血 consists of $sev6ral$ individual objects commu-
nicating with $6ach$ other. Objects having $6ome$ common fbatures are grouped into a
class and instances of a C^{las3} are objeds belonging to it. The specification of objeds
includes actions caused by $r6$と eiving 血 essages, so called “$methods$“. Objects have
peCuliar a批 ributes and their a枇 ribute Values eXpreSS their internal states. Their $at_{\text{一}}$

tribute values can be changed only by actions speci丘 ed in them. We should consider
the correspondence between $w6rds$ and software cdmponents in object oriented fr_{ame-}

work. Generally speaking, nouns and verbs correspond to objects $6r$ classes and to
messages respectively 同. $Furtherm_{0^{re}}$, as shown in Fig.l, it seems natural that in a
$typical_{S}entence$ we let its subject and 0耳 e of its objective words correspond to a sender
and to only $6ne$ receiver of the messag6 denoted by its verb. But thお correspondence
does not necessarily derives structures of modules $fr_{mnatura1}$-langu群 ge $spec|ficat|ons$

directly, because the speci丘 cations are not written based on object oriented $disc\ovalbox{\tt\small REJECT} pline$
・

So deeper analysis of nouns a^{nd} yerbs $1^{sn}eeded$. W^{e} use several examples of in丑 o� al

speci丘 cations in [$5,10,11\ovalbox{\tt\small REJECT}$ fbr $t^{his}analysi_{S_{\text{・}}}$

$<subject><verb><object$iv6 word# $0>$

<prε Po5 i翻 $on\#^{q}><ob\ovalbox{\tt\small REJECT} ec$オ励 eω$or4\#^{q}>,$
$\ldots,$ $<prepositibh\#n>$

$<objectlve$ word#n $>$

Users return a copy of book to the library [10].

messagesender receiver
$\ovalbox{\tt\small REJECT}$ $arrow$$<subject>$ return: book(parameter) $<objective$ word#l $>$

$<verb><objective$ word#O $>$

Fig.1 Correspondence between Sentence and Message sending

2.2. Classification of Nouns
We comose 細 entence by 丘 llihg slots of it6 verb pattefn with nouns, noun phrase,

or noun $cla_{useS:}$ These houns rresenot only bbjects 伍 ems61サ es but alsq other
components in object oriented 卑 odel Classi丘 catioh of nouns is shown a_{s} fbllows.

1) Object noun: denoting an ihdividual object
2) Class noun : denoting a class of individual objects

A $P^{hr_{asb}}6onsisting$ of an article and this noun, e_{g} . {
$\backslash the$ emergency $6witch$’

dehote ah individual object. These phrases are も士 eated 急S object nouns.
Category 1) and 2) are the most $p6pular$ us6 of nouns. Proper $n6uns$ and common
houns $reprbsentobj6cts$ and cla_{SSeS} respectively乙

3

250
3) Attribute noun: denoting an attribute name or an attribute value of an object

The examples are common nouns “temperature” and “speed” in the phrases “tem-
perature of the room” and “speed of the motor”. These words are considered
attribute names of the objects “room” and “motor” respectively. The values of
“temperature” and “speed” express the internal states of their objects. In sen-
tences, these nouns are often modified by nouns denoting an object.

4) Action noun : denoting an action of an object
Nouns derived from action verbs, e.g. “transmission” and “receipt” etc. belong to
this category. In addition, we include gerunds and noun infinitives in the category.
In the sentence “these(pressing buttons) cause the lift to visit the corresponding
floor” [10], the noun infinitive “to visit” is the complement of “cause”.

2.3. Classification of Verbs
We divide types of verbs into the following four categories based on their functions to
nouns used together.

Table 1 Classification of Action Verbs and Action Relational Verbs

1) Relational Verbs
Relational verbs denote relations among objects. They need subjects and ob-
jectives, both of which represent objects. Relations among objects may change
dynamically as executions of programs go, e.g. creation and deletion of objects. In
the following example, the verb “have” is used as a relational verb and it denotes
that a lift object is related to several button objects.

“Each lift has a set of buttons, one for each floor” [10]
2) Attribute Verbs

There are two types of attribute verbs, one denotes a declaration of an attribute
name which a class of objects has, and need an objective word denoting the
attribute name. Another type denotes attribute value of an object at a certain
time. These verbs need complements denoting attribute values. Subjects in both
type of verbs denotes objects.

4

251
3) Action Verbs

Action verbs denote actions, which changes attribute values of objects, i.e. inter-
nal states, or relations among objects. Of course, there are actions which do not
cause to change internal states such as referring attribute values of objects. In
usual sentences, agents of actions are their subjects and individual objects affected
by the actions are their objective words or objective ones in their prepositional
phrases which are necessary cases. Some sentences may contain several affected
objects. There is the case where states of agents themselves are changed by their
actions. We classify action verbs and action relational verbs, the fourth category
of verbs, based on syntactic features and types of nouns used together. Table 1
shows the classification of them. We choose subject, objective, and complement
as a syntactic feature. We include in objective category objective words in prepo-
sitional phrases affected by the actions. Object nouns are subdivided from a view
of presence of their state-changes. $+$ stands for nouns whose states are changed
by actions, and “-,, for no changes. $\alpha|\beta$

’ stands for α or $\beta.$
α^{+} ’ stands for

a repetition of α more than zero times, and α^{*} ’ for a repetition of α more than
or equal to zero times. For example, type I-8 verb has a subject, an objective,
and a complement. The subject is an object noun whose state is not changed, the
objective is an object noun whose state is changed, and the complement is a value
of an attribute. There are two objects whose states are changed in the objectives
of a type I-6 verb.

4) Action relational verb
Relations among actions (we call it action relation for short) such as temporal
precedence relations are expressed by verbs in this category as well as adverbs.
Especially verbs which have action nouns filled in their case slots often express
relations. This type of verbs are shown in Table 1 by prefixing ‘II’. These type II
verbs denote actions or relations. In the sentence “he or she may flip a switch on
the side of the buoy to initiate an SOS broadcast” [5], the verb “initiate” belongs
to the type II-1 in Table 1. There are two interpretations of “initiate”. One is
the denotation of the action “initiate”, which starts the action “broadcast an SOS
message”. The other is the causal relation between the action “flip a switch” and
“broadcast”, and in this case, there does not exist the action “initiate”. Which of
the interpretations is adopted depends on the context of the informal specification.

In the next section, we will present how to associate words with module components
in object oriented model using this result of the classifications and action relations.

3. Structuring Modules based on Object Oriented Model
In this section, we explain how to extract the structures of modules from informal

specifications using features of words discussed in section 2. We use object oriented
model to specify softwares formally.

3.1. Action Verb Type and Actions
Classification of verbs are useful for extracting module components such as “classes”
of objects, “attributes”, and “methods”. If we can consider that action verbs denote
messages which cause the corresponding actions, a sentence containing an action verb
as its main verb is a statement for sending a message. The problem is to decide

5

252
which of object nouns in the sentence stands for a sender or a receiver of the message.
Since subjects are agents and objective words are individual objects affected by actions
semantically, a subject and an objective word are considered a sender and a receiver
respectively. The action verb rules in Table 2 are used to determine a sender and a
receiver of the message corresponding to an action verb based on the above idea. For
example, both the sender and the receiver of a message denoted by a type I-l action
verb are the subject of the sentence containing it. But there are two considerations in
the correspondence as follows.

Table 2 Rules for Verbs

1) Consider verbs which have more than one object nouns affected by the actions,
e.g. I-3, I-6, I-7 and II-2 verbs in Table 1.
We call these verbs multiple verbs. Since message communications in object
oriented model are one-to-one relations, a sentence should contain a sender and
only one receiver, and the other words which are case components correspond
to input or output data of the actions. Thus we should decompose a multiple

6

253
verb into several verbs, each of which contains only one noun affected by the
corresponding action.
If the verb is a I-6 or I-7 verb, one of $object+(\alpha)$ is the receiver. For each other
$object+(\beta_{i})$, we add the action whose sender is α and whose receiver is β_{i} . If
the verb is a I-3 verb, we add as the same manner for each object which has
the attribute denoted by objectives. For a II-2 verb, we add the action whose
sender is objective and whose receiver is the objective of the action denoted by
the complement.

2) Consider the directions of data flow in actions because the corresponding messages
carry only input data of the actions.
In the sentence “The buoys collect air and water temperature, wind speed and
location data through a variety of sensors” [5], it is considered that the sender of
each “collect” message is “buoy” object and that the receiver is a “sensor”. Other
objective words such as “temperature” represent data carried by the messages
“collect”. These data, however, move from the corresponding “sensors” to “buoy”.
If we encounter these verbs, we should exchange the senders for the receivers, or
add a new action which carries the data to the sender.

3.2. Action Relation
In order to specify an action relation between an action Vl and V2, a part of objects
participating in an action Vl, i.e. either the sender or the receiver of Vl, should be
common to a part of objects in an action V2. The definitions of actions should be
encapsulated in the specifications of objects, i.e. “class” specifications. There are
four patterns in relations among objects participating in two actions. These patterns
are expressed schematically from case a) to case d) in Fig.2 (a). We should delete
all undesirable patterns by exchanging the senders or receivers of the actions, or by
replacing the corresponding action relations by relations among other actions, so that
every action relation can be in either case a), b), or c) according to its type. What
senders or receivers are exchanged and by what action relations are replaced also
depend on types of action relations. We classify types of action relations into the
following three categories by analyzing all kinds of words in the specification examples.

1) Causal relation: representing the temporal precedence relation between actions.
This contains eventuality property of actions. In the sentence, “Speed readings
are taken every 30 seconds” [5], read actions of speed values have a causal relation
to themselves.

2) Exclusive relation: representing the prohibition of an action in a certain duration,
e.g. mutual exclusion.
The sentence “minimum time for furnace restart after prior operation is 5 minutes“
[10] stands for the prohibition of “start” action to the furnace during 5 minutes
after the previous action.

3) Interruption relation : representing the priority of an action to another action,
e.g. interruption, and exception.
The sentence “this (i.e. broadcasting information in response to requests from
passing vessels) takes priority over the periodic broadcast” [5] is an example.
We have collected the rules for deleting undesirable patterns and they are called

Action relation rules. Action relation rules are divided into three sub rules, Causal

7

254
a) b)

2)

3)

(b)

Fig.2 Causal Relations

8

255
relation rules, Exclusive relation rules, and Interruption relation rules. For example,
consider the case of the causal relation that the action Vl precedes temporally the
action V2. Case c) and d) in Fig.2 (a) are undesirable patterns because their action
relations cannot be specified in ordinarily object-oriented framework. Precedence re-
lations can be expressed only in the form of “procedure call” or “sequential execution”
in the framework. If the action V2 preceded the action Vl in the case b), it would
be an undesirable one, too. We should apply some rules called causal relation rules to
the occurrences of these patterns. There are three rules illustrated in Fig.2 (b) :
[Causal relation rules]

1) Let both of the senders of the Vl and the V2 be the same, i.e. transform its
occurrences into the pattern of case a) in Fig.2 (a). The action “Verb” which
contains Vl and V2 defines the precedence relation between them using sequential
execution form in procedural language.

2) Let the sender of the action V2, which follows the action Vl, be the object Ol,
which is the receiver of Vl. The “method” of the action Vl has the statement of
sending the message corresponding to the action V2.

3) Add the new action V3, which precedes V2 and follow Vl. The sender and the
receiver of V3 are the receiver Ol of Vl and the sender A2 of V2 respectively.
Note the two causal relations of V3 are specified in the form of 2) above.

We have described only causal relations briefly on account of limited space. In the
cases of exclusive relation and interruption relation, we should equalize the receivers
of the two actions to each other, i.e transform their occurrences into the pattern of
case b) in Fig.2 (a).

3.3. Strategy
Our module structure extraction process are specified informally as follows.
1) Extract verbs from informal specifications and classify them. Nouns are also

classified simultaneously into three categories in 2.1. Determine the semantical
subjects and objective words of extracted action verbs, which are considered the
candidates of senders and receivers respectively.

2) Extract action relations using keys of occurrences of type II-1\sim 6 action verbs etc.,
and classify them into three categories in 3.2.

3) Search unnecessary nouns and verbs, e.g. synonyms, and delete them.
4) For each action verb or action noun, determine its sender and receiver using the

following.
i) Action verb rules
ii) Action relation verb rules
iii) Consideration 1) and 2) mentioned in 3.1.

5) For each undesirable action relation, apply the action relation rules to it and
change the senders or the receivers. In the case of changing the sender of an
action verb A , however, the following rules should be used in addition.
[Sender Changing Rule]
If only the former sender of A knows when the action A should occur, a new action
verb B and a causal relation R should be created (shown in Fig.3). The sender
and the receiver of B are the former sender and the new sender of A respectively.
The relation R expresses that A follows B.

9

256

Fig.3 Sender Changing Rule

In step 4) and 5), there are several applicable rules, so users should select a rule to
be applied out of them in the expert system. Of course, users do step 1) ~ 3) as they
are guided by the system. Individual objects and actions in software systems are
determined according to the above rules.

4. Expert System for Structuring Modules
In this section, we explain an implementation of our expert system, and illustrate an

formal specification of “Floating Buoy System” [5], to which our system is applied. It
is written in Pure TELL specification language we are developing now. Its syntax is a
strongly restricted and unambiguous English, and the specifications written in it are
translated into temporal logical formulas automatically.

4.1. Formal Specification Language in Pure TELL [1,2,3]
Pure TELL system has been designed based on natural language (incl. lexical de-

composition method) to support the whole of software development process. Using
syntactic categories of words, Pure TELL captures the basic concepts of software,
$i.e$. whether components in the software are 1) static or dynamic and 2) data or
function/action as follows.

We use the word “dynamic” in the sense that timing of actions is essential in addition to
input-output relations, e.g. concurrent systems and communication systems. In order

10

257
to specify dynamic systems, Pure TELL has the concept of “dynamic class”, which
is that of abstract data type with explicit timing specification, e.g. synchronization.
Each action verb is defined as a “method” in a dynamic class.

Pure TELL specification language uses the notations of natural-language and fig-
ures. A sentence expression is a simple declarative sentence in the itemized form $[1,2|$.
Each sentence is either a “static sentence” or an “action sentence”. Every static sen-
tence has be-verb as its main verb and represents a relation among objects denoted by
its subject and objective words in its prepositional phrases. For example, “Delivering
SOS-message is prior to delivering a weather data” in Fig.6 represents the relation be-
tween the instances of two kinds of “deliver” actions. Thus such relations correspond
to adjectives, or common nouns which are not class names. Action sentences are used
to specify dynamic systems, especially to define the bodies of “methods”, and their
main verbs are not be-verbs but general verbs representing actions. The action sen-
tence “Radio receiver Rcv informs buoy B of request m

’ in Fig.6 denotes sending the
message “inform” from the “radio receiver” object to the “buoy” object together with
the parameter $m’$. Action sentences are connected based on the procedural control
structures, i.e. “sequential execution”, “conditional branch”, and “repetition”.

The semantics is also restricted so that each sentence can have only one and the
most natural meaning. It is translated into a temporal logical formula by the method
based on Montague Grammar$[2,9]$. f

4.2. Implementation of Expert System
We apply our module extraction technique to its own informal specification in 3.3 and
derive the structure of the modules as a part of a formal specification of our expert
system for specification construction. This specification is a part of the specification
of specification process and written in Pure TELL language. We have translated semi-
automatically the formal specification into the Prolog program, which is a prototype
program of the system, through the temporal logical formulas. Thus we needed only
tune up them and add the interface with users and other softwares, e.g. structured
editor for the specification language. Consequently the knowledge, i.e. strategy to
design softwares are declaratively represented in temporal logic, which gives strict
meaning to Pure TELL descriptions. Temporal logical formulas are operationally
interpreted by Pure TELL translator to Prolog, so that the system holds the strategy
essentially in the form of production rules during the executions. This system is
embedded in the structured editor, which have two kind of editors, text and graphics ,
and used from in the editor. The graphic editor has a faculty for semi-automatic
arrangement of graphic components. \wedge

$-$

4.3. Free Floating Buoy Example
In this section, we illustrate an formal specification of “Floating Buoy System” [5].

This is a example to which our system is applied.
t ’

4.3.1. Extracting Objects and Actions j
l 1

J .

We will mention how to apply our module’ structure extraction technique to Free
Floating Buoy System as an example. First we classify verbs occurring in an informal
specification [5] of Buoy System while making up for omitted agents and/or individual

11

258

$’\}$.
$\underline{BUOYSSYSTEM}$

There $\underline{exists}(1)$ a collection of free-floating buoys that provide (3.I-5 $sub:buoyobj:air$ and ship
traffic) navigation and weather data to air and ship traffic at sea. The buoys collect (S.I-4 $sub:buoy$
$obj:sensor)$ air and water temperature, wind speed, and $10\infty tion$ data through a variety of sensors.
Each buoy may have (1) a different number of wind and temperature sensors and may be modified to
support other types of sensors in the future. Each buoy is also equipped (1) with a radio transmitter
(to broadcast (3.I-5 $sub:buoy$ obj:passing vessels) weather $an\overline{dlocatio}n$ information as well as an
SOS message) and a radio receiver (to $\underline{receive}$ (3.II-l $sub:buoy$ obj:passing vessels requests (3.I-4
sub:passing vessels $obj:buoy$) from passing vessels). Some buoys are equipped (1) with a red light,
which may be activated (3.I-5 sub:passing vessel $obj:red$ light) by a passing vessel during sea-search
operations. If a sailor is able to reach (S.I-l $sub:sailor$) the buoy, he or she may flip (3.I-5 $\ell ub:sailor$

$obj:switch)$ a switch on the side of the buoy to initiate $(4\cdot II- 1\ell ub:\epsilon ailor)$ an SOS broadcast. Software
for each buoy must :

1) maintain (3.I-1 $\epsilon ub:soflware$) current wind, temperature, and location information; $\dot{W}ilnd$ speed
readings are taken $(4\cdot\Pi_{-}3sub:read\dot{m}g)$ every 30 seconds, temperature readings every 10 sec-
onds and location every 10 seconds; wind and temperature values are kept ($3.I- 1$ sub:sofiware
$obj:sensor$ or buoy complement:running average) as a running average.

2) broadcast (3.I-4 $\epsilon ub:\ell 0flware$ obj:passing vessels) current wind, temperature, and location in-
formation every 60 seconds.

3) broadcast (3.I-4 $sub:soflware$ obj.passing vessels) wind, temperature, and location information
from the past 24 hours in response to requests from passing vessels; this takes priority $(4\cdot II- 4$

$sub:broadcasting$ obj:broadcasting) over the periodic broadcast.
4) activate (3.I-5 sub:software $obj:red$ light) or deactivate (3.I-5 $sub:soflwareobj:red$ light) the red

light based upon a request (3.I-4 sub:passing vessels $obj:soflware$) from a passing vessel.
5) continuously broadcast (3.I-4 $\iota ub:soflware$ obj:passing vessels) an SOS signal after a sailor

engages (3.$I- 5sub:sailor$ obj:emergency switch) the emergency switch; this signal take priority
$\overline{(4\cdot II- 4}\ell ub:broadcas\ell\dot{m}g$ obj:broadcasting) over all other broadcasts and $continues\overline{(4\cdot II- 3\ell ub:}$

broadcasting) until reset (3.I-5 sub:passing vessel obj:emergency switch) by a passing vessel.

$\frac{Actionrelations:}{co11ect’}$

precedes “coUect”
“read” precedes “read”
“request” precedes “receive”
“request77 precedes “broadcast‘7

(response to request)
“request” precedes “activate”
“request7) precedes “deactivate”
“engage” precedes “broadcast“

(SOS message)
“reset” precedes “broadcast”

(SOS message)
$fl_{1’p’}$’ precedes “broadcast”

(SOS message)
“broadcast” precedes “broadcast”

(periodic)
“broadcast” precedes “broadcast”

(SOS message)
”broadcast” interrupts “broadcast”

(SOS message) (response to request)
”broadcast” interrupts “broadcast”

(response to request) (periodic)

Fig.4 Informal Specification of Buoy System and its Verb Classification

12

698

260

14

261

objects affected by the corresponding actions. We should transform passive form
sentences into active form ones on account of extracting the agents and the objects
of actions. Fig.4 shows the informal specification of Buoy System and the result of
the classification of verbs. For example, $(3.1- 4 sub:buoyobj:sensor)$ means that
the underlined verb “collect” belongs to the type I-4 in the category 3), i.e. action
verb category, and that the semantical subject, i.e. agent and the affected object
are “buoy” and “sensor” respectively. Fig.5 (a), (b), (c), and (d) shows the module
structure extraction process using our system successively. In the graphical expression
of the extracted objects and actions, each ellipse represents a candidate of an individual
object denoted by a noun and each arrow stands for an action denoted by an action
verb. The source and destination of an arrow are an agent and an object affected by
the action respectively. We interpret verbs “initiate” and “continue” not as actions
but as action relations.

To obtain the figure (b) from (a), we identify the unnecessary individual objects
“software” and “sailor” with “buoy” and “passing vessels” respectively. The window
of “Guide for Module Extraction” in Fig.5 (a) shows that the object “software” will be
merged to “buoy”. Underlined characters in the window stand for user-input ones. Pe-
riodic “broadcast” and “broadcast” requested from “passing vessels” are put together
into the action “provide”, so we delete “provide” as an unnecessary action. Similarly
we delete the two “request”s and the “activate” from “passing vessels” to “red light”.

Furthermore agents of three “broadcast”s and “receive” are changed to “radio
transmitter” and “radio receiver” respectively. As shown in Fig.5 (b), each of these
changes to “radio transmitter” causes to the addition of an action “deliver” according
to Sender Changing Rule. In Fig.5 (b), the data flows of “read“ and “receive” are
opposed to the directions from their agents to their objective words, i.e. their action
flows. Considering simplicity, we exchange their agents for their objective words. So,
we change the action names “read” and “receive” to “put” and “send” respectively.
The graphical part of Fig.5 (c) shows the result of the step above.

There is a causal relation between “send” and “deliver”. To specify this relation,
we add an action “inform” from “radio receiver” to (buoy’ according to the causal
relation rule 3). See the window in Fig.5 (c), in which rule 3) is selected. The addition
of “deliver” from “emergency switch” to “radio transmitter” also results from the
causal relation between “flip” and “broadcast”. We finally have obtained Fig.5 (d).
The “Encapsulation” window shows a structure of the extracted modules.

4.3.2. Formal Specification of Buoy System
A formal specification of Buoy System is shown in Fig.6, and we introduce the

“weather data queue” object in order to hold data from the past 24 hours data. This
object is in a lower layer in the hierarchical structure of object oriented model of Buoy
System. Common nouns “buoy”, “radio transmitter”, “radio receiver”, “emergency
switch”, various “sensor”, “red light”, “weather data queue” are defined as dynamic
classes. “Passing vessels” is an environment of the system. The dynamic class “emer-
gency switch” has the “flip” and the “reset” actions allowable from external objects.
The meaning of the verbs are specified as “methods” in the dynamic classes. For
example, “someone flips emergency switch E’ declares the verb “flip”, sender “some-
one”, and receiver E belonging to the dynamic class “emergency switch”. “Someone”

15

Buoy .
$t\iota m\iota ng$

$1)Re1-1f_{buoy}^{\circ at}B$ delivers periodically
tho current data ot the weather data queue to the radio transmitter.

1-2) buoy B waits for 60 seconds.

Radio rocoivor Rcv informs buoy B of $r\cdot questm$

$me_{1}at_{Ifrequ\cdot st}^{Sthat}m$ is a past data request, $th\cdot n$

where $buol-l?BdeliversWeatherdataW$ is th\cdot data of th\cdot $weath\cdot r$ data $qu\cdot ue$ according to
woathor data W to the radio transnittor.

request m .
2) If roquost m is a light activation $r\cdot quest_{*}$ then buoy B activates

th\cdot rod light.
3) : f requo$t m gs a light doactivation request, then buoy B deactivate s

the $r\cdot d$ light.
end inform:
Sensor S puts data x to buoy B

$m\circ a1?^{stF\overline{at}}BuoyB$ storos data x to th\cdot fiold F in th\bullet weather data queue.
$wh\cdot re1-1)$ Fiold F is $d\cdot termin\cdot d$ by $s\cdot nsor$ S.

end put;
$Fi\cdot 1dF$ is determined by sensor S

$meansthcase1\}^{t}sensorS$ is a wind spood sonsor : $fi\cdot 1dF$ is wind $sp:\cdot d$.
$ca\epsilon e$ 2) Sonsor S is an air temperatur\cdot sonsor : field F is $a\iota rt\cdot mperature$.
case 3) Sensor S is a water temperature sensor :

$fi\cdot 1dF$ is wator temperature.
case 4) Sensor S is a location sensor : field F is location.

end determιned :
Field is wind speed, air temperature, water temperature, or location.

$\frac{W\cdot atherdataqueu}{hasw\check{\iota}ndspe\cdot d:}$ queue of speed, air temperature : queue of temperature,
water temperature : queue of temperatur \cdot , location : queue of location.

Someone stores data x to field F in weather data queue Q

\overline{that}
$mea\iota?^{S}\tau h\cdot fi\cdot 1dp$ of weathor data $qu\bullet ueQ$ boconos data y

wher\cdot 1-1) Data y is th\cdot $r\cdot sult$ of shifting data x to data z .
1-2) Data z is tho valuo of tho field F in woathor data queu\cdot Q.

end store;

Weather data W is a current data of weather data queue Q

$me_{1}a?^{S}w_{eather}^{that}$ data W is speed S , temperature Ti, temperature T2,
and location L.

where 1-1) Speed S is the last element of the wind speed of
weathor data.queu\cdot Q.

1-2) Temperature Tl is th\cdot last element of tho air temperature of
weather data queue Q.

1-3) Temperature T2 is the last element of the water temperature of
weather data queue Q.

1-4) Location L is the last element of the location of
weather data queue Q.

end current data;
end weather data queu\cdot ;

end buoy;

$\frac{Radiotransmitter}{coord\check{\iota}nat\overline{\iota}ng}$

1) Delivering SOS-message is prior to $deliv\cdot ring$ a weather data.
2) Delivering a weather data zs prior to delivering periodically.

Someone delivers $[\underline{periodically}]$ information $m\underline{to}$ radio transmitter Tr
$m\circ a1?^{Sthat}Badio$ transmitter Tr broadcasts information m to the passing vessels.

end deliver [periodically]:
end radio $transmitt\cdot r$;
Radio rece iver

Someone $s\cdot nds$ request m to radio rocoiver Rcv
$s\overline{that}$meal? Badio receiver Rcv informs the buoy of request m .

ond $s\bullet nd$:
end radio receiver;

Fig.6 Formal Specification of Buoy System (continued)

16

263

$\frac{Emergencyswitch}{hass_{I_{\iota z\iota ng}^{tu_{S:}}}t,1n1t\iota a}on$ or off

1) The status is off.
$tim\iota ng$

1) Infinitely
i-i) If the status of the emergency switch is on, then

the emergency switch delivers SOS-message to the radio transmitter.

Someone flips emergency switch B

$m\circ a1?^{s\overline{that}}Thestatus$ of emergency switch Z becomes on.
end flip;

Someone reset emergency switch B

$mea1?^{S\overline{that}}Th\cdot status$

of emergency switch B becomes off.
end reset:

end emergency switch;

$\frac{Red1ight}{!\iota asi1,\iota n\iota t\iota a;}u\min_{\iota z\iota n_{8}^{ation}}$: on or off

1) The illumination of the rod light is off.

Someone activate rod light RL
$s\overline{that}$meal? Th\cdot illumination of red light RL bocomes on.

end act vate;

Someone deactivate red light RL
$s\overline{that}$meal? The illumination of red light RL becomes off.

end deactivate;
end red light;

Wind speed sensor is sensor of detection interval 30.
Mr tem erature sensor is sensor of detection interval 10.
Water temperature sensor is sensor of detection interval 10.
Locatxon sensor is sensor of detection interval iO .

Sensor of detection interval i

$\overline{t\iota m\iota}ng$

1) Infinitely
1-1) The sensor puts data x to the buoy

where data x is calculatod.
1-2) The sensor waits for i seconds.

end sonsor;

Detection interval is positive integer.

Information is SOS-message or weather data.

Weather data is
$\overline{(wind}$speod : speed, air temperature : temperature,

water temperature : temperature, location : location).

[imported word]
calculated in sensor
$P_{0}s^{as}\S_{mess^{astin}}^{s\iota n}\underline{r}oa5_{c_{age}^{vesse1}}$ radio transmitter
request

$qu^{1i}\mathfrak{x}^{astdatarequest}euightactivationrequest\S^{htdeactivationrequest}$

shift

Fig.6 Formal Specification of Buoy System

17

264

and E ’ play a role of formal parameters. The successive part to “means that” is the
module body and defines the meaning of the declared word by lexical decomposition.
In the “inform” in the “buoy”, this part consists of a set of action sentences, which are
executed in order, i.e. “sequential execution”. If an object has a value as an attribute,
the “has” part of the dynamic class module specifies its domain. In the “emergency
switch”, the “status” is an attribute name and “on or off” is a domain specification,
which expresses an enumeration of allowable values. A “timing” section in “emergency
switch” specifies the sequence of actions which each “emergency switch” object causes
itself. Thus the subjects of all the action sentences in the timing section should denote
objects belonging to the dynamic class, i.e. this case is “emergency switch”. A “coor-
dinating” part in “radio transmitter” specifies the constraints among actions requested
to the “radio transmitter” object, i.e. priority between two types of “deliver” actions.

5. Conclusion
We mentioned the strategy for extracting modules from natural-language specifica-

tions as knowledge. Our method should have more experience in specifying various
kinds of softwares and be polished up together with classification of words. Another
analysis of nouns are needed to support extraction of class hierarchy, e.g. super-sub
class and meta class. Furthermore analysis and classification of words depend on what
concepts are extracted from natural-language specifications. Fusing our approach to
the technique of reusing specification components, i.e. domain-specific knowledge leads
to constructing easily high-quality specifications. We are developing reusing technique
based on natural-language words.

If a specification method has executable feature, specifying a software process
allow tools supporting the process to be automatically generated [4]. Generated tools
are used as prototypes to evaluate easily the software process. In fact, our system can
be developed in a shorter period of time. But generated tools have human-interface
poorer than practical tools. We should consider methodologies to include human-
interface in a software process in future.

References

[1] Enomoto,H., Yonezaki,N., Saeki,M., Chiba,K., Takizuka,T. and Yokoi,T., Natural
Language Bas ed Software Development System TELL, Proc. of 6 th ECAI, pp.721-
731 (1984)

[2] Enomoto,H., Yonezaki,N., Saeki,M. and Aramata,H., Formal Specification and
Verification for Concurrent Systems by TELL, Proc. of 6 th ECAI, pp.732-745
(1984)

[3] Saeki,M., Horai,H., Toyama,K., Uematsu,N. and Enomoto,H., Specification
Framework Based on Natural Language, Proc. of 4th International Workshop
on Software Specification and Design, pp.87-94 (1987)

[4] Osterweil,L., Soflware Processes Are Software Too, Proc. of 9th ICSE, pp.2-13
(1987)

[5] Booch,G., Object-Oriented Development, IEEE Trans. on Soft. Eng., Vol.12,
No.2, pp.211-pp.221

[6] Balzer,R., Goldman,N. and Wile,D., Informality in Program Specification, IEEE

18

265

Trans. Soft. Eng., Vol.4, No.2, pp.94-103 (1978)
[7] Abbott,R., Program Design by Informal English Descriptions, Commun. ACM,

Vol.26, No. 11, pp.882-894 (1983)
[8] Borgida,A. and Mylopoulos,J., Knowledge Representation as the Basis for Re-

quirements Specifications, Computer, Vol.18, No.4, pp.82-91 (1985)
[9] Montague,R., The Proper Treatment of Qualificat\’ion in Ordinary English, Reidel

Dordrecht (1973)
[10]Problem Set for the 4th International Workshop on Soflware Specification and De-

sign, Proc. of 4th International Workshop on Software Specification and Design,
pp.ix-x (1987)

[ll]Gehani,N. and McGettrick,A.D. (eds.) Software Specification Techniques, Addi-
son Wesley (1986)

[12]Hornby,A.S., Guide to Patterns and Usage in English, second edition, Oxford
University Press (1975)

[13]Goldberg,A. and Robson,R., it SMALLTALK-80 : The Language and Its Imple-
mentation, Addison Wesley (1983)

[14]Special Issue on Software Reusability, IEEE Trans. Soft. Eng., Vol.10, No.5
(1984)

19

