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MULTIPLICITY OF FILTERED RINGS”
WY HFR 1H BEZF (Masataka TOMARI)

§1 Introduction and results.

(1.1) Let (V,p) be a germ of a projective variety at a closed point p. It is a
fundamental problem to study the ring theoretic properties of the local ring Oy, by
means of resolution of singularities ; 9 :(V, E) — (V,p). In the case diim V = 2, Artin’s
fundamental cycle for the resolution % is important and gives inany information of
singularities. Let Zg be Artin’s fundamental cycle for 9. For example the degree (Zg)?

is independent of choice of the resolution ¥ and we have the relation
—(Zp)? < the multiplicity of(V, p)

( Ph. Wagreich cf. [Wagreich] ). Unfortunately no higher dimensional analogue of this
object are studied . In this note we will study the multipﬁcity of singularities by filtered
blowing-ups. We prove an inequality (1.6) which gives a lower bound of multiplicity by
the data of tangent cone of the filtration.

An application of our results to a purely elliptic singularity of special type ([IW][Y][T1]
) will be given in another note for the talk of “COMMUTATIVE RING THEORY ;
JAPAN NO.11”. ‘

(1.2) Throughout this note we will fix the following situation. Our singularity
(V,p) or local ring (A, m) = (O(v,), m) is always assumed as the material coming from
some scheme over a field k. Further we will assume (A4, m) is analytically unramified

after (1.6). In particular,
(A,m) : d—dimensional Noether local ring over a field k,
F = {F*}1>0 : a filtration of ideals as follows ;

(F°=ADF'=m, F* > F**1 Fk Fi c F*+i

(*) This is a preliminary version. ‘q \}’g o 1{;{ /lb (2 Yhha ;%;Xﬂ“%“Multiplicity of normal
ded ri [ | S 1 TR .
graded rings &Y itk e Il £ 9 ;;7\"’& nE LT,
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R = @50 F'.T' C A[T] is a finitely generated A—algebra, where T is an indeter-

minate.
There is an integer N > 0 with (FY)™ = FN™ for m > 0.
FN : m—primary )
By these assumption, G = @;>1 F*/F'*! is the homogeneous maximal ideal of G.

Problem (1.2.1).  Study the multiplicity e(m, A) of (4, m) from the associated
graded ring grp A = G = @0 F*/F**! and compare the integers e(m, A) and e(G, G).

( We hope that these are very near when G is a “good ” ring. )

First we shall prove the following .

FACT (1.3). Let the situation be as above. Then
(A/m'Y) <UG/(G4)Y) for 12> 0.

In particular we obtain the relations e(m,A) < e(G4,G) and embdim A <
embdim G .

Proof. The induced filtration on A /mi*1 by F = {F*} is given as follows:

0 mit — 4 — A/m*1 50
Uil ol Ul

0 m*INF* SF* & P*(A/m!tY) -0

Hence we obtain grp(A/m!'*l) = grp(A)/grr(m!*?). Here we see

Fh ﬂ‘ml-!—l + Fh+1

NS = ekZO Fk+1 )
41 - Zm1+__,+m1+1:k,m‘,21 Fma, fmit: 4 phtl
(G+)7" =111 T .
Clearly we have
> F™. Bt C PR Omit,

mi+t...+mip1=km;>1
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Hence

(G4)*! C gre(m'*).

Therefore

I(A/m'*?) < Ugrp(A/m'™*1)) = UG/grr(m™)) SUG/(G4)™).

Ezample(1.4). We shall introduce a filtration F on the regular local ring A =
k[[z,v, z]] with m = (2,y,2z)A by means of the associated order function v as in the
following ( cf. [Rees] ) :

vie) =v(y) =v(z) =1, and v(2? +y? +2?) = 3(> 2) with F* = {a € 4 |
() > k} C A. |
We can easily check that G = grp(4) = k[z,y,z,w]/2? + y? + 2% , e(m,4) = 1 and
e(G4+,G)=2. '

In fact we have

F°=4
Fl=m
F2=m2

PP =m® 4 (2 + 4% +2%)A
Fr=m*+(2*+y*+2%)m
FS = m® + (22 + 9 + 28)m?
F& =m® 4 (22 + 9% + 27)m® + (22 +y¥ + 2?)?A

hence z? + y? + 22 € F® — F* can not be represented by 2,3,z € F! — F? in the
ring G. To compute G as in the assertion, remark that if we regard A in the form
A k[[z,y,z,w]/(w—22 —y? —2?) , then F is the induced filtration from the filtration
on k[[z,y,z,w]] by the degree of monomials as F* = {z%y*z°w?

a+b+c+3d > k}A.

€ k[z,y,z,'w] I

Ezample(1.5). We introduce the filtration F on the local ring
A (= Rllbye, 28 + (5 + 7 + ™)) = klla b9, 2]/ (a4 47 + 27+ e, b — ac) with

m = (a,b,c,y,2)A by the order function v as :

3
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via) =v(y® +27+ ) =23, v(b) =12, v(c) =1 w(y) =T and v(2) =3 .
Now G = grp(A) = kla,b, ¢, v, 2] /(y® + 27+ 2%1,b —ac) , e(m, A) = 2 and (G, G) = 6.

Further one can see that G is a normal domain .

These examples say that the integers e(m, A) and (G, G) are different ,in general,
even if we assume that G is a normal Gorenstein domain. The next is the main result

of this note which gives a lower bound of e(m, 4) from the data of G.

THEOREM (1.6).  Let the situation be as in (1.2). Further we assume that A is analyti-
cally unramified and that k isan infinite field. Let a system of elements 2y, ... ,2, € G4
be a minimal homogeneous generator system of G with degz, < degz, < ... < dege,
with 8 >d=dim A =dim G . Then we have the following

(1)

(fI degz;) J%1_1311(1 — A)¢P(G, )

<) e(m, A)
< e(G+,G) <(ap) (dega, ) lim (1 - 2)*P(G, ).

where P(G,)) = 3,50 (Gx)A* € Z[[A]].

(2) If the equality holds in (i), then e(m,A) = e(G4,G) and there is a parameter
system vy, ... ,yq of A whose initial form gives a homogeneous parameter system
in(y1), ... ,in(yq) of G such that degin(y;) = degz; fori =1, ... ,d.

(3) I the equality holds in (ii) and G is normal with G.C.D.(degX,, ... ,dege,) = 1,
then e(m, A) = e(G4+,G) and G is a homogeneous ring. That is dege; = 1 holds for

t=1, ...,s.

In general we have the following.

Remark (1.7) (1) Let R = R(E, D) be a normal d-dimensional graded ring with
Demazure’s description . ‘

Dt = lim (1 - A)2P(R, )
where P(R,A) = Y550 U Ri)A* € Z[[A]], with d = dim R.
(2) For a graded complete intersection

R=kl[ey, ..., 2a4s)/(f1; -y Fu)y

4
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where fi, ..., f, is a homogeneous regular sequence of k[2;, ..., z44,], we have

(1 — Adestr). .. (1 — Adests)

P(R’ A) = (1 _ Adegcl)_ .. _(1 — Adegax.u.,)’

Hence

(deghr). .. (degf)
(degz1). ... .(degzat,)’

%11!11(1 - ’\)dP(Rs A) =

(1.8) By using (1.7), we will observe (1.4) and (1.5).
(1.8.1) For G of (1.4), we have degz = degy = degz = 1 and degw = 3. Hence

= 2(<1=e(m, 4)).

- _ 1) =1.1.1.
1.1.1.§1_rpl(1 A)*P(G, ) 1'”,1.1.1.3 3

(1.8.2) For G of (1.5), we have dega = 23, degb = 12, degc = 1, degy = 7 and degz = 3.

Hence

21.24

42 X
—_— = (<2= .
1371223 ~ 73S 2=e(m4))

1.3.7. lim (1 - A)IP(G,A) =1.3.7.

CoROLLARY (1.9). Let the situation be as in (1.6).
(1) If the condition '

d

the round up of the number (H dega:,-) J]\Hn1(1 —A)4P(G, ) = e(Gy,G)
i=1

holds, then the equality e(m, A) = e(G4, G) holds.

(2) IfGisa hypersurface with the isolated singularity at G, then e(m, A) = e(G+, G).

Proof . (1) is obvious from (1) of Theorem (1.6). (2) Let us represent G as G
= kl[e1, ... ,2411]/f with degf = h and degX; = q;. Let us represent f by a linear

combination of monomials of the form &M = [[i_, 2 with m; > 0 as

f= Z ape™ with apyr €k
a+1

We define the Newton support of f by

d+1
Support(f) ={M € (Z_>_ 0) | anr # 0}

5 .
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The condition }.;_; gim; = h implies — < 3} | m; < — . Hence we have
- qd+1 1

< multiplicity of f = minimum of z:i;l m; for

g1 ... .gzlimy_1(1=A)4P(G,A) =

dd+1
M ¢ Support(f) < L3 = g3. ... .qa41 D% 1. Since {f = 0} has only isolated singularity
4
at 0 , a monomial of form 2]*z;(;) with j(¢) € {1, ... ,d+ 1} is contained in Support(f)
for each 1 ( K. Saito [S1], V.I. Arnold, P. Orlik- Ph. Wagreich, and Fletcher[Fletcher]

[h/gqa+1]

at1 TF@j(a41) € Support(f). Hence the multiplicity of f equals the

). In particular

round up of the rational number
da+1

Ezample (1.10). Let A be ( “a normal graded complete intersection ” ) as
follows : A = k[[z,y, z,w, u]]/(f1, f) with the filtration F on A naturally induced as
dege = degy = degz = degw = 1, degu = 2 and degf; = degf; = 3. We have

G = kl[e,y,z,w,u]/(f1, f2) with dege = degy = degz = degw = 1 , degu = 2 and
degfi = degfz = 3. By (1.6) we obtain : ‘

5 < e(m, 4) < (G4, G) < 36.

Since (A4, m) is not a tangential complete intersection with respect to the maximal-ideal-
adic filtration on A, the lower bound is the best. But the upper bound of this implication

is very bad.

In the rest of this note we give a outline of proof of Theorem (1.6) and state some
generalities on the rational number (Hle deg:c,-) limy_,1(1—A)¢P(G, ) for the normal

graded ring R in terms of Demazure’s description of R.

$2 The openness of reduction property.
The purpose of this section is to prove (2.7) which we will use in §4.

(2.1) Let (V,p) be a singularity over'a field k and (Oy,,m) be the associated
local ring. We assume that p is a closed point of a projective variety V over the field k.
Let I be an m—primary ideal of Oy,,. Let 7 : (V, A) — (V, P) bea projective morphism
such that 7 .0{, is a locally principal Oy ~module. We will represent I .Oy as

I.Of, = 0{,(—1)(.[, 77))

by a Cartier divisor on V.
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THEOREM (2.2). Let the situation below as above. Asumme d = dim Oy. Then
e(I,0v,) = (-1)¢+1D(I, =)°.

Proof. Let a projective variety V be a compactification of V and 4 : V; — V be

the blowing-up of V with center I. There is a natural morphism 7 : V — V; which
satisfies the relation 7 = ¢.7. We have I* = 4,(I*Oy) and R4, (I*Oy) =0 (i > 1
) for arbitrary large integer k ( EGA III). We have I(I*/I**1) = x(V,I*/I**1). By

Leray’s spectral sequence
B3 = H7(V, R%u(I*0,)) = H*(V:,1*Op,),

we have

3 (—1)*x(V, R*4.(I*Oy,)) = x(V1, I*Oy,)-

920
Hence for k >> 0, we obtain
U(I*/1*Y) = x(V, I*Og) — x(V, I**'Oy)
=x(V1,I*0p,) — x(V1,I**'0y,).
Let P € Q[t] be the Hilbert-Samuel polynomial defined as P(k) = x(V1,I*Oy, /T**10y,)
for k >> O[Kl]. We have degree P = d — 1. Let us set of polynomials A(™)P for
1<m<das; AVP(k) = P(k)—P(k—-1),. .., AP = A(A™=1) P), inductively.
Here A(4-1) P is the constant function e(I, Oy,). Further we have
AN P(k)
= x(V1,1*0y,) = x(V1,I**1Oy,) — x(V1, I* 71 Oy,) + x(V1, I*Oy,)
= —x(V1, I**'0y,) + 2.x(V1,I*Oy,) — x(V1, I* 1 Oy,).

An by similar calculations we obtain

d
ACGVP(R) = 3 (-1, P 0p,)
i=0

== degov(—D(I,da))(ObarV:)
= —(Ov,(=D(1,%))*.0v,)v, ( the intersection symbol [KI] )
= (-1)**'D(1,4)%

Since 7 is birational, (-1)**1D(I,4)? = (-1)*** D(I,x)%.

Hence e(I,0v,) = (—1)%t1D(I,x)%. Q.E.D.

7
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We will apply (2.2) to the following.

Let J C I be m—primary ideals of Oy,. Recall J is a reduction of I if there is an
integer » > 0 such that I"J = I"*! ( Northcott-Rees [NR] ).

TueorEM (2.3) ( D. Rees [HIO|[REES], SEE ALSO J. LIPMAN [LIPMAN] ). Assume

that (A, m) is analytically unramified. Then J is a reduction of I if and only if the
equality e(J,Ovp) = e(I,0v,) holds.

COROLLARY (2.4). For m—primary ideals J C I , the following three conditions are
equivalent each other. |

(1) The equality e(J, Ov,,) = e(I,0v,) holds.

(2) J is a reduction of I. 7
(3) There exists a birational morphism % : V — V such that the relation J.Oy = 1.0y
holds.

Proof. 'The equivalence of (1) and (2) are due to (2.3).Assume the condition (3)
holds. There exists a birational morphism 7: V' — V such that T .‘OV: = J.Oy: 1s local
principal. By (2.2) we have e(J,Oy,;) = e¢(I,0v,;,) . Next we assume there is an integer
# > 0 such that I"J = I"*t!. Let ¢ : V! — V be a birational morphism such that 1.0y
is local principal. Then we have J.I”.Oy. = I"*1.0y. and have J.Oy.rl = I.0y:.

By this we can see the reduction property of ideals are open condition as in the

following sense.

DEFINITION (2.5). Let J be an ideal df0v,p. A deformation ofideal J 9: J - Y 30
over a scheme Y with a reference point o is an ideal J of Ovxy at p x Y such that
o~ (o) =J.

PropoSITION (2.6). Let J C I be m—primary ideals of Oy, and ¢ : J—>Y>o0bea
deformation of ideal of J . Suppose J is a reduction of I. Then there is a Zariski open

neighborhood U of o inY where jy = 07 (y) is a reduction of I for any point y of U.

Proof. There is an integer » > 0 such that I'J = I'*' and ¢ : V' — V be a
birational morphism such that I.Oy: is local principal and V' is normal. Then we have
J.Oy: = I.Oy:. Consider the morphism ¢ : V! xY — V x Y with I.Ovixy D J. Here

I.Oy:yy is defined as an invertible Oy xy in a trivial extension of I.0y:. Now we have

8
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the relation JOyixy + ¢ Y (m,) .0y xy = I.Oyxy. Hence 1.0y iy and J.Ovixy are
equal at each generic points of V' x Y which contains a point of $7%(0) = V' x 0. In
particular the reflexive hull (j.OV:Xy)” equals I.0y/xy. Let S C V' x Y be the
non-reflexive locus of J.Oy:xy. Then S does not intersects V' x o and ¢(S) does not
contain the point 0. By Corollary (2.4) at any point y € Y -—‘cp(S ), J y 1s a reduction of
I. QE.D. ‘

COROLLARY (2.7). Let I be an m—primary ideal of Oy, generated as I = (f1, ..., ).
Suppose that Oy, contains a field k and that there is a reduction J of I written as

J=(%1, - yYm)Ov,, where

3
y,-zZa,-,jz,g with a,',jEk 1<i<m, 1<53<s.
i=1 .

Then there is a Zariski open neighborhood U of (a;;) in k*™ such that J, =
(21, -, 2m)Ov,p is a reduction of I for z; = 3. _, b; j=;, with (b; ;) € U

Proof .  Define the deformation of J by J = Ilocpem Jo over k™. The the
assertion follows from Proposition 3. Q.E.D.
We state the following which is a higher dimensional analogue of a theorem of

Laufer (cf. [L1] ):

THEOREM (2.8). Let (W, w) be a normal d-dimensional singularity and
(21, - ,24) a parametér system of Ow,,. Let 9 : X — W be a projective modification

with normal X and E = ¢~ }(w) . We write divx(2;0x) by
divx(2;0x) = D(2;0w,¢) + W,y 1=1,..,d,

where W,,  is the strict transform of {2; = 0} and D(2;0w, ) is the part of E. We

assume that the divisor W, 4 is Q—Cartier fori =1, ... ,d.

W,y N ... N Wy,y is empty, we have the relation
6((21, seey zd), OW,w) = v(_-]-)d+1-D(210W1 ¢) D(deW: ¢)

We' omit the proof.



173

- §3 On Demazure’s description of normal graded rings.

(3.1) The purpose of this section is to collect the generalities of Demagzure’s de-

scription R(E, D) of the normal graded ring R in the connection with the number

(fI degz,-) lim (1 — A)EP(G, ).

As there are many good references on this squects [D],[W &% 1],[W 2], we will review
a computation method for Demazure’s divisor D by a tentative way as follows ( cf.
[T1] ): Let R = @®r>0Rs be a normal d-dimensional graded ring with Ry = k, R,
the homogeneoué maximal ideal with a generator éo;\sisting in homogeneous elements
Z1, ., E, as R, = (21, ... ,2,)R with 2; € Rg; for i = 1, ... ,s. We assume the
condition G.C.D.(q1, ...,q,) = 1. There are integers uy, ..., u, such that >/, u;q; = 1.
We choose a homogeneous element T of the quotient field of R as T’ = Hiil(z,-)'"'i . We

Tepresent

ZngnQEﬂp(R)Q(aiQ), 1= ,1,...,5.

Here H P(R) is the set of homogeneous prime ideals of height 1. By Demazure’s funda-

mental works we can represent D as follows:

THEOREM (3.2)(DEMAZURE [D]). In the above situation, we define the divisor D as-

sociated to T as |
D= Z ( ) u&; V(Q)) € Div(E) ® Q
QEHP(R) |

where V(Q) is the integral Weil divisor on E = Proj(R) defined by Q and N(Q) is the
the integer defined as ;

N(Q)=G.CD{n€Z|n>0and (R/Q), # 0} (cf. (5.9.1) of [TWI] ).

Then we obtain the equality

R = &450H°(E,0p(kD)).T* in k(E)[T).

Ezample (3.3). Let R is a normal d—dimensional ( d > 2 ) graded ring of the
Brieskorn type as follows : R = Cley;..;,zq+1]/{(21)%! + ... + (2a41)%4+1} where

10
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ai,...,ag41 are integers > 2. Introduce the weight of each monomials of C[zy, ..., 2441] as

the degree of #; = L.C.M.(ay, ...,a4+1)/a;. We simply denoteit asgq; ,fori =1, ... ,d+1.

Then the Demazure divisor D associated to T 1s written as

d+1
u; ;s
D= Z X .D; € Div(E)® Q
i=1 G-C--D-(q1, veny i, -.-,Q«l+1)

where D; is the integral Weil divisor on E = Proj(R) defined by the canonical morphism
D; = Proj(R/z;R) — Proj(R) = E for i = 1, ...,d + 1 ( see (1.9) of [T1] for a proof ).

LEMMA (3.4). Let R = R(E,D) be a normal d-dimensional graded ring with De-
mazure’s description . Let us consider the singularity of Spec(R) at V(R,). Let

v:C=C(E,D)= SpecE(kaoOE(kD)) - SPeC(R)' '

be the partial resolution by the filtered blowing-up of Spec(R) with respect to the fil-
tration induced by grading of Spec(R). Let 1, ... ,z4 € R be a parameter system at

Rg, . Suppose 21, ...,z, with » < d be homogeneous elements. Then we have
dmWy, N ... "W,y <d-—r-1 in C(E,D).

Hence in the case r =d , Wo, 41 ... "W,y is empty . In this case e((z1, ... ,24),Rr,)
is computed by Theorem (2.8). ' ‘

By (2.8) and (3.4) we obtain the following.

CoroLLARY (3.5). Let R = R(E,D) be a normal d-dimensional graded ring with

Demaszure’s description and 24, ... ,24 € R be a homogeneous parameter system of R .

e((z1, .., 2a), R) = (—1)‘1’+1 (H deg:c,-) E°,

i=1

'Here E* is the intersection multiplicity in C = C(E, D) .

LeMMA (3.6). Let R = R(E, D) be a normal d-dimensional graded ring with De-

- masgure’s description and

1/: C = C(E, D) = Spece(®r>00g(kD)) — Spec(R)

11



be the filtered blowing-up of Spec(R) with respect to the filtration induced by grading
of Spec(R).

Then we have the relation

Dd——l — (—1)d+1Ed.

By using (1.7) we obtain the following.

CoROLLARY (3.7). In the situation (3.6), assume z1, ... , 24 € R be a homogeneous

parameter system.

d
e((z1, - 12a), R) = (H degz,-) D41

i=1

= (I:‘[ degz,-) }\1&(1 - )\)dP(R,A)-

§4 Proof of Theorem (1.6).

(4.1) The inequality (i) of (1). Let a system of elements z1; ... , 2, of the maximal
ideal m of A whose initial forms with respect to the filtration F give the minimal
homogeneous generator of G as follows ; z; € F% — F%*! and the initial forms inp(2;)
= Z; € G, satisfies the relations G = (24, ... ,%,)G and ¢; < ... ,< g,. We can easily
see the relations m = F™ + (24, ...,2,)A for any positive integer n. There is an integer

n such that F* C m?. Hence m = (21, ...,2,) by NAK.

There is a system of parameter ¥;, ... ,y4 which is a minimal reduction of m and

given as linear combination of 24, ..., 2, as follows :

Yi = Zai,jzj, where a;; € k.
i=1 »
with 1 <i<d, 1< j <s. By the openness of reduction property ( Corollary (2.7) ),
we may assume A = (a;,;)1 < ij<d is regular. So we can choose y; in the following

form:

3
Y = @ + E a;jzj, Wwhere a;; €k
j=d+1

for 1 < i< d from the beginning .

12
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Let L be a positive integer divided by L.C.M .(degz1, ... ,degzs). By Leck’s lemma

L L L
e((y, .. ,yd“) A) = e .q—d.e((yl, ey Yd), 4).

z
Since y* € FL for 1 < i < d, we have
yz ?

L L
e(FE,A) < = ....—.e((y1, - »¥a), A).
a 44

There is an integer L as above and satisfies the relation F™L = (FL )m for any positive
integer m, that is (@0 F* .T”)(L) = A[FL.TT] . To finish the proof, it is sufficient to
show the following: |

LEMMA (4.2). Let L be a positive integer such that the relation F™L' = (FL)m holds

for any positive integer m. Then

e(FL, 4) = Ld.Jl\iml(l - A)¢P(G,)).

Proof. By the assumption , @kzoF"L/F("“LI)L is generated by FL/F?L . Hence
we obtain the equality ( see §13 and §14 of [Matsumura) ):

e(FL,A) = lim (1~ A)2P(@5oF [ FUFDL 1)),

Let us introduce the notation as G = @kZOF"L/F"L+1 and

GEh = G}k>‘oFkL+l/F"L+l+1 forl =0, ..., L—1. Since there is an integer M such that
FL F® = FL+? holds for any b > M, G(L ") is a finite GX)—module for I = 0, - 1.
As graded GI)—modules, we calculate the Poincare series ; P(G(I), ) € Z[[y]] for
1=0, ..,L—1. For each 4, lim, (1 — )2 P(G%Y, ) is a finite number. We have the

relations

L-1

(1-p)iP(G,p) =D _(1—p)*P(GED, ub). 4
=0
d L,l 1- d
- Z(l L) G( ) L) (( l:))d

b 3o B )

13
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Hence
L-1
hm(l — n)*P(G,p) = hm(l — plyd z P(G*E l),ﬂL)
1=0
L-1
= lim(1 - PPy G, p).— Ld
C1=0
1
= Lim(1 - p)*P(® F*/FO+O%, ) 2
p—1 20 L
. 1 -
"—:_ C(FL,A)EZ.

(4.3) Proof of (2). Let y1, ..., ¥4 be a parameter system of A as in the arguments
of (4.1). By the assumption we have the equality

Al - 95), 4) = e(F", 4).

z
Hence (y*, ...,y d") is a reductlon of FL by a Theorem of Rees. There is an integer

r > 0 such that
L
(FL)H'1 = (FL)r (v, - ,yd‘) in A.

Let 9 : X = Proj(@r»0F*.T*) — Spec(A) be the filtered blowing-up of Spec(A) by F.
We have
(FL)’-H Ox = (FL)’ (y;;— ,yd" )Ox in Ox.

Here REOx = Ox(L) is an invertible Ox — module sheaf, we obtain the relation
L
FrOx = 0x(L) = (y w1Y4°)0x.

We represent the strict transform‘ of the scheme Spec(A/y;) by ¥ as W,, 4 for i =
L

1, ...,d. Since (y;*, ... ,yd"' )Ox is locally free , Wy, 4 N ... N Wy, N E is empty.

Here ‘ '

Wy, N E= Proj(G/In(y;)G),

where I n(y;) is the initial homogeneous element of y;. Therefore In(yy), ... ,In(yq) is

a parameter system of G.

(4.4) Proof of the inequality (1) of (1). There is an integer L satisfies the relation
Glmz = (G|z)™, that is (Gh)(L) = G[G|z] - Now we have e(@|,G) = L¢.limy (1 —

14
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A)EP(G, ) by‘(4.2). We can easily see G|, C (G4)Y. Hence

L%(G+,G) = e((G+)*, G) <e(Glo,1,G) = e((Glr)*) = 4e(Glz, G)
=qt.I% lim (1 - A)P(G,A)

Therefore (G, G) < ¢f.limy_1(1 — A)¢P(G, A).

(4.5)Proof of (3) By assumption (G|z) is a reduction of GX. As same as in the
arguments of (1) we consider the filtered blowing up ¥ of Spec(G). By the assumption
G is described by Demazure’s method as G = R(F, D). As in §3, we will represent 4 as

" $:C = C(E, D) = Specg(®>005(kD)) — Spec(R).

We obtain the relation

RYO¢ = (R|1)" O¢ = O¢(—q,LE) on C.

Since 7 is not contained in R|z4,+1, we have the relation RXO¢ = O¢(—Lg, E). Hence

q1 — gs.
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