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ON CIRCUIT—SIZE COMPLEXITY
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INTRODUCTION

In Boolean complexity theory, cirpuit-size complexity is one
of the m%in targets of research ([11, [31). Circuit—-size com-—
ptexity (whiﬁh is also called combinational complexity or network
complexity) of a Boolean function f over a base set B is defined
to be the Lleast number of gates contained in a Boolean c¢ircuit
which is composed of gates in B and computes f. For most of the
functions it is extremely difficult to get good estimate, not to
mention the exact value, on the circuit-size complexity. Espe-

piaLLy, good lower bounds are hard_to obtain. It is, therefore,
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quite welcome to develop any new methods to derive good bounds on
circuit-size complexity.

The purpose of this note is to exhibit a technique to derive a
lower bound on the circuit-size complexity of a function f by
counting, individually, for each gate in B the number of occur-
rences only of that gate appearing in any circuit computing f.

Note that this method is not new: It already appeared in
Tiekenheinrich [2)]. However, it is rarely used in the literature

and so is worth mentioning here.

PRINCIPLE

Let G = {94, 95, ... , 9.} be a base set, i.e., a set consist-
ing of gates (Boolean functions) which can be used in construct-
ing a circuit. Let f be a Boolean function which is realizable
by a circuit over G. Denote by Co(f) the circuit-size complexity
of f over G, and by cG,gi(f)’ 1 ¢ i€ r, the least number .of
occurrances of the gate g; contained in any circuit computing f
over G.

It is clear that

r
Calf) 2 E IPTIE
i=1

Consequently, if a Llower bound m; on CG,gi(f) can be derived for

each 1 ¢ i ¢ r, we have a lower bound on Co(f) as well. That
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is, if
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RESULT

The above principle can be applied to the following function f
to get (8/3)n Lower bound on the circuit-size complexity over the

monotone base {AND, OR}.
Let G = {AND(=AD),0R(=V )} and £(") pe an n-variable function,

n>0, defined as féLLows.

1 Xqg * oeee + X 2 (1/3)n,
£, (kg aee s ox) =
0 Xqg * «e. ¥ x, < (1/3)n,
1 xg + oee. + x> (2/3)n,
(n) -
f (Xl sewe 2 Xn) =
0 Xqg * el Xy < (2/3¥n,
and
0, ven s xe ) = My, i ) A
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For the functions fl(") and fzsn), we can prove the following.
Lemma 1 Ceor¢f1 ™) 2 /300 - 2.
Lemma 2 c £,y 3 4/3)n - 2
G,AND* "2 < .
As
LR S PRI DIE IR PRLLE T VPR
and
AL S PP DR P S TP
we have
(n) (n)
CG,OR(f ) « 2 CG,OR(fl > ) 2 (4/3dn - 2
and
(n) (n)
The above principle can now be applied‘to get
Proposition CG(f(n)) 2 (8/3)n-- 4.

PROOF OF L EMMAS

Proof of Lemmal: Let

T

be an optimal circuit computing fl(n)

over the base set G, where n 2 2.
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Fact 1. “For every input node x; and every path p from x5 to the

output node in T, there exists 'at least one OR-gate in p.

Proof. Suppose, on the contrary, that there is a path from X 5

to the output node which contains only AND-gates. Then by setting

Xy = 0 the output always takes the value 0, contradicting the

definition of f,("),

Fact 2. For some input node X 5 in 1, there exist at Lleast two

OR-~gates gl_and gz'as well as fwo paths Pq and Pa each connecting
X and the output node such that
1).95 lies on P; (i =1, 2) and

2) there is no other OR-gate on P between x; and 93 (j =1, 20.

Proof., - Assume that the statement is false, and consider, for
each 4, all the paths from the input node x; to the output node.

Then all of them must contain the same OR-gate, say 95, as the

closest OR-gate to the input node'xi. Moreover, for some io‘ the

(a) : (b) | O (e)

Fig. 1
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gate g;45 has no OR-gate as its ancestors, that is, there is no
OR-gate between 940 and input nodes. The situation is shown in
Fig. 1. In cases (a) and (b) the circuit is made not to depend

on xg by assigning Xp = 1, and in case (c) it is made not to

depend on Xg by assigning Xp = 0.‘ In either case this contra-

dicts the definition of the function.

Now, Lemma 1 can be proved by mathematical dinduction. As the

basis, note that

(1),

Cg,or¢f1 = 0,
2y, _

Coor(f1 3 = 1,
(3)y _

Ce,or¢f1 3% = 2.

Suppose CG,DR(fi(n)) 2 (4/3)n - 2 holds for n 2 3 and consider. .

a circuit 7 (Nt

7 (n+3)

computing fi(n+3). Choose an input node,xi in

as in Fact 2, and substitute the value 0 to X3 By this

procedure at least two OR-gates can be eliminated from r(n+3)
without ;ffecting the result of the circuit. Repeat the same
procedure to the resulting circuit, eliminating at least two OR-
gates again. Finally, substitute the value 1 to any one of the
rermaining input nodes. Then what we have is a circuit computing
(n)'

f1 because

(n+3) = (n)
fl ‘ (Xi, LI ,Xn, 0, 0, 1) - fl (Xl, . e e Vi Xn)

holds. (Here, w.l.0.g9., the inputs to which the value 0 or 1 is

substituted are assumed to be Xn+1’ Xp+2 and xn+3.) By hypothe-

sis, we have
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(n+3)

(4/3)(n+3) - 2.

This completes the proof of Lemma 1. QED

Proof of Lemma 2: In a circuit r over the base G = {AND, ORY}
computing f2<")(x1, cee 2 xn), replace each AND-gate by an OR-

gate and each OR—gatg by an AND-gate. Then, by de Morgan's lLaw,

the resulting circuit 1/ computes fz("’(ii, cee o in). Now it

is easy to see that

fz(n)(szll LI ) P4 ;en) = fl(n)(xil LI Y 7 xn)l

and Lemma 2 follows from Lemma 1. QED
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