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The Fekete-Szego problem for strongly
glose-to-convex functions.

D.K. THOMAS (7 x — VXKD

INTRODUCTION

Denote by S the class of normalized analytic univalent functions f

defined for z € D = {z : |z| < 1} by
f(z) =2+ Z a,z". (1)
n=2 ’

A classical theorem of Fekete and Szego [2] states that for f € S given
by (1), |

3 —4pu, if p <0
laz —pa3| < 142e724/0=8) 0 0 < p< ]
4 — 3, if p>1.

This inequality is sharp in the sense that for each u there exists a function
in S such that equality holds. Recently Pfluger [8] has considered the
problem when s is complex. In the case of C, S* and I{, the subclasses
of convex, starlike and close-to-convex functions respectively, the above
inequalities can be improved [5,6]. In particular for f € I and given
by (1), Keogh and Merkes [5] showed that

(3 —4p, if p<1/3,
lag — pa?| < 4 1/3+4/9p, if1/3 <p<2/3,
) if2/3< <1,
L 4p -3, if p>1.

Again, for each pu, there is a function in I{ such that equality holds.
In this paper we extend this result to the class I{(03) of strongly close-
to-convex functions of order 3 in the sense of Pommerenke [9]. Thus
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- f € K(B) if, and only if, f, given by (1), is analytlc in D and is such
that there exists g e S* satlsfylng

zf! (2)
g9(2)

for z € D and 8 > 0. Clearly I(0) = C, I{(1) = I{ and when 0 < § < 1,
() is a subset of I{ and hence contains only univalent functions.
However in [4], Goodman showed that I{(3) can Lontam functions with
unbounded valence for 8 > 1.

Recently, IKoepf [7] has considered the Fekete-Szegd problem for I{(/3)
and obtained sharp results for some particular values of u, all of which,
with the exception of the case p = 1 and 8 > 1, are contained in the
following result.

(2)

arg

- 2

, _» RESULTS :
THEOREM. Let f € I{(3) and be given by (1), then for 0 < 8 < 1,

las—uqﬁlSléu+ﬁ(2_3’§)(ﬁ+2), | ifusé(—;—ﬁ—l),
stout B D <
<#r B ifgsus?f(—g}i%,
'Su-lwﬂﬁ(g“_?(ﬁj%);' ffﬂzi,g—g%7

and for > 1, the first two inequalities hold. For each ju, there is a
function in I{(f) such that equality holds.

We shall require the following:

LEMMA 1 ([10], p. 166). Let h € P, ic., let h be analytic in D and
satisfy Reh(z) > 0 for z € D, with h(z) =14 c1z + coz? + ..., then
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LEMMA 2 ([6], Lemma 3). Let g € S* with g(z) = z+ bg2? +032° + ...,
then for pu real, ‘ _ :
~|bg — pbj| < max{1,[3 — 4pl}.

We note that Lemma 2 above can easily be extended to the wider
class S*(«) of strongly starlike functions of order « > 0, i.e., g analytic
and normalized in D and satisfying

zg'(2)
9(2)

see e.g. [1]. In this case, one obtains the sharp inequality

aT
—_— 27

arg:

|bs — pba| < max{a, Oz?‘l3_— 4pl},

for u real.

PrROOF OF THEOREM: It follows from (2) that we can write

zf'(2) = .g(z)h(z)ﬂ (3)

for g € S* and h € P. Equating coeflicients in (3) we obtain

2ay = Per + by
and
' -1
3(13 = ﬂ%—-——)—c% -+ ﬁCQ + ﬂclbg + bg,‘
so that
, 1 3 I6; B(2—-3n) 1
az — p(ay = 3 (bB - ZH@) + 3 (Cz + ( 1 —_— 5)0%
1
+ﬁ(§e%>q%. | (4)
We consider first the case 2P <p< 2 E ﬁation (4) gives
151¢ st the case ——— z
3+ = M=3 &

5
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p

3

+ﬁ(—~~>kM@|

| ,8 2 182(2—3l1’) 2

<l-p+i(2-2 ——

> M+ 3 2 zlcl| + 12 |Cll
2 —3u

ﬁ—g—/——)lcll,

= ¢(z) say, with z = |c1],

2(2 — 3
|03~Haz|< b3——b2 Cz'"—Cl é-(—-“‘l—)hl

3 2

+

where we have used Lemmas 1 and 2 and the fact that |by| < 2 for
g € S*. An elementary argument shows that the function ® attains a
maximum at zo = 2(2 — 3u)/(2 — (2 — 3u)), and so

|az — paz| < ®(xo),
which proves the Theorem if p < 2 /3 and B > 0. Choosing

2(2 — 3p)
2 - B(2-3p)’

in (4) shows that the result is sharp. We note that |c;| < 2, i.e., p >
2/(3(8 + 1)) |

c] = cp =2, by =2 and b3 = 3,

Next consider the case p < ———— 3 (,6 2P 0 Since I{(0) = C, we may assuine
that 8 > 0. Again (4) gives
. 3u(B+1) 203 . 3u(B+1)
as — pas| < 2— L lag — ———aZ|l+ (1 — as|,

< 3B+ (1 N Z@_)

- 203 3
3B +1)\ [(28(B+2)
(1= ) +1).
RNl 3/;)(ﬂ»+ 2).
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for 8 > 0, where we have used the result already proved in the case

po= 2ﬂ/3(,8 + 1), and the fact that for f € K(B), the inequality |as|
1+ 28(B + 2)/3 holds [3]. Equality is attained on choosing ¢; = cy

by = 2 and b3 = 3.
2(68 +2)

Suppose now that 2 < <
PPOS 3 = H =361

<

Since g € S* we can write

2g'(z) = g(2)p(z) for p € P, with p(z) = 1+ pyz + p22% + ..., and so

equating coefficients we have that by = p; and 2b3 = p? + po.

We deal first with the case = 2(8+ 2)/(3(8+ 1)). Thus (4) gives

- 2(B+2) 5 1 pi p i p—1
e w+n2‘6(“‘5>+5<@“?>+ﬁ@?ﬁ“

320% _ Bpici
6(8+1) 3(B+1)°

and so if 8 <1,

L _2AB+2)
T3+

1
< =
6

(1-p)
1%5+U“J

2
P
P2 — 71 +

B|ci]| +ﬁmq+
6(p+1) 3(A+1)"

+ |
Ll i G, 1=
s (1=51)+5 (=5 + memit

B
3 +

C2—

<
B3l Blpic
+<ﬁ+D+3W+U’
_20+1
=5 g el
< 20+1
—_— 3 7
where we have used Lemma 1.
Now write
. _“ﬁ_(ﬁ+U@u—2)Ol_gﬁﬁﬁﬂf>
3 Hag = 9 3 3(ﬁ+ 1) 2
3(B+1) (2(8+2) 2,
T (3(/3+1) "‘) (“3" 3%)’ |

5
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and the result follows at once on usmg the TheOIem already proved in
the cases p =.2/3 and p = 2(8 + 2)/(3(ﬁ +1)) for B < 1 Equality is
attained when f is given by

S | 14 2%)P
f (Z) = (1( . Zz)g_{.l .
We finally assume that g > 32’2 + g Write
_ 2(8+2) 2(8 +2)
% h = ( RECESV ) " (3(ﬁ+1) "‘)

and the result follows at once on using the Theorem already proved for
p=2(8+2)/3(6+1)) in the case # < 1 and the inequality |as| < f+1,
which was proved in [3]. Equality is attained in this last case on choosing
¢y =cy = by =2 and b3 =3in (4). .

We remark that the methods used in [5] and [6], together with equa-
tion (4), suggest that in order to obtain sharp results for § > 1 and
p > 2/3, an extension to the "area principle” may be required. Since
K(B) contains functions of unbounded valence for 8 > 1 establishing
sharp estimates in this case may require deeper methods.
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