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THE SYZYGIES OF M-FULL IDEALS
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Introduction

The concept of m-full ideals was introduced and studied
first by D.Rees (unpublished). In 1983, after hav1ng considered
and discussed the concept with Prof. Rees, I went on to show
some of their properties in [10]. Some other authors also have
obtained a considerable amount of results related to those
ideals. (cf. [5], [7].) The purpose of this paper is to seek
s zygies of m-full ideals and try to analyze their structure.
Let a be an m-full ideal, and a the reduction by a general
element. Then it is possible to determine the number of basic
syzygies of a in terms of a. As my argument shows, this
means that a method can be found for obtaining a set of basic
syzygies of a provided that that of a is known. (Theorem 6.)
Moreover the entire structure of the syzygy module is known
when it is reduced by a general element. It turns out that
a/za 1is the direct sum of a and copies of the residue field.
(Corollary 7.)

Thus we are naturally lead to define a new class of ideals
which we call "completely g-full." (Definition 2.) The meaning
of this is that they provide us with an inductive set up. For

those ideals we may calculate their Betti numbers using certain
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numerals Liskgs eeey R, as will be shown in Corollary 9.

Finally we relate our results to the theory of Grobner
bases. Several authors have proved that the initial monomials
of a Grobner basis of a homogeneous ideal in a polynomial ring,
with respect to generic variables, form a Borel stable ideal.
(See [2], [6], [9].) One finds easily that in characteristic 0
a Borel stable ideal is completely m-full. Since basic syzygies
can be obtained through the reduction process of a Grdbmer basis,
we have the fact that the Betti numbers of a homogeneous ideal
a do not exceed those of in(a), which is the ideal generated
by the initial monomials of a Grobner basis. When in(a) is
completely g—full, we can apply Theorem 6 to it recursively to
express the Betti numbers using the numerals Les Rgs eeey Lo

If a is m-primary, &4, ..., &  are defined and calculated

without referring to Grobner bases. This is stated in
Theorem 11. .

The basic idea of this paper grew out of many discussions
that I had with C.Huneke and W.Heinzer while I was in Purdue
University in 1987. I would like to express my thanks to them.

§ 1. Definitions, notation and some examples

Let (R,km, k) be a local ring; We use tﬁe words '"general
elements" of R in the sense of D.Rees, which is explained as
follows: Let m = (x4, Xoy oony xn); Let yi, Yo ...,>yn be
a set of indeterminateé and let z =‘y131 toyoxy F ol t ynxn.
Then z 1is called a general element of R. Strictly spéaking,
it is an element of R := R(yl, yz,’..., yn),‘which is the

polynomial ring R[yl, Yos +ees yn] " localized at
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mR[yl, Yos «vey yn], but, by abuse of language, we treat it as-

an eiement of R. For one thing it is easy to pass to R*
witﬁout affecting.the situation involved, and for ahother, in
most cases it is possible to find in R elements sufficiently
general in some sense needed. Sometimes it is necessary for us
to choose generators of m consisting of general eleménts. In
this case we introduce indeterminates Yij and let 2z, = ) Y13%;
and m = (zl, Zoy ey zn). It should be understood that we

either pass to R* or substitute y by suitable elements

ij
in R, if they exist, for the pafticular purpose. We note that

a general element is in m \ mz.

Recall that an ideal a of a local ring (R, m, k) is

called m-full if there exists an element 2z such that ma:z = a

(Such 2z may exist only in a faithfully flat extension of R.)
Note that ma:z=a for some =z implies. ma:z=a for a general
element z. m-Primary m-full ideals were treated in [10]. As
to non m-primary ideals, it should be.néted that if depth R/a > O
then a 'is m-full. This follows immediately from the general
inclusions a:z :)Qg:z D a. Also note that if a and b are
m-full then a A b is m-full. In fact m(a () b) C ma () ma.

It follows that m(a N b):z C (ma I mb):z = ma:z (] mb:z = a (] b.
Now we get m(a [} b):z = a )b, since the other inclusion is
obvious. So the intersections of m-primary m-full ideals with
‘ideals a such that depth R/a > 0 give us abundant examples

of non m-primary m-full ideals. Here is another example.
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EXAMPLE 1. Suppose that R = k[xl, Xgy ooy xn] is the
polynomial ring over a field k of characteristic O. Consider

the group of>automorphisms‘of R induced by the linear trans-

formations

{‘Xn — a;X; taXy, * ... +ax, a ¢ o,

X, — X,
i i 4

i < n.

In the matrix notation, this group corresponds to the following
subgroup in GL(n).

(1 0 0 0 .... O =)

01 0 0 .... 0 =*

1 ofs
oo o oo "

0O 0 O
0O 0 O ceees 0 =

L J
Then an ideal is m-full if it is stable under the action of

this group.

Proof. Call the group above G. It is easy to see that a G-
stable ideal is characterized by saying that (1) it is generated

- by monomials in x_, and (2) is closed under the Euler

derivations, xia/axn , i=1,2, ..., n-1. Here a monomial in

x, means an element of the form f'xne, where f' ¢ R':=

k[xl, Xoy +ee s xn—l]’ and e an‘integer. By (1) we assume

e.
a 1is generated by h, = hix_ L Ji=1,2, ..., m, hi e R'.

Then ma 1is generated by x.hi, i=1,2, ..., n,
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i=1,2, ..i., m. We want to show that ma:x_ = a. That
mg:xh:)vg is obvious. Assume f ¢ ma:x . Then xnf € ma.

Since ma 1is also G-stable, we may assme xnf (hence f) is a

monomial in X - Write
e.
= = ' 1 %

an - ): Aijxjhi Z Aijxjhixn .‘c-op“ov. oooooo ( )
where Aij-c R. We express each Aij as a polynomial in X,
with coefficients in R', expand the right hand side of (*),

. e,

and keeping in mind the fact xjhixn 1 " are all monomials

in X collect the terms whose xn—degree is the same as that
of xnf. Then it should be equal to xnf, as it is a monomial

in X, Thus we may assume all Aij in () are monomials in

x, - Now we divide the right hand side of (¥*) by x, » term

by term. Note that if x. # x_ and e, = 0, A.,. should be
J n L 1] e,-1
P . . 1 1
divisible by L Now notice that if ei > 0, then xjhixn
differs from xja/axnhi only by a non-zero constant multiple.

By (2) we conclude f ¢ a. .

DEFINITION 2. Let (R, m, k) be a local ring with

emb.dim R = n. We define the "completely m-full" ideals
recursivély as follows.

(a) If emb.dim R = 0 (i.e., R is a field), then the 0
ideal is completely m-full.

(b) 1If emb.dim R > O, then a is completely m-full
if am:z = a and a + zR/zR 1is completely m-full as an ideal
of R/zR, where z 1is a general element. (Since z ¢ m\mz

the definition makes sense by .induction on emb.dim R.)
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EXAMPLE 3. Let R be as in Example 1. Let B be the Borel
subgroup of GL(n). I.e.,

[ % X % X % W
O ¥ % R

0 O oo ofs ofs s
ry Ay PP, ry w

® 9 060 008 0 000000000

{0 0 0 +uvevva. O %

Let B act on R in the same way as in Example 1. Then any
Borel stable ideal is completely m-full. (This should be clear

in view of Example 1.)

We use yu, 1, & to denote, respectively, the minimal
number of generators, the type and the length. Let a be an
m-primary ideal of a local ring (R, m, k). Define ¢(a) =
2(R/a+zR) for a general elemenet z. (cf. [10].) Let M be
a finite ‘R-module,and let Bi be the Betti numbers of M, i.e.,
bi = dikaori(M, k). In this case we write b.1 = bi(M)‘ Note
~that if a is an ideal, then bi(g) = b,,4(R/a), and u(a) =
by(a) = b;(R/a). Note also that b,(a) = b,(R/a) 1is the
number of basic syzygies. If R is a regular 1bca1 ring of
dimension n, then <t(a) = b_(R/a).

Let 2z be a general element of R, and let ~ : R — R/zR

denote the natural surjection. Then for an ideal a of R
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the image E is the ideal a + zR/zR considered as an ideal

of R/zR. We have the following result. (For proof see [10]
Theorem 2.)

PROPOSITION 4. An m-primary ideal a is m-full if and only if
u(a) = ¢(ma) = ¢(a) + u(a). (The second equal holds generally.)

In this case t(a) = ¢(a).

§2. The syzygies of m-full ideals

PROPOSITION 5 (Huneke). Let (R, m, k) be a local ring
and a an m-full ideal. Let z be a general element of R,

and let © : R ——+ R = R/zR denote the natural map. Then

any syzygy of a 1lifts to a syzygy of a.

Proof. Write a = (fl’ Eoy weey £, 2 L4y oony 2f ), with

r
a,f, = 0. Then |
1 1 i=1

u(a) = r and u(a) = s. Suppose

I~

a.f. =
i iti

zh for some h ¢ R. Observe that h ¢ ma:z = a. So h =

g

J(zfj). This gives us the syzygy
j=r+1

oQ
H
n
]
+
e

Zi (ai- Zgi)fi + }:j(-zgj)(zfj ) = 0, as wanted. Q.E.D.
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Temporarily we will call a syzygy obtained this way
essential. Namely, an‘essential syéygy of a 1is a syzygy that
reducés to é non—tri?ial syzygy of a mod z. (We understand
that we fix'a general element z in the beginning.)

Obﬁiously there are at least bl(g)' such independent syzygies.
In the next paragraph we will find another kind of syzygies

which we call superficial.

First notice that ma:z=a implies a:m=a:z. In fact

a:m = (ma:z):m = (ma:m):z D a:z. Thus a:z = a:m, since

the other inclusion is obvious. Again assume ma:z = a
with 2z a general element and write

a=(fy, ooy £, 2f 4y -0t zfs) as in the proof of

Propdsition 5. Now suppose x 1is any element in m \ zR,

and j, 1is an integer such that r+l £ j, < s.

Since .a:m = a:z, fjo ¢ asm. Hence xfjo € a. So we may write
r s

xfjo = izlaifi + j£r+1 aj(zfj).

Multiply both sides by =z. Then x(zfj ) =

):(za.l)fi + ] (zaj)(zfj). This gives us the following syzygy:

[-Zal '_zaz ) "Zar -Zar+1 s e 00 o0

sesssssse =2

x-zajo --zaj0+1 b -zas].

Suppose that (xl, Xgy eevy X 49 z) is a minimal generating

ajo_l

set of m. For each pair (xi, zfj), 1<ign-1,
r+l { j £ s, we may construct a sygygy in the above described

fashion. We will call them superficial syzygies. Obviously‘
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there are (pu(m) - 15 x (s-1) Suéh syzygies. They are;

togéthef’with essential syzygies, ail indépendent, since théy
arezindependént modulo z. We claim that we have obtained‘all
basic syzygiéé of g, providéd that -z 1is a non-zero-divisor.

In fact we proVe

'THEOREM 6. Let (R, m, k) be a local ring with débth R > 0.
Suppose‘that a 1is an ideal of R such that mé:z=g for
a general element z. Let r = p(a) and s = u(é). Then
b,(a) = b, (@) + (u(m)-1)x(s-r). " (Recall that | bi of an ideal

is the minimal number of basic syzygies.)

Proof. Since z is a'genéral element and since ‘depth R >0,
z is a non-zero-divisor. Let VM be‘the submodule of RS
généréted by all the syngies, bothvessential and superficial,
described above. Assume, contrary to the assertion,

bl(g) > bl(g) + (u(m)-1)x(s-r). This means that there is a‘
basic syzygy of a which is not in M. Say A = [a; .... a.l
is such a syzygy. Then this w111 be a basic syzygy even after
any‘element of M is addéd to it. Let M Dbe the matrix
consisting of the generators of M. Then Q mod z '1doks like

this.

9]
< -

SN
7~
]
N’

LA

Sad e o
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Wi

- )

where 35YZ(a) 1is a syzygy matrix of a (in the obvious sense),
and each block /// is the transpose of
[?1 ;2 cie ;n-i]' Now by adding elements of M to A,

we may assume that all a; are in zR for 1

v

r+l, since

every one of them is in (xl', Xg N xn-l) mod z. Then
A 1is an essential syzygy. But all essential syzygies are
already in M mod z. Thus we conclude that A+ M contains

an element whose entries are all multiples of 2z. This is a

contradiction since 2z is a non-zero-divisor and any element

~in A + M is basic. Q.E.D.

Remark. (i) Note that s-r = 0 if depth R/a > O.

(ii) Suppose that a is m-primary. Then s-r

I

o(a) |

by Proposition 4.

10
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COROLLARY 7. Let (R, m, k) be a local ring with depth R > 0.
Suppose that a is an m-full ideal, and a is the reduction

by a general element. Put r = yu(a) and s = p(a). Then

a @R/zR £ 3 ® (R/m)(S7T),

Proof. Let M be a syzygy matrix of a. Then we have

s' [ s
the exact sequence (R/zR) —— (R/2R)” —— a/za — O.
Since vE = M® R/zR  is isomorphic to the matrix in the proof

of Theorem 6, we get the isomorphism as asserted.

COROLLARY 8. Let (R, m, k) a regular local ring with n =
p(m). Let a be an m-full ideal and a the reduction by a

general element and r = p(a), s = u(a) as above. Then

n-1 ‘
b.(R/a) = b.(R/a) + [ ] x (s-r).
Ui = i .
i-1
Proof. Put bi = bi(R/g). Then we have a minimal free
resolution:
b b b b
O—+Rn-———+Rn_1————>....—-—g——+R2 -—-——le——-—ra.

Since depth(R/a) 2 1 and since de(R/zR) = 1, we get a minimal
free resolution of a/za by applying the tensor product

® R/zR to it. "Since a minimal free resolution of

ﬁ/(;l’ ;2’ ceey §6_1) over R is given by the exteria algebra

on the generators of m, the assertion follows immediately.

11
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COROLLARY 9. Let (R, m, k) be a regular local ring of
dimension n. Let a be a completely m-full ideal. Let

Zyy eee s 24 be a set of generators of m consisting of

general elements. (cf. §1.) Set

r(0) - g,
R(i) = R/(z z z )R i=1 n
n’ “n-1? °°°? “p-i+l ’ y ey ’
b, = w1y o yartd), i=1, ..., n.
. (R/a) n-1 n-2 1 ' 0
Then b.(R/a) = L, + , [P + L4 T
1= i-1] 1 i-1] 2 i-1] 1 |4-
P p! p .
Here = ———— for 0 qfpP , and = 0
q (p-q)!q! q

otherwise.

Proof. Immediate by induction.

Remark. In the corollary above, if a is m-primary, then

=

gi = 2(R/a + (zn, Zho1r o Zn-i+1)>' (See Proposition 4.)

DEFINITION 10. Let (R, m, k) be a regular local ring.

For an m-primary ideal a , we define B,(R/a) to be the
right hand side of Corollary 9, with By =

L(R/a + (zn, ;.., zn-i+1))‘ In particular the same definition

is used for m-primary homogeneous ideals in a polynomial ring.

THEOREM 11. Let R be a polynomial ring over a field of

12
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characteristic 0. Let a be a homogeneous m-primary ideal.

Then b,(R/a) ¢ B;(R/a) for all i.

Proof. We need the theory of Grobner bases. The réader
unfamiliar with it is referred to [3], [4] and [8]. We
confine ‘ourselves with the outline of proof:‘ First fix a set
of generic variables Zys Zgy ey Zo and the graduétéd reverse
lexicographic order on the set of monomials with 7

2> zé > e >,zn. For f ¢ R we denote by in(f) ‘the

initial monomiai‘of f, and for an ideal a we denote by in(a)
the ideal generatéd by all the monomials in(f), f e a. We éay
that 81» 89 +++» 8 € a are a Grobner basis of a if |
in(gl) s eeey in(gs) generate in(a). It is known that in(a)
is Borel stable, hence completely m-full. (Seé for exémple

[2] Proposition 1.) It is easy to see that if (gl, ceey 8g)

is a Grobner basis of a then (gl, cee, 8> zn) is a Grobnmer
basis of a + zR. (Hére we need to useAthe reverée lexico-
graphic order. See [1] Lemma 2.2.) Hence Bi(R/g) =
Bi(R/in(g)). "Now by the general theory of Grabner‘bases, a

set of basic syzygis of a is obtained thréugh the réduction‘
process of syzygieS'(includihg higher syzygies} of initial .
monomials of its Gernerfbaéis. iheréfore ‘bi does ﬁof exéeed

Bi for any i. For details see [8] Lemma 716 on §.157.

13
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