The Fekete-Szegö problem for strongly close-to-convex functions.

D.K.THOMAS (ウェールズ大学)

Introduction

Denote by S the class of normalized analytic univalent functions f defined for $z \in D = \{z : |z| < 1\}$ by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1)

A classical theorem of Fekete and Szegö [2] states that for $f \in S$ given by (1),

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu, & \text{if } \mu \le 0\\ 1 + 2e^{-2\mu/(1-\mu)}, & \text{if } 0 \le \mu < 1\\ 4 - 3\mu, & \text{if } \mu \ge 1. \end{cases}$$

This inequality is sharp in the sense that for each μ there exists a function in S such that equality holds. Recently Pfluger [8] has considered the problem when μ is complex. In the case of C, S^* and K, the subclasses of convex, starlike and close-to-convex functions respectively, the above inequalities can be improved [5,6]. In particular for $f \in K$ and given by (1), Keogh and Merkes [5] showed that

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu, & \text{if } \mu \le 1/3, \\ 1/3 + 4/9\mu, & \text{if } 1/3 \le \mu \le 2/3, \\ 1, & \text{if } 2/3 \le \mu \le 1, \\ 4\mu - 3, & \text{if } \mu \ge 1. \end{cases}$$

Again, for each μ , there is a function in K such that equality holds. In this paper we extend this result to the class $K(\beta)$ of strongly close-to-convex functions of order β in the sense of Pommerenke [9]. Thus

 $f \in K(\beta)$ if, and only if, f, given by (1), is analytic in D and is such that there exists $g \in S^*$ satisfying

$$\left| \arg \frac{zf'(z)}{g(z)} \right| \le \frac{\pi\beta}{2},$$
 (2)

for $z \in D$ and $\beta \geq 0$. Clearly K(0) = C, K(1) = K and when $0 \leq \beta \leq 1$, $K(\beta)$ is a subset of K and hence contains only univalent functions. However in [4], Goodman showed that $K(\beta)$ can contain functions with unbounded valence for $\beta > 1$.

Recently, Koepf [7] has considered the Fekete-Szegö problem for $K(\beta)$ and obtained sharp results for some particular values of μ , all of which, with the exception of the case $\mu = 1$ and $\beta \geq 1$, are contained in the following result.

RESULTS

THEOREM. Let $f \in K(\beta)$ and be given by (1), then for $0 \le \beta \le 1$,

$$|a_{3} - \mu a_{2}^{2}| \leq 1 - \mu + \frac{\beta(2 - 3\mu)(\beta + 2)}{3}, \quad \text{if } \mu \leq \frac{2\beta}{3(\beta + 1)},$$

$$\leq 1 - \mu + \frac{2\beta}{3} + \frac{\beta(2 - 3\mu)^{2}}{3[2 - \beta(2 - 3\mu)]}, \quad \text{if } \frac{2\beta}{3(\beta + 1)} \leq \mu \leq \frac{2}{3},$$

$$\leq \frac{2\beta + 1}{3}, \quad \text{if } \frac{2}{3} \leq \mu \leq \frac{2(\beta + 2)}{3(\beta + 1)},$$

$$\leq \mu - 1 + \frac{\beta(3\mu - 2)(\beta + 2)}{3}, \quad \text{if } \mu \geq \frac{2(\beta + 2)}{3(\beta + 1)},$$

and for $\beta > 1$, the first two inequalities hold. For each μ , there is a function in $K(\beta)$ such that equality holds.

We shall require the following:

LEMMA 1 ([10], p. 166). Let $h \in P$, i.e., let h be analytic in D and satisfy $\operatorname{Re} h(z) > 0$ for $z \in D$, with $h(z) = 1 + c_1 z + c_2 z^2 + ...$, then

$$\left| c_2 - \frac{c_1^2}{2} \right| \le 2 - \frac{|c_1^2|}{2}.$$

LEMMA 2 ([6], Lemma 3). Let $g \in S^*$ with $g(z) = z + b_2 z^2 + b_3 z^3 + ...,$ then for μ real,

$$|b_3 - \mu b_2^2| \le \max\{1, |3 - 4\mu|\}.$$

We note that Lemma 2 above can easily be extended to the wider class $S^*(\alpha)$ of strongly starlike functions of order $\alpha \geq 0$, i.e., g analytic and normalized in D and satisfying

$$\left|\arg \frac{zg'(z)}{g(z)}\right| \le \frac{\alpha\pi}{2},$$

see e.g. [1]. In this case, one obtains the sharp inequality

$$|b_3 - \mu b_2^2| \le \max\{\alpha, \alpha^2 |3 - 4\mu|\},\,$$

for μ real.

PROOF OF THEOREM: It follows from (2) that we can write

$$zf'(z) = g(z)h(z)^{\beta} \tag{3}$$

for $g \in S^*$ and $h \in P$. Equating coefficients in (3) we obtain

$$2a_2 = \beta c_1 + b_2$$

and

$$3a_3 = \frac{\beta(\beta - 1)}{2}c_1^2 + \beta c_2 + \beta c_1 b_2 + b_3,$$

so that

$$a_3 - \mu a_2^2 = \frac{1}{3} \left(b_3 - \frac{3}{4} \mu b_2^2 \right) + \frac{\beta}{3} \left(c_2 + \left(\frac{\beta(2 - 3\mu)}{4} - \frac{1}{2} \right) c_1^2 \right) + \beta \left(\frac{1}{3} - \frac{\mu}{2} \right) c_1 b_2.$$

$$(4)$$

We consider first the case $\frac{2\beta}{3(\beta+1)} \le \mu \le \frac{2}{3}$. Equation (4) gives

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{1}{3} \left| b_{3} - \frac{3}{4} \mu b_{2}^{2} \right| + \frac{\beta}{3} \left| c_{2} - \frac{1}{2} c_{1}^{2} \right| + \frac{\beta^{2} (2 - 3\mu)}{12} |c_{1}^{2}|$$

$$+ \beta \left(\frac{1}{3} - \frac{\mu}{2} \right) |c_{1}| |b_{2}|,$$

$$\leq 1 - \mu + \frac{\beta}{3} \left(2 - \frac{1}{2} |c_{1}^{2}| \right) + \frac{\beta^{2} (2 - 3\mu)}{12} |c_{1}^{2}|$$

$$+ \frac{\beta (2 - 3\mu)}{3} |c_{1}|,$$

$$= \Phi(x) \text{ say, with } x = |c_{1}|,$$

where we have used Lemmas 1 and 2 and the fact that $|b_2| \leq 2$ for $g \in S^*$. An elementary argument shows that the function Φ attains a maximum at $x_0 = 2(2-3\mu)/(2-\beta(2-3\mu))$, and so

$$|a_3 - \mu a_2^2| \le \Phi(x_0),$$

which proves the Theorem if $\mu \leq 2/3$ and $\beta \geq 0$. Choosing

$$c_1 = \frac{2(2-3\mu)}{2-\beta(2-3\mu)}$$
, $c_2 = 2$, $b_2 = 2$ and $b_3 = 3$,

in (4) shows that the result is sharp. We note that $|c_1| \leq 2$, i.e., $\mu \geq 2\beta/(3(\beta+1))$.

Next consider the case $\mu \leq \frac{2\beta}{3(\beta+1)}$. Since K(0) = C, we may assume that $\beta > 0$. Again (4) gives

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{3\mu(\beta+1)}{2\beta} \left| a_{3} - \frac{2\beta}{3(\beta+1)} a_{2}^{2} \right| + \left(1 - \frac{3\mu(\beta+1)}{2\beta}\right) |a_{3}|,$$

$$\leq \frac{3\mu(\beta+1)}{2\beta} \left(1 + \frac{2\beta}{3}\right)$$

$$+ \left(1 - \frac{3\mu(\beta+1)}{2\beta}\right) \left(\frac{2\beta(\beta+2)}{3} + 1\right),$$

$$= 1 - \mu + \frac{\beta(2 - 3\mu)(\beta+2)}{3},$$

for $\beta > 0$, where we have used the result already proved in the case $\mu = 2\beta/3(\beta+1)$, and the fact that for $f \in K(\beta)$, the inequality $|a_3| \le 1 + 2\beta(\beta+2)/3$ holds [3]. Equality is attained on choosing $c_1 = c_2 = b_2 = 2$ and $b_3 = 3$.

Suppose now that $\frac{2}{3} \leq \mu \leq \frac{2(\beta+2)}{3(\beta+1)}$. Since $g \in S^*$ we can write zg'(z) = g(z)p(z) for $p \in P$, with $p(z) = 1 + p_1z + p_2z^2 + ...$, and so equating coefficients we have that $b_2 = p_1$ and $2b_3 = p_1^2 + p_2$.

We deal first with the case $\mu = 2(\beta + 2)/(3(\beta + 1))$. Thus (4) gives

$$a_3 - \frac{2(\beta+2)}{3(\beta+1)}a_2^2 = \frac{1}{6}\left(p_2 - \frac{p_1^2}{2}\right) + \frac{\beta}{3}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{\beta-1}{12(\beta+1)}p_1^2$$
$$-\frac{\beta^2c_1^2}{6(\beta+1)} - \frac{\beta p_1c_1}{3(\beta+1)},$$

and so if $\beta \leq 1$,

$$\left| a_3 - \frac{2(\beta+2)}{3(\beta+1)} a_2^2 \right| \le \frac{1}{6} \left| p_2 - \frac{p_1^2}{2} \right| + \frac{\beta}{3} \left| c_2 - \frac{c_1^2}{2} \right| + \frac{(1-\beta)}{12(\beta+1)} |p_1^2|$$

$$+ \frac{\beta^2 |c_1^2|}{6(\beta+1)} + \frac{\beta |p_1 c_1|}{3(\beta+1)},$$

$$\le \frac{1}{6} \left(2 - \frac{|p_1^2|}{2} \right) + \frac{\beta}{3} \left(2 - \frac{|c_1^2|}{2} \right) + \frac{1-\beta}{12(\beta+1)} |p_1^2|$$

$$+ \frac{\beta^2 |c_1^2|}{6(\beta+1)} + \frac{\beta |p_1 c_1|}{3(\beta+1)},$$

$$= \frac{2\beta+1}{3} - \frac{\beta}{6(\beta+1)} \left(|c_1| - |p_1| \right)^2,$$

$$\le \frac{2\beta+1}{3},$$

where we have used Lemma 1.

Now write

$$a_3 - \mu a_2^2 = \frac{(\beta+1)(3\mu-2)}{2} \left(a_3 - \frac{2(\beta+2)}{3(\beta+1)} a_2^2 \right) + \frac{3(\beta+1)}{2} \left(\frac{2(\beta+2)}{3(\beta+1)} - \mu \right) \left(a_3 - \frac{2}{3} a_2^2 \right),$$

and the result follows at once on using the Theorem already proved in the cases $\mu = 2/3$ and $\mu = 2(\beta + 2)/(3(\beta + 1))$ for $\beta \leq 1$. Equality is attained when f is given by

$$f'(z) = \frac{(1+z^2)^{\beta}}{(1-z^2)^{\beta+1}}.$$

We finally assume that $\mu \geq \frac{2(\beta+2)}{3(\beta+1)}$. Write

$$a_3 - \mu a_2^2 = \left(a_3 - \frac{2(\beta+2)}{3(\beta+1)}a_2^2\right) + \left(\frac{2(\beta+2)}{3(\beta+1)} - \mu\right)a_2^2,$$

and the result follows at once on using the Theorem already proved for $\mu = 2(\beta+2)/3(\beta+1)$ in the case $\beta \leq 1$ and the inequality $|a_2| \leq \beta+1$, which was proved in [3]. Equality is attained in this last case on choosing $c_1 = c_2 = b_2 = 2$ and $b_3 = 3$ in (4).

We remark that the methods used in [5] and [6], together with equation (4), suggest that in order to obtain sharp results for $\beta > 1$ and $\mu > 2/3$, an extension to the "area principle" may be required. Since $K(\beta)$ contains functions of unbounded valence for $\beta > 1$ establishing sharp estimates in this case may require deeper methods.

REFERENCES

- 1. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443.
- 2. M. Fekete and G. Szegö, Eine Bermerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
- 3. A. W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 15 (1972), 17–30.
- 4. A. W. Goodman, A note on the Noshiro-Warschawski Theorem, J. d'Analyse 25 (1972), 401-408.
- 5. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
- 6. W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
- 7. W.Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49 (1987), 420-433.

- 8. A. Pfluger, The Fekete-Szegö inequality for complex parameters, Complex Variables 7 (1986), 149–160.
- 9. Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1964), 176–186.
- 10. Ch. Pommerenke, "Univalent functions," Vandenhoeck and Ruprecht, Göttingen, 1975.

1980 Mathematics subject classifications: Primary 30C45

Department of Mathematics and Computer Science, University College Swansea, Swansea SA2 8PP, Wales.