Bifurcation Equations of 3-Dimensional Piecewise-Linear Vector Fields

Motomasa KOMURO (八 室 元 成)
Department of Mathematics
Numazu College of Technology
Numazu 410, Japan

ABSTRACT

Global bifurcation equations of 3-dimensional 3-region continuous piecewise-linear vector fields with odd symmetry are given.

The bifurcation equations cover all sort of bifurcation sets, i.e., homoclinicity, heteroclinicity, saddle-node bifurcation, period-doubling bifurcation and Hopf bifurcation.

1. Normal forms for 3-dimensional 3-region systems.

Consider a 3-dimensional 3-region continuous piecewise linear vector field $f:\mathbb{R}^3-\to\mathbb{R}^3$ with odd symmetry f(-x)=-f(x). Assume f has no proper linear subspace which is invariant under linear vector field in the middle region, and which is parallel to the boundary. If f has eigenvalues μ_1,μ_2,μ_3 at the middle region, and ν_1,ν_2,ν_3 at the outer regions, the normal form theorem for piecewise linear vector fields guarantees that such a vector field is uniquely determined up to the linearly conjugacy as follows;

$$f(x) = Ax + \frac{1}{2} p \{ |\langle \alpha, x \rangle - 1| + (\langle \alpha, x \rangle - 1) \}$$

$$-\frac{1}{2} p \{ | \langle \alpha, x \rangle + 1 | - (\langle \alpha, x \rangle + 1) \}$$

$$= \begin{cases} B(x-P) & (x \in R_{+}) \\ Ax & (x \in R_{0}) \\ B(x+P) & (x \in R_{-}) \end{cases}$$
(1.1)

where

$$R_{\pm} = \{x \in \mathbb{R}^3 : \pm \langle \alpha, x \rangle - 1 > 0 \},$$

$$R_0 = \{x \in \mathbb{R}^3 : |\langle \alpha, x \rangle| \le 1 \},$$

$$\alpha = {}^{T}(1,0,0), \quad p = {}^{T}(c_1, c_2, c_3),$$

$$P = {}^{T}(1-a_3/b_3, c_1a_3/b_3, c_2a_3/b_3),$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_3 & a_2 & a_1 \end{pmatrix} , B = \begin{pmatrix} c_1 & 1 & 0 \\ c_2 & 0 & 1 \\ c_3 + a_3 & a_2 & a_1 \end{pmatrix} = A + p^T \alpha$$

$$a_1 = \mu_1 + \mu_2 + \mu_3$$
, $a_2 = -(\mu_1 \mu_2 + \mu_2 \mu_3 + \mu_3 \mu_1)$, $a_3 = \mu_1 \mu_2 \mu_3$, $b_1 = \nu_1 + \nu_2 + \nu_3$, $b_2 = -(\nu_1 \nu_2 + \nu_2 \nu_3 + \nu_3 \nu_1)$, $b_3 = \nu_1 \nu_2 \nu_3$, $c_1 = b_1 - a_1$, $c_2 = b_2 - a_2 + c_1 a_1$, $c_3 = b_3 - a_3 + a_2 c_1 + a_1 c_2$

Define the boundaris \mathbf{U}_1 and \mathbf{U}_{-1} by

$$U_{\pm 1} = \{x \in \mathbb{R}^3 : \langle \alpha, x \rangle = \pm 1 \}.$$

We separate \mathbf{U}_1 and \mathbf{U}_{-1} into two parts respectively;

Define points $C_i \in U_1$ (i=1,2,3) by

$$C_i = {}^{T}(1, \mu_i, \mu_i^2)$$
, (1.2)

then the vector $\overrightarrow{OC_i}$ is a eigenvector of A with respect to μ_i (i=1,2,3). Define points $\mathbf{D_i} \in \mathbb{U}_1$ (i=1,2,3) by $\mathbf{D_i} = {}^{T}(1,\nu_i \mathbf{a_3}/\mathbf{b_3},\nu_i (\nu_i - \mathbf{c_1}) \mathbf{a_3}/\mathbf{b_3}), \tag{1.3}$

then the vector $\overrightarrow{PD_i}$ is a eigenvector of B with respect to v_i (i=1,2,3).

2. Return time coordinate.

Assume the matricies A and B are reguler.

(1) For $x \in U_1^+$, assume that there are $y, z \in U_1^-$ such that

$$y = e^{-At}x$$
 where $t = \inf\{t'>0 : |\langle e_1, e^{-At'}x \rangle| = 1\}$

$$z = e^{Bs}(x-P)+P$$
 where $s = \inf \{s'>0 : (e_1, e^{Bs'}(x-P)+P) = 1 \}$.

Since Aw = B(w-P) for all $w \in U_1$ by continuity of the vector field we have

$$z = A^{-1}A(e^{Bs}(x-P)+P) = A^{-1}Be^{Bs}(x-P) = A^{-1}e^{Bs}B(x-P)$$

= $A^{-1}e^{Bs}Ax = e^{Cs}x$

where $C = A^{-1}BA$. Since x,y and z belong to U_1 ,

$$T_{\alpha e^{-At}x} = 1$$
, $T_{\alpha x} = 1$, $T_{\alpha e^{Cs}x} = 1$,

or equivarentry

$$[e_1^{T}\alpha e^{-At} + e_2^{T}\alpha + e_3^{T}\alpha e^{Cs}] x = h_1$$
where $e_1^{T} = (1,0,0)$, $e_2^{T} = (0,1,0)$, $e_3^{T} = (0,0,1)$, $h_1^{T} = (1,1,1)$.

If the matrix [...] is reguler, we denote the inverse matrix by

$$K(t,s) = [e_1^T \alpha e^{-At} + e_2^T \alpha + e_3^T \alpha e^{Cs}]^{-1}.$$
 (2.1)

Then we have

$$x = K(t,s)h_1. (2.2)$$

The (t,s) is called the return time coordinaite of x.

(2) For $x \in U_1^+$, assume that there are $y \in U_{-1}^-$ and $z \in U_1^-$ such that

$$y = e^{-At}x$$
 where $t = \inf\{t'>0 : |\langle e_1, e^{-At'}x \rangle| = 1\}$

$$z = e^{Bs}(x-P)+P$$
 where $s = \inf \{s'>0 : (e_1, e^{Bs'}(x-P)+P) = 1 \}.$

Since Aw = B(w-P) for all $w \in U_1$ by continuity of the vector field, we have

$$z = A^{-1}A(e^{Bs}(x-P)+P) = A^{-1}Be^{Bs}(x-P) = A^{-1}e^{Bs}B(x-P)$$

= $A^{-1}e^{Bs}Ax = e^{Cs}x$

where $C = A^{-1}BA$. Since $x, z \in U_1$ and $y \in U_{-1}$, $T_{\alpha e}^{-At}x = -1, \quad T_{\alpha x} = 1, \quad T_{\alpha e}^{Cs}x = 1,$

or equivarentry

$$[e_1^T \alpha e^{-At} + e_2^T \alpha + e_3^T \alpha e^{Cs}] x = h_2$$
 (2.3)

where
$$e_1 = {}^{T}(1,0,0)$$
, $e_2 = {}^{T}(0,1,0)$, $e_3 = {}^{T}(0,0,1)$, $h_2 = {}^{T}(-1,1,1)$.

If the matrix [...] is reguler, we denote the inverse matrix by $K(t,s) = [e_1^T \alpha e^{-At} + e_2^T \alpha + e_3^T \alpha e^{Cs}]^{-1}.$

Then we have

$$x = K(t,s)h_2. (2.4)$$

The (t,s) is also called the return time coordinaite of x.

3. Periodic orbit.

(1) The type of $U_1 \rightarrow U_1$.

Assume $x \in U_1^+$ has a return time coordinate (t_1, s_1) as follows;

$$x = K(t_1, s_1)h_1$$
 where

$$t_1 = \inf\{t > 0 : |\langle e_1, e^{-At}x \rangle| = 1 \}$$
 and (3.1a)

$$s_1 = \inf \{s > 0 : \langle e_1, e^{Bs}(x-P) + P \rangle = 1 \}.$$
 (3.1b)

If an equation between 6 eigenvalues $\mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3$ and (t_1, s_1) defined by

$$e^{-At_1}K(t_1,s_1) = e^{-K(t_1,s_1)}$$
(3.2)

holds under the open condition (3.1), the point $x = K(t_1, s_1)$ is a periodic point for a vector field determined by $\mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3$. This periodic point is called of the type $U_1 \rightarrow U_1$. For the other type of periodic points, the equations are derived by similar way.

(2) The type of $U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1$.

$${}^{Cs}_{e} {}^{1}K(t_{1},s_{1})h_{1} = {}^{-At}_{2}K(t_{2},s_{2})h_{1},$$
 (3.3a)

$$e^{Cs_{2}}K(t_{2},s_{2})h_{1} = e^{-At_{1}}K(t_{1},s_{1})h_{1}.$$
(3.3b)

The open conditions for the first return times;

$$\begin{split} &|^{T}\alpha e^{-At}K(t_{i},s_{i})h_{1}|\neq 1 \quad \text{for all t with $0 < t < t_{i}$,} \\ &^{T}\alpha e^{Cs}K(t_{i},s_{i})h_{1}\neq 1 \quad \text{for all s with $0 < s < s_{i}$} \qquad (i=1,2). \end{split}$$

(3) The type of $U_1 \rightarrow U_1 \rightarrow U_{-1} \rightarrow U_{-1} \rightarrow U_1$.

$$e^{Cs_{1}}K(t_{1},s_{1})h_{2} = -e^{-At_{2}}K(t_{2},s_{2})h_{2}, \qquad (3.4a)$$

$$e^{Cs_{2}}K(t_{2},s_{2})h_{2} = e^{-At_{1}}K(t_{1},s_{1})h_{2}. \qquad (3.4b)$$

$$-e^{Cs_2}K(t_2,s_2)h_2 = e^{-At_1}K(t_1,s_1)h_2.$$
 (3.4b)

The open conditions for the first return times;

$$|^{T}\alpha e^{-At}K(t_{i},s_{i})h_{2}| \neq 1 \quad \text{for all } t \text{ with } 0 < t < t_{i},$$

$$^{T}\alpha e^{Cs}K(t_{i},s_{i})h_{2} \neq 1 \quad \text{for all } s \text{ with } 0 < s < s_{i} \quad (i = 1,2).$$

(4) The type of $U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_{-1} \rightarrow U_{-1} \rightarrow U_1$.

$$e^{\text{Cs}_{1}}K(t_{1},s_{1})h_{2} = e^{\text{-At}_{2}}K(t_{2},s_{2})h_{1}, \qquad (3.5a)$$

$$e^{\text{Cs}_{2}}K(t_{2},s_{2})h_{1} = -e^{\text{-At}_{3}}K(t_{3},s_{3})h_{2}, \qquad (3.5b)$$

$$e^{Cs_{2}}K(t_{2},s_{2})h_{1} = -e^{-At_{3}}K(t_{3},s_{3})h_{2}, \qquad (3.5b)$$

$$-e^{Cs_3}K(t_3,s_3)h_2 = e^{-At_1}K(t_1,s_1)h_2.$$
 (3.5c)

The open conditions for first return times;

$$|^{T}\alpha e^{-At}K(t_{i},s_{i})h_{j}| \neq 1 \quad \text{for all } t \text{ with } 0 < t < t_{i},$$

$$^{T}\alpha e^{Cs}K(t_{i},s_{i})h_{j} \neq 1 \quad \text{for all } s \text{ with } 0 < s < s_{i} \quad (i = 1,2),$$
where $j = 1$ $(i = 2)$; $= 2$ $(i = 1,3)$.

4. Bifurcation conditions of periodic orbits.

Let $x = K(t_1, s_1)h_1$ be a periodic point with a period $t_1+s_1+\ldots+t_n+s_n$ as stated in § 3. Then bifurcation conditions for this periodic point are given as follows. Set

$$M = e^{Bs} n e^{At} n e^{Bs} n - 1 e^{At} n - 1 \dots e^{Bs} 1 e^{At} 1.$$

T = Trace(M) and D = det(M).

(1) Saddle-node bifurcation;

$$2 - T + D = 0.$$
 (4.1)

(2) Period doubling bifurcation;

$$T + D = 0.$$
 (4.2)

(3) Hopf bifurcation;

$$D-1=0$$
 and $(1-T)^2-4<0$. (4.3)

5. Homoclinic orbits at 0.

Suppose μ_1 is positive real, and μ_2 and μ_3 are negative reals or complex conjugate pair with negative real part. Since an eigen vector for μ_i is given by (1.2), a 2-dimensional stable manifold $\mathbf{W}^{\mathbf{S}}(\mathbf{0})$ and a 1-dimensional unstable manifold $\mathbf{W}^{\mathbf{U}}(\mathbf{0})$ for $\mathbf{0} = \mathbf{T}(0,0,0)$ are given as follows;

$$\mathbf{W}^{\mathrm{u}}(\mathbf{0}) = \{ \mathbf{x} \in \mathbb{R}^3 \colon \mathbf{x} = \mathbf{r} \overline{\mathbf{0}} \mathbf{C}_1, \mathbf{x} = \mathbf{0}, \mathbf{r} \in \mathbb{R} \},$$

$$w^{s}(0) \ = \ \{ \ x \in \mathbb{R}^3 \colon \ x \ = \ r\overline{0}\overline{\mathbf{c}}_{2} \ + \ r\,'\overline{0}\overline{\mathbf{c}}_{3}, \ ^T\alpha x - 1 \ \le \ 0, \ r\,, r\,' \in \mathbb{R} \ \} \,.$$

Set

$$\mathbf{u} = {}^{\mathrm{T}}(\mathbf{0}, \ (\mu_2 + \mu_3) / (\mu_2 \mu_3), \ -1 / (\mu_2 \mu_3)),$$

then the intersection $W^{S}(0) \cap U_{1}$ is given by

$$w^{s}(0) \cap U_{1} = \{x=(x,y,z) \in \mathbb{R}^{3}: Tux-1 = 0, x=1\}.$$

Then a condition under which a homoclinic orbit at $\mathbf{0}$ exists is given as follows.

(1) The type of $0 \rightarrow U_1 \rightarrow U_1 \rightarrow 0$.

$$^{T}\alpha e^{Cs}_{0}C_{1} = 1 , \qquad (5.1a)$$

$$^{T}ue^{Cs}{}^{0}C_{1} = 1$$
 (5.1b)

The open conditions for the first return times;

$$^{T}\alpha e^{Cs}C_{1} \neq 1$$
 for all s with 0 < s < s₀,
 $^{T}\alpha e^{At}e^{Cs}{}_{0}C_{1} \neq 1$ for all t > 0.

(2) The type of $\mathbf{0} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{U}_1 \rightarrow \mathbf{U}_1 \rightarrow \mathbf{U}_1 \rightarrow \mathbf{0}$.

$$^{T}\alpha e^{Cs}_{0}C_{1} = 1 , \qquad (5.2a)$$

$${^{Cs}_{0}C_{1} = e^{-At}_{1}K(t_{1},s_{1})h_{1}}$$
 (5.2b)

$$T_{ue}^{Cs_1}K(t_1,s_1)h_1 = 1$$
 (5.2c)

The open conditions for the first return times;

$$\begin{split} ^{T}\alpha e^{Cs}C_{1} &\neq 1 & \text{for all s with } 0 < s < s_{0}, \\ |^{T}\alpha e^{-At}K(t_{1},s_{1})h_{1}| &\neq 1 & \text{for all t with } 0 < t < t_{1}, \\ ^{T}\alpha e^{Cs}K(t_{1},s_{1})h_{1} &\neq 1 & \text{for all s with } 0 < s < s_{1}. \\ |^{T}\alpha e^{At}e^{Cs}IK(t_{1},s_{1})h_{1}| &\neq 1 & \text{for all } t > 0. \end{split}$$

(3) The type of $\mathbf{0} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{U}_1 \rightarrow \mathbf{U}_{-1} \rightarrow \mathbf{U}_{-1} \rightarrow \mathbf{0}$.

$$^{T}\alpha e^{Cs}{}_{0}C_{1} = 1 , \qquad (5.3a)$$

$$e^{Cs_0}C_1 = -e^{-At_1}K(t_1, s_1)h_2$$
 (5.3b)

$$T_{ue}^{Cs_1}K(t_1,s_1)h_2 = 1$$
 (5.3c)

The open conditions for the first return times;

$$\begin{split} & ^{T}\alpha e^{Cs}C_{1} \neq 1 & \text{for all s with } 0 < s < s_{0}, \\ & |^{T}\alpha e^{-At}K(t_{1},s_{1})h_{2}| \neq 1 & \text{for all t with } 0 < t < t_{1}, \\ & ^{T}\alpha e^{Cs}K(t_{1},s_{1})h_{2} \neq 1 & \text{for all s with } 0 < s < s_{1}. \\ & |^{T}\alpha e^{At}e^{Cs}K(t_{1},s_{1})h_{2}| \neq 1 & \text{for all } t > 0. \end{split}$$

6. Homoclinic orbits at P⁺.

For eigenvalues of B, assume v_1 is negative real, and v_2 and v_3 are positive reals or complex conjugate pair with positive real part. Since an eigen vector for v_i is given by (1.3), a 1-dimensional stable manifold $\mathbf{W}^{\mathbf{S}}(P)$ and a 2-dimensional unstable manifold $\mathbf{W}^{\mathbf{U}}(P)$ for P are given as follows;

$$W^{S}(P) = \{ x \in \mathbb{R}^{3} : x = r\overline{PD}_{1} + P, T\alpha x - 1 \ge 0, r \in \mathbb{R} \},$$

$$\mathbb{W}^{\mathrm{u}}(\mathsf{P}) = \{ \mathbf{x} \in \mathbb{R}^3 \colon \ \mathbf{x} = \mathbf{r} \overline{\mathsf{P}} \overline{\mathsf{D}}_2 + \mathbf{r}^{\mathsf{t}} \overline{\mathsf{P}} \overline{\mathsf{D}}_3 + \mathsf{P}, \ \overline{\mathsf{a}} \mathbf{x} - 1 \geq 0, \ \mathbf{r}, \mathbf{r}^{\mathsf{t}} \in \mathbb{R} \}.$$

Set

 $\begin{array}{lll} v &=& ^{T}(0,\; (\nu_{2}+\nu_{3}-c_{1})\,b_{3}/(\nu_{2}\nu_{3}a_{3})\,,\; -b_{3}/(\nu_{2}\nu_{3}a_{3}))\,,\\ \\ \text{then the intersection } W^{u}(P) \;\cap\; U_{1} \;\; \text{is given by}\\ & W^{u}(P) \;\cap\; U_{1} \;\; = \; \{x=(x,y,z)\in\; \mathbb{R}^{3}:\; {}^{T}vx-1 \;\; = \; 0\;\;, x=1\}\,. \end{array}$

Set

$$P^+ = P$$
 and $P^- = -P$.

Then a condition under which a homoclinic orbit at \boldsymbol{P}^+ exists is given as follows.

The open conditions for the first return times;

$$\begin{split} & ^{T}\alpha e^{Cs}e^{-At}{}^{1}K(t_{1},s_{1})h_{1} \neq 1 \quad \text{for all } s > 0 \ , \\ & |^{T}\alpha e^{-At}K(t_{1},s_{1})h_{1}| \neq 1 \quad \text{for all } t \text{ with } 0 < t < t_{1}, \\ & ^{T}\alpha e^{Cs}K(t_{1},s_{1})h_{1} \neq 1 \quad \text{for all } s \text{ with } 0 < s < s_{1} \ , \\ & |^{T}\alpha e^{-At}D_{1}| \neq 1 \quad \text{for all } t \text{ with } 0 < t < t_{2}. \end{split}$$

7. Heteroclinic orbits.

For eigenvalues of A, assume μ_1 is positive real, and μ_2 and μ_3 are negative reals or complex conjugate pair with negative real part. For eigenvalues of B, assume ν_1 is negative real, and ν_2 and ν_3 are positive reals or complex conjugate pair with positive real part. Then a condition under which a heteroclinic orbit from $\mathbf{0}$ or \mathbf{P}^- to \mathbf{P}^+ exists is given as follows.

(1) The type of
$$\mathbf{0} \to \mathbf{U}_1 \to \mathbf{P}^+$$
.

 $\mathbf{C}_1 = \mathbf{D}_1$.

(2) The type of $\mathbf{0} \to \mathbf{U}_1 \to \mathbf{U}_1 \to \mathbf{U}_1 \to \mathbf{P}^+$.

$$\mathbf{C}_{\alpha} = \mathbf{C}_{\alpha} = \mathbf{C}_{\alpha} = \mathbf{0}_{\alpha} = \mathbf{0}_{$$

$$^{T}\alpha e^{-At_{1}}D_{1} = 1.$$
 (7.2c)

The open conditions for the first return times;

$$^{T}\alpha e^{Cs}C_{1} \neq 1$$
 for all s with 0 < s < s₀, $^{T}\alpha e^{-\Lambda t}D_{1}! \neq 1$ for all t with 0 < t < t₁.

(3) The type of $0 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow U_1 \rightarrow P^+$.

$${}^{\mathsf{T}}\alpha e^{\mathsf{Cs}}{}^{\mathsf{O}}C_{1} = 1 , \qquad (7.3a)$$

$$e^{Cs_0}C_1 = e^{-At_1}K(t_1, s_1)h_1$$
, (7.3b)

$$e^{Cs_1}K(t_1,s_1)h_1 = e^{-At_2}D_1$$
, (7.3c)

$$^{T}\alpha e^{-At}{}^{2}D_{1} = 1.$$
 (7.3d)

The open conditions for the first return times;

$$^{T}\alpha e^{Cs}C_{1} \neq 1$$
 for all s with 0 < s < s₀,

$$|^{T}\alpha e^{-At}K(t_1,s_1)h_1| \neq 1$$
 for all t with 0 < t < t_1 ,

$$^{T}\alpha e^{Cs}K(t_1,s_1)h_1 \neq 1$$
 for—all s with 0 < s < s_1 .

$$|^{T}\alpha e^{-At}D_{1}| \neq 1$$
 for all t with 0 < t < t₂.

(4) The type of $P^- \rightarrow U_{-1} \rightarrow U_1 \rightarrow P^+$.

$$^{T}\alpha e^{-At_0}C_1 = 1$$
 , (7.4a)

$$^{T}ue^{-At_{0}}C_{1} = -1$$
 (7.4b)

The open conditions for the first return times;

$$|^{T}\alpha e^{-At}C_{1}| \neq 1$$
 for all t with 0 < t < t₀.

References.

[1] M.Komuro, Normal forms of continuous piecewise linear vector fields and chaotic attractors, Part I , Japan J.Appl. Math.,

Vol.5, no.2, pp 257-304 (1988).

- [2] M.Komuro, Normal forms of continuous piecewise linear vector fields and chaotic attractors, Part II, Japan J.Appl. Math., Vol.5, no.3, pp 503-549 (1988).
- [3] R.Fujimoto, A.Hotta, R.Tokunaga, M.Komuro and T.Matsumoto, Bifurcation analysis of Shilnikov's chaos, in "Bifurcation phenomena in nonlinear systems and theory of dynamical systems" ed.by H.Kawakami, World Scientific Publishing Co., Singapore, 1990