STARLIKENESS OF CERTAIN INTEGRAL

Mamoru Nunokawa (群馬大学教育· 布川 護)

1. Introduction.

Let A be the class of functions f(z) which are analytic in $E=\{z: |z|<1\}$, with f(0)=f'(0)-1=0. A function $f(z)\in A$ is said to be starlike iff

Re
$$\frac{zf'(z)}{f(z)} > 0$$
 in E.

We denote by S^* the subclass of A consisting of functions which are univalently starlike in E.

R. Singh and S. Singh [3] have proved that if $f(z) \in A$ and Ref'(z) > 0 in E, then $F(z) \in S^*$, where

$$F(z) = \begin{cases} z & \frac{f(t)}{t} dt \end{cases}$$

In this paper, we will improve the above result.

2. Preliminaries.

In this paper, we need the following lemmata.

LEMMA 1. Let p(z) be analytic in E, p(0)=1 and suppose that

Re(p(z) + zp'(z))> -
$$\frac{\log(4/e)}{(2\log(e/2))}$$
 in E,

where $-(\log(4/e)/(2\log(e/2)) = -0.6294\cdots$

Then we have

$$Rep(z) > 0$$
 in E.

We owe this lemma to [1].

LEMMA 2. Let p(z) be analytic in E, p(0)=1 and suppose that

$$Re(p(z) + zp'(z)) > 0$$
 in E.

Then we have

I argp(z)
$$1 < \alpha^* \frac{\pi}{2}$$
 in E

where

$$1 = \alpha^* + \frac{2}{\pi} \operatorname{Tan}^{-1} \alpha^*$$

and

$$0.6383 < \alpha^{2} < 0.6384$$
.

We owe this lemma to [2, Lemma 3].

LEMMA 3. Let p(z) be analytic, p(0)=1 and suppose that

$$Re(p(z) + zp'(z)) > 0$$
 in E.

If g(z) is analytic in E, g(0)=1 and if

Re
$$p(z)[zg'(z)+g^2(z)+g(z)] > \frac{\log(4/e)}{6} (\tan^2 \alpha^* \frac{\pi}{2} - 3)$$
 in E,

then we have

$$Reg(z) > 0$$
 in E.

We owe this lemma to [2, Lemma 4].

3. Main theorem.

MAIN THEOREM. Let $f(z) \in A$ and suppose that

(1)
$$\operatorname{Ref'}(z) > \frac{\log(4/e)}{6} \left(\tan^2 \alpha' + \frac{\pi}{2} - 3 \right)$$
 in E,

where

$$-0.03518 < \frac{1}{6} (\log(4/e)) (\tan^2 \alpha^* \frac{\pi}{2} - 3) < -0.03502$$
.

Then $F(z) \in S^*$, where

(2)
$$F(z) = \int_{0}^{z} \frac{f(t)}{t} dt.$$

Proof. From (2), we have

(3)
$$F'(0)=1$$
, $F'(z)=f(z)/z$ and $F''(z)=(zf'(z)-f(z))/z^2$.

Then we have

(4)
$$\operatorname{Re}(zF''(z) + F'(z)) = \operatorname{Re}f'(z)$$
 $> \frac{\log(4/e)}{6} (\tan^2 \alpha' \frac{\pi}{2} - 3)$ in E.

From the assumption (1) and from LEMMA 1, we have

(5)
$$\operatorname{ReF}'(z) > 0$$
 in E.

Let us put

$$p(z) = \frac{F(z)}{z}$$

and

$$g(z) = \frac{zF'(z)}{F(z)}.$$

Since p(0)=1 and

$$Re(zp'(z)+p(z)) = ReF'(z) > 0$$
 in E.

by LEMMA 2, we have

$$I \operatorname{argp}(z) I < \alpha^* \frac{\pi}{2}$$
 in E.

On the other hand, by an easy calculation, and from (3) and (5), we have

Re p(z) [zg'(z) + g²(z) + g(z)]
= Re[zF''(z) + 2F'(z)] = Re[f'(z) +
$$\frac{f(z)}{z}$$
]
> Ref'(z) > $\frac{1}{6}$ (tan² $\alpha \times \frac{\pi}{2}$ - 3)(log(4/e)) in E.

Therefore, from LEMMA 3, we have

$$Reg(z) > 0$$
 in E.

This shows that

$$Re \frac{zF'(z)}{F(z)} > 0$$
 in E.

This completes our proof.

References

- [1] M. Nunokawa, Differential inequalities and Caratheodory functions,

 Proc. Japan Acad., 65, Ser. A, No. 9(1989). (to appear)
- [2] ————, On starlikeness and convexity of certain integral. submitting.
- [3] R. Singh and S. Singh, Starlikeness and convexity of certain integral, Ann. Univ. Mariae Curie-Sklodowska. Lublin, XXXV, 16, Ser. A (1981), 145-148.