Relative invariants and irreducible highest weight modules

熊本電波高専 菅 修一(SUGA Shuichi)

1. Introduction.

It is well known that finite dimensional irreducible $sl(2, \mathbb{C})$ -modules are constructed in the following way. Let $\{e, h, f\}$ be a standard basis of $sl(2, \mathbb{C})$ so that their Lie brackets are given by

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h$$
 (1.1)

Fix a nonnegative integer n. Let $V = \sum_{i=0}^{n} Cx^{i}$ be the vector space of polynomials of x whose degrees are at most n. Then the following correspondence defines an irreducible representation of sl(2,C) on V:

$$\begin{array}{ccccc}
e & \rightarrow & x^2 \frac{d}{dx} - nx \\
h & \rightarrow & 2x \frac{d}{dx} - n \\
f & \rightarrow & -\frac{d}{dx}
\end{array} (1.2)$$

It is easy to see that n is highest weight of V and $x^{\mathbf{n}}$ is a highest weight vector.

If one replace n by any complex number λ and V by $W = \sum_{i=0}^{\infty} Cx^{\lambda-i}$, then W is still an irreducible highest weight sl(2,C)-module with highest weight λ and a highest weight vector x^{λ} . In this note we shall generalize the above construction of irreducible highest weight representations to Lie algebras related to certain Hermitian symmetric pairs. The generalization is done by replacing x^{λ} by a complex power of relative invariant polynomials of prehomogeneous vector spaces attached to Hermitian symmetric spaces. This also gives a representation theoretic interpretation of the zeros of the b-function.

2. Construction of irreducible highest weight modules.

Let (Go, Ko) be one of the following pairs.

1.
$$G_0 = SU(n,n),$$
 $K_0 = S(U(n) \times U(n))$

2.
$$G_0 = Sp(2n, \mathbf{R}), K_0 = U(n)$$

3.
$$G_0 = SO(4n)^*$$
, $K_0 = U(2n)$

4.
$$G_0 = SO(n,2)_0$$
, $K_0 = SO(n) \times SO(2)$.

Where we regard K_0 as a maximal compact subgroup of the Lie group G_0 . The quotient space G_0/K_0 is an Hermitian symmetric space of tube type. Let g_0 (resp. k_0) be the Lie algebra of G_0 (resp. K_0), and $g_0 = k_0 \oplus p_0$ the Cartan decomposition of g_0 . By convention we delete the subscript o to denote complexified Lie algebras. So we have the decomposition $g = k \oplus p$ of the compexified Lie algebra g.

The Lie algebra k_0 has the one dimensional center $Z = \mathbf{R}z$, where the eigenvalues of z under the adjoint action on p are $\pm i$.

Let

$$p^+ = \{x \in p \mid [z, x] = ix\} \text{ and } p^- = \{x \in p \mid [z, x] = -ix\}.$$

Then p^+ (resp. p^-) corresponds to the holomorphic (resp. anti-holomorphic) vector fields on the Hermitian symmetric space G_0/K_0 . Let t_0 be a Cartan subalgebra of k_0 then t is a Cartan subalgebra of g. We set $q = k \oplus p^+$ then q is a maximal parabolic subalgebra of g. Let b be a Borel subalgebra contained in q and contains t. Let G be the connected and simply connected complex Lie group with the Lie algebra g and K (resp. Q) the subgroup of G corresponding to the Lie subalgebra k (resp. q). We denote the universal covering groups of K and Q by \widetilde{K} and \widetilde{Q} respectively. Let $\pi:\widetilde{Q}\to Q$ be the projection homomorphism. We choose an open neighborhood $U\subset Q$ of the identity so that there exists a section $\sigma:U\to\widetilde{Q}$.

It is known that the pair (K,p^-) is a regular irreducible prehomogeneous vector spaces via the adjoint K-action. There exists a unique (up to constant multiple)

irreducible K-relative invariant polynomial f on p. By definition f is an irreducible polynomial on p satisfying

$$f(Ad(k)x) = \chi(k)f(x) \ (k \in K, x \in P^{-})$$
 (2.1)

for some one dimensional character χ of K.

We fix an arbitrary 1-dimensional character λ of \widetilde{K} , then there exists a complex number m such that $\lambda = \mu \chi$. (We denote the group of one dimensional characters of \widetilde{K} additively.) We extend λ to \widetilde{Q} trivially and denote it by the same letter. We also denote the differential of λ by the same letter and consider it as an element of t^* .

Let N⁻ be the subgroup of G corresponding to ad(p⁻). Then the exponential map exp: $p^- \to N^-$ is a diffeomorphism. We denote its inverse by log: N⁻ $\to p^-$ We put $O = N^-U$; an open subset of G.

Let $L(\lambda) = \{h : O \to \mathbb{C} \mid h(g \ q) = \lambda(\sigma(q)) \ h(g) \ , g \in O, \ q \in U \}$. By differentiating the left translation of G we get an algebra homomorphism $\phi : U(g) \to D(O)$. Here U(g) is the universal enveloping algebra of g and D(O) is the algebra of differential operators on O with holomorphic coefficients. The homomorphism ϕ defines a U(g) - action on $L(\lambda)$.

Using the relative invariant polynomial f on p^- , we define an element v^{λ} of $L(\lambda)$ by the following formula:

$$v^{\lambda}(n,q) = \lambda(\sigma(q)) f^{-2\mu}(\log(n))$$
 $n \in \mathbb{N}^{-}, q \in \mathbb{U}$. (2.2)

Consider the g-module $W(\lambda) = \varphi(U(g)) v^{\lambda}$ generated by v^{λ} .

Theorem. W(λ) is an irreducible highest weight g-module (with respect to the Borel subalgebra b) with highest weight λ and a highest weight vector \mathbf{v}^{λ} .

The proof of Theorem will appear in the forthcoming paper [6].

3. The case $G_0 = SU(n,n)$, $K_0 = S(U(n) \times U(n))$.

We illustrate the representation in Section 2. We realize the group G_{O} as

$$SU(n,n) = \{ g \in GL_{2n}(\textbf{C}) \mid {}^t\overline{g} H_{2n} g = H_{2n} , \ det g = 1 \}$$
 (3.1)

where $H_{2n} = \begin{pmatrix} 1_n & 0 \\ 0 & -1_n \end{pmatrix}$. Then the Lie algebras g, k, p[±] and q defined in Section 2 can be taken as the following form:

$$g = sl(2n, \mathbf{C}) , k = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in g \right\} , p^{+} = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \in g \right\} ,$$

$$p^{-} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \in g \right\} \text{ and } q = \left\{ \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in g \right\}.$$

$$(3.2)$$

Let λ be any complex number we regard it as a one dimensional character of k by

$$\lambda(a) = \lambda \text{tr} A \text{ for } a = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in k$$
 (3.3)

From the definition we can identify $L(\lambda)$ with the space of C-valued functions on N⁻. Since the latter space can be identified with the space $C(p^-)$ of C-valued functions on p⁻ via the exponential map, we shall use this space in the following. Then the highest weight vector v^{λ} of $W(\lambda)$ is corresponds to f^{λ} .

Let $(e_{jk})_{j,k=1,\cdots,n}$ be the $n \times n$ matrix units and $(x_{jk})_{j,k=1,\cdots,n}$ a standard coordinate system on p^- . Then the set of matrices

$$\mathsf{F}_{jk} = \left(\begin{array}{cc} 0 & 0 \\ e_{jk} & 0 \end{array} \right) \text{ (resp. } \mathsf{E}_{jk} = \left(\begin{array}{cc} 0 & e_{jk} \\ 0 & 0 \end{array} \right) \text{), } j,k = 1,2,\cdots,n$$

gives a basis of p (resp. p+).

The elements of g acts on C(p-) by the following formulas:

$$\begin{cases} E_{jk} \rightarrow \sum_{l,m=1}^{n} x_{lj} x_{km} \frac{\partial}{\partial x_{lm}} - \lambda x_{kj} \\ a \rightarrow \sum_{l=1}^{n} (x_{jl} a_{lk} - d_{jl} x_{lk}) \frac{\partial}{\partial x_{jk}} - \lambda tr(A) \\ F_{jk} \rightarrow -\frac{\partial}{\partial x_{jk}} \end{cases}$$
(3.4)

Where $a = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, $A = (a_{jk})$ and $D = (d_{jk})$. This gives a generalization of (1.2).

By the Poincaré-Birkhoff-Witt theorem we have

$$\varphi(\mathsf{U}(\mathsf{g}))\mathsf{v}^\lambda = \varphi(\mathsf{U}(\mathsf{p}^-)\mathsf{U}(\mathsf{k})\mathsf{U}(\mathsf{p}^+))\mathsf{v}^\lambda = \varphi(\mathsf{U}(\mathsf{p}^-))\mathsf{v}^\lambda. \tag{3.5}$$

Hence in particular we conclude that $W(\lambda)$ consists of all the differential polynomials of v^{λ} .

4. Reducibilities of generalized Verma modules

In this section we discuss reducibilities of generalized Verma modules induced from the maximal parabolic subalgebra q. This gives a representation theoretic interpretation of zeros of the b-function. We retain the notations in the previous sections.

Let f^* be the relative invariant polynomial of the prehomogeneous vector space (K, p^+) and $f^*(D_X)$ the linear differential operator with constant coefficients defined by the equation:

$$f^*(D_X)\exp <\xi, x>=f^*(\xi)\exp <\xi, x> \text{ for } \xi\in p^+ \text{ and } x\in p^-.$$
 (4.1)

where < , > is the Killing form on g. Let s be a complex parameter then there is a polynomial b(s) such that the following differential equation holds:

$$f^*(D_x)f(x)^S = b(s)f(x)^{S-1}$$
 (4.2)

The polynomial b(s) is called the b-function of the relative invariant f.

Let λ be a one dimensional representation of k and extend it trivially to q. Let C_λ be the representation space of λ and define generalized Verma module $V(\lambda)$ as follows:

$$V(\lambda) = U(g) \otimes_{U(g)} \mathbf{C}_{\lambda} \tag{4.3}$$

Jantzen [2] gave reducibility criterion for $V(\lambda)$ using his formulas on determinants of contravariant forms. But our construction of irreducible highest weight modules $W(\lambda)$ reproduces a part of his result.

Corollary. Let r be the split rank of G_0 and $t = -2i\lambda(z)/r$. Then if t is a positive integer or satisfies b(t) = 0 then $V(\lambda)$ is reducible.

Proof. Here we consider only the first case but the same argument is true for any other case. As in the previous section we regard a complex number λ as a 1-dimensional character of k. If t is a positive integer then highest weight vector $v^{\lambda} = f^{\lambda}$ of $W(\lambda)$ is a polynomial function on p^{-} . Hence $W(\lambda)$ becomes finite dimensional g-module and $V(\lambda)$ is reducible.

Now we consider when $b(\lambda) = 0$. In this case the b-function and its defining equation (4.2) is given by the following Capelli's identity (Weyl [7]):

$$\det(\frac{\partial}{\partial x_{jk}})\cdot\det(x_{jk})^{S} = s(s+1)\cdot\cdot(s+n-1)\det(x_{jk})^{S-1}$$

$$= b(s)\det(x_{jk})^{S-1}. \tag{4.4}$$

Suppose $V(\lambda)$ is irreducible then $W(\lambda)$ and $V(\lambda)$ are isomorphic. But then by the Poincare-Birkhoff-Witt theorem $W(\lambda)$ is isomorphic to $U(p^-)$ as a vector space. Then

$$(-1)^{n} F_{1 \sigma(1)} F_{2 \sigma(2)} \cdots F_{n \sigma(n)} v^{\lambda} = \frac{\partial^{n}}{\partial x_{1 \sigma(1)} \partial x_{2 \sigma(2)} \cdots \partial x_{n \sigma(n)}} \det(x_{jk})^{\lambda}$$
(4.5)

must be linearly independent, where σ runs over the set of all permutations of $\{1,2,\cdots,n\}$. But this contradicts to the Capelli's identity. Hence $V(\lambda)$ is also reducible in this case.

Q.E.D.

Remark. The above Corollary holds for any Hermitian symmetric pair listed in section 2. Also it is known that if λ is a zero of the b-function then $W(\lambda)$ is unitarizable (Enright, Howe and Wallach [1]). Moreover these facts still remains true for the exceptional Hermitian symmetric pair

$$G_0$$
 = real form of E_7 , K_0 = compact form of $E_6 \times SO(2)$.

These observations are the original motivation of this research.

References

- [1] T.J.Enright, R.Howe and N.R.Wallach, A classification of unitary highest weight modules, P.C.Trombi ed., Representation Theory of Reductive Groups, Progress in Math., 40, Birkhauser(1983).
- [2] J.C.Jantzen, Kontravatiante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann., 226, (1977), 53-65.
- [3] T.Kimura, The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J., 85 (1982), 1-80.
- [4] I. Muller, H. Rubenthaler and G. Schiffman, Structure des espaces prehomogenes associes a certaines algebres de Lie graduees, Math. Ann., 274 (1986), 95-123.
- [5] M.Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65 (1977), 1-155.
- [6] S.Suga, Relative invariants and a construction of irreducible highest weight modules, To appear.
- [7] H. Weyl, The Classical Groups, Princeton Univ. Press., Princeton New Jersey, 1946.