Exponentials of certain completions of the unitary form of a Kac-Moody algebra

愛媛大・理 須藤 清一 (Kiyo ka zu Suto)

<u>§0. 序</u> g を , 対称化可能な Cartan 行列を持つ複素
Kac-Moody 環 , t を その unitary 実形とする.

[3] の中で我々は,g の随伴表現及び dominant integral な最高 weight を持つ既約表現の標準的な完備化における C^m-vectors の空間を自然な形で定義し,その簡単な特徴付けを与えた.この特徴付けを用いると,各 C^m-vectors の空間に自然に位相が入り,g の作用が連続に拡張される.

随伴表現の場合の各 C^m-vectors の空間における g 及 び f の閉包をそれぞれ g_m, f_m とする.

本報告では, k_2 の C^1 -vectors への作用が exponentiable であり m=0, 1, 2, ... に対して f_{m+2} の exponentials が C^m -vectors の空間を不変にすることを示す.これは [3] で得られた, $m=\omega$ に対する結果,即ち, f_ω の exponentials が C^k -vectors の空間 (k=0, 1, 2, ..., ∞ , ω) を全て不変にする,を拡張するものである.

<u>§1. 記号と準備</u> 本節の内容に関しては,詳しくは [1] 及び [3] を参照されたい.

A を対称化可能な一般型 Cartan 行列とする。 \mathfrak{g}_R を A を Cartan 行列に持つ実 Kac-Moody 環, \mathfrak{h}_R を \mathfrak{g}_R の Cartan 部分環とする。すると, $\mathfrak{g}=\mathbb{C}\otimes_R\mathfrak{g}_R$ は A を Cartan 行列とする複素 Kac-Moody 環, $\mathfrak{h}=\mathbb{C}\otimes_R\mathfrak{h}_R$ は \mathfrak{g} の Cartan 部分環になる。

 Δ を (g, h) の root 系, Δ_+ を正 root の全体,g = h + $\Sigma_{\alpha \in \Delta} g^{\alpha}$ を root 空間分解とする.

 $n_{\pm} = \sum_{\alpha \in \Delta_{+}} g^{\pm \alpha}$ とおく.分解 $g = n_{-} + n_{+}$ に関する g から n_{\pm} , n_{\pm} の上への射影をそれぞれ n_{\pm} , n_{\pm} とする.

A を対称化可能としたから g 上には standard invariant form (・|・) が存在する . (・|・) の b への制限は非退化なので,b から b* の上への線型全単射 ν が

 $(h_1 | h_2) = \nu(h_1)(h_2)$ for $h_1, h_2 \in \mathfrak{h}$ によって定まる.

g 上の反線型反同型 g \Rightarrow x \longrightarrow x * \in g で $h^* = h$ for $h \in h_R$, $(g^{\alpha})^* = g^{-\alpha}$ for $\alpha \in \Delta$ $(x^*)^* = x$ for x \in g

と定義される。

g 上の Hermitian form $(.|.)_0$ を $(x|y)_0 = (x|y^*)$ for $x, y \in \mathfrak{g}$

と定める. $(\cdot | \cdot)$ の不変性により、 $(\cdot | \cdot)_0$ は contravariant である. 即ち

 $((ad \ x)y|z)_0 = (y|(ad \ x^*)z)_0$ for $\forall x, y, z \in g$ が成立つ、この性質により root 空間分解が $(\cdot|\cdot)_0$ に関する直交分解であることがわかる、特に $(\cdot|\cdot)_0$ は $(ad \ f)$ -不変で b, n_\pm は互いに直交する、更に [2] によれば, $(\cdot|\cdot)_0$ は n_- + n_+ 上では正定値である・

 $\lambda \in \mathfrak{h}^*$ を最高 weight に持つ既約最高 weight 表現を $(\pi_{\lambda}, L(\lambda))$ とする。もし $\lambda \in \mathfrak{h}^*_R$ ならば $L(\lambda)$ 上には非退化な contravariant Hermitian form $(\cdot|\cdot)_{\lambda}$ が存在する。 更に λ が dominant integral ならば $(\cdot|\cdot)_{\lambda}$ は正定値である[2, Th.1].

りR の基底 {hi}i を

 $(h_i | h_j)_0 = \delta_{i,j} \text{ or } -\delta_{i,j} \qquad \forall i, j$

を満たすようにとる・り 上の内積 $(\cdot|\cdot)_1$ で $\{h_i\}$ を正規直交基底とするものをとり、次によって g 全体に拡張する・ $(x|y)_1 = (P_-(x)|P_-(y))_0 + (P_0(x)|P_0(y))_1 + (P_+(x)|P_+(y))_0$ for $x, y \in g$.

すると次の様な g 上の線型作用素 T が存在する.

- (1) T は (・|・)₁ に関して unitary かつself-adjoint. 従って involutive.
 - (2) $(x|y)_0 = (x|Ty)_1$ for x, y ϵg .
 - $(3) 1 T \leq 2P_0$.

以下では, (π, V) を随伴表現(ad, g),または dominant integral な最高 weight $\Lambda \in \mathfrak{h}^*_{\mathbf{R}}$ をもつ最高 weight 表現 $(\pi_\Lambda, L(\Lambda))$ とする. $(\cdot|\cdot)_\pi$ を上で導入した V 上の内積とする.即ち, π = ad ならば $(\cdot|\cdot)_\pi$ = $(\cdot|\cdot)_1$ であり, $\pi = \pi_\Lambda$ ならば $(\cdot|\cdot)_\pi = (\cdot|\cdot)_\Lambda$ である.

 $(\pi,\ V)$ の weight の全体を $P(\pi)$, weight μ の weight 空間を V_{μ} とし, $\underline{V}=\prod_{\mu\in P(\pi)}V_{\mu}$ とおく・g の作用は \underline{V} まで自然に拡張されるが,拡張された表現も π と書く・

 $H(\pi)$ を V の $(\cdot|\cdot)_{\pi}$ に関する完備化とする・すると $H(\pi)$ は次の様にして \underline{V} の部分空間と看做される・

$$H\left(\pi\right) \ = \ \left\{ \left(\mathbf{v}_{\mu}\right)_{\mu \in \mathbf{P}\left(\pi\right)} \ \in \ \underline{\mathbf{V}}; \ \boldsymbol{\Sigma}_{\mu \in \mathbf{P}\left(\pi\right)} \, \|\mathbf{v}_{\mu}\|_{\pi}^{2} \ < \ + \infty \right\} \; .$$

§2. C^m -vectors 以下 $h_0 \in \mathfrak{h}_R$ を strictly dominant: $\alpha(h_0) > 0 \qquad \forall \alpha \in \Delta_+$

なる元として固定する.[2, Prop.3.1] と同様の方法で次の

命題を得る。

命題2.1 [3, Prop.2.1]. i) ${}^{\exists}C_1 > 0$ s.t. $\forall x, y \in \mathbb{R}$

$$\|[x,y]\|_{1} \leq C_{1}(\|[h_{0},x]\|_{1}\|y\|_{1} + \|x\|_{1}\|[h_{0},y]\|_{1}),$$

ii)
$${}^{3}C_{1,\Lambda} > 0$$
 s.t. $\forall x \in g, v \in L(\Lambda)$

 $\|\pi_{\Lambda}(x)v\|_{\Lambda} \leq C_{1,\Lambda}(\|x\|_{1}\|v\|_{\Lambda}^{+}\|[h_{0},x]\|_{1}\|v\|_{\Lambda}^{+}\|x\|_{1}\|\pi_{\Lambda}(h_{0})v\|_{\Lambda}.$

これから帰納的に

命題2.2 [3, Cor.2.3]. x_1 , ..., $x_m \in g$, $v \in L(\Lambda)$ とする.

· · i)

$$\| [x_{1}, \dots, [x_{m-1}, x_{m}] \dots] \|_{1}$$

$$\leq (m-1)! C_{1}^{m-1} \sum_{\substack{p_{1}, \dots, p_{m} \geq 0 \\ p_{1} + \dots + p_{m} = m-1}} \| \prod_{j=1}^{m} \frac{1}{p_{j}!} \| (ad h_{0})^{p_{j}} x_{j} \|_{1}.$$

ii)

$$\|\pi_{\Lambda}(\mathbf{x}_1)\dots\pi_{\Lambda}(\mathbf{x}_m)\mathbf{v}\|_{\Lambda}$$

$$\leq (m+1)! C_{1,\Lambda}^{m} \sum_{\substack{p_{1},\ldots,p_{m},q\geq 0\\p_{1}+\ldots+p_{m}+q\leq m}} \{ \prod_{j=1}^{m} \frac{1}{p_{j}!} \| (ad h_{0})^{p_{j}} x_{j} \|_{1} \} \times \frac{1}{q!} \| \pi_{\Lambda}(h_{0})^{q_{v}} \|_{\Lambda}.$$

C^m-vectors の空間を次の様に定義する.

定義2.3

$$H_{0}(\pi) = H(\pi),$$
 $H_{m}(\pi) = \{v \in H_{m-1}(\pi); \pi(x)v \in H_{m-1}(\pi) \quad \forall x \in g\},$
 $H_{\infty}(\pi) = \bigcap_{m \geq 0} H_{m}(\pi).$

命題2.2 によって次は明らか.

<u>命 題 2.4</u> [3, Th.2.2].

$$H_{m}(\pi) = \{v \in \underline{V}; \pi(h_{0})^{m}v \in H(\pi)\}$$

$$\forall m = 0, 1, 2, \dots$$

そこで,
$$H_m(\pi)$$
 上の内積 $(\cdot|\cdot)_{\pi,m}$ を
$$(u|v)_{\pi,m} = \sum_{j=0}^m (\pi(h_0)^j u|\pi(h_0)^j v)_{\pi}$$
 for $u, v \in H_m(\pi)$

によって定義すると $H_m(\pi)$ は Hilbert 空間になる・ $H_\infty(\pi)$ 上には射影極限位相を考える・命題 $2\cdot 1$ によって g の作用は次の様に連続に拡張される・

<u>命 題 2.5</u> [3, Prop. 3.2]. m = 0, 1, 2, ... とする. g
の V への作用は連続な双線型写像

 $H_{m+1}(ad) \times H_{m+1}(\pi) \ni (x, v) \longrightarrow \pi(x) v \in H_{m}(\pi)$ に拡張される、特に $H_{\infty}(ad)$ は位相 Lie 環であり、 $H_{\infty}(\pi)$ に連続に作用する.

明らかに $g \ni x \longrightarrow x^* \in g$ は $H_m(ad)$ 上の involutive antilinear isometory に拡張される.そこで

$$f_m = H_m^u(ad) = \{x \in H_m(ad); x + x^* = 0\}$$

とおく、 f_m は f の $H_m(ad)$ における閉包と一致する・

§3. Negative space inclusion $H_m(\pi) \hookrightarrow H(\pi)$ は連続だから、 $v \in H(\pi)$ に対して、 $F_v \in H_m(\pi)^*$ が

$$F_{v}(u) = (u|v)_{\pi}$$
 for $u \in H_{m}(\pi)$

によって定義できる.この F_V の norm を $\|v\|_{\pi,-m}$ とし, $\|\cdot\|_{\pi,-m}$ による $H(\pi)$ の完備化を $H_{-m}(\pi)$ とする. $H_{-m}(\pi)$ は V の部分空間と看做せる:

 $H_{-m}(\pi) = \{(v_{\mu}) \in \underline{V}; \sum_{\mu} (\sum_{j=0}^{m} \mu(h_{0})^{2j})^{-1} \|v_{\mu}\|_{\pi}^{2} < +\infty \}.$ また定義によって, $(\cdot|\cdot)_{p}$ は $H_{m}(\pi)$ と $H_{-m}(\pi)$ の非退化なpairing を与える.

 $x \in H_{m+1}(ad)$ とする.命題2.5 により $ad x^*$ は $H_{m+1}(ad)$ から $H_m(ad)$ の中への連続写像.一方 \$1 の作用素 T は $H_m(ad)$ 上の可逆有界作用素に一意に拡張される. 従って任意の $y \in H_{-m}(ad)$ に対して

$$H_{m+1}(ad) \ni z \longrightarrow ((T \circ (ad x^*) \circ T) z | y)_1$$

は $H_{m+1}(ad)^*$ の元を定める.よって $H_{-m-1}(ad)$ の元 w が 一意に存在して

 $(z|w)_1 = ((T \circ (ad x^*) \circ T)z|y)_1$ $\forall z \in H_{m+1}(ad)$. そこで (ad x)y = w とおく.

同様に $H_{m+1}(ad)$ の元の $H_{-m}(\pi_{\Lambda})$ への作用を $(u|\pi_{\Lambda}(x)v)_{\Lambda} = (\pi_{\Lambda}(x^*)u|v)_{\Lambda}$

for $x\in H_{m+1}(ad)$, $u\in H_{m+1}(\pi_{\Lambda})$, $v\in H_{-m}(\pi_{\Lambda})$ によって定義する.

定義によって線型写像 $\pi(x)$: $H_{m+1}(\pi) \longrightarrow H_m(\pi)$ の norm と $\pi(x)$: $H_{-m}(\pi) \longrightarrow H_{-m-1}(\pi)$ の norm は一致する.

§4. Exponentials of f_m 's $m = 0, 1, 2, \ldots$ $\xi \neq 3$.

 $H_{m}(\pi) \perp O \text{ norm } |.|_{\pi,m} \in$

 $|\mathbf{v}|_{\pi, \mathbf{m}} = \sum_{\mathbf{j}=0}^{\mathbf{m}} \|\pi(\mathbf{h}_0)^{\mathbf{j}} \mathbf{v}\|_{\pi} \quad \text{for } \mathbf{v} \in \mathbf{H}_{\mathbf{m}}(\pi)$

によって定める. すると

 $\|v\|_{\pi, m} \le |v|_{\pi, m} \le \sqrt{m+1} \|v\|_{\pi, m}$

 $\forall v \in H_m(\pi)$

だから $|\cdot|_{\pi,m}$ は $\|\cdot\|_{\pi,m}$ と同値な norm である.この norm で $H_{m+1}(\pi)$ 上の f_{m+1} の作用を評価すると次の補題を得る.

補題4.1. $x \in f_{m+1}$ とする.

i)

 $|(1-(ad x))y|_{ad,m} \ge (1-C_12^{m+1}|x|_{ad,m+1})|y|_{ad,m}$

$$\forall y \in H_{m+1}(ad)$$
.

ii)

$$|(1-\pi_{\Lambda}(x))v|_{\Lambda,m} \ge (1-C_{1,\Lambda}2^{m+2}|x|_{ad,m+1})|v|_{\Lambda,m}$$

$$\forall v \in H_{m+1}(\Lambda).$$

ただし、 $H_k(\Lambda) = H_k(\pi_{\Lambda})$ 、 $|\cdot|_{\Lambda,k} = |\cdot|_{\pi_{\Lambda},k}$ (k = 0, 1, 2, ...).

一方 negative space への作用に関しては次の様な評価を得る.

 $\underline{\underline{H}}$ $\underline{\underline{H}$ $\underline{\underline{H}}$ $\underline{\underline{H}$ $\underline{\underline{H}}$ $\underline{\underline{H$

 $\|(1+\pi(x))v\|_{\pi,-m} \ge c_m(\pi)(1-c'_m(\pi)\|x\|_{ad,m+1})\|v\|_{\pi,-m}.$

 $\mathbf{x} \in \mathbf{k}_{\mathrm{m}+2}, \ \varepsilon \in \mathbf{R}$ とする、定義によって $1 + \varepsilon \pi(\mathbf{x}) \colon \mathbf{H}_{-\mathrm{m}}(\pi) \longrightarrow \mathbf{H}_{-\mathrm{m}-1}(\pi) \quad \text{が 単 射}$ $\iff (1 - \varepsilon \pi(\mathbf{x})) \mathbf{H}_{\mathrm{m}+1}(\pi) \quad \text{が dense in } \mathbf{H}_{\mathrm{m}}(\pi).$

従って補題 $4\cdot 2$ により |s| が十分小さければ $(1-s\pi(x))H_{m+1}(\pi)$ は $H_m(\pi)$ で稠密である.これと補題 $4\cdot 1$ を合せて

<u>補 題 4.3.</u> x ∈ k_{m+2}, s ∈ R と す る . |s| が 十 分 小 さ け - 9 - れば $H_m(\pi)$ 上の有界作用素 $R_\pi(x; ε)$ で

$$R_{\pi}(x;\varepsilon)(1-\varepsilon\pi(x))v = v \quad \forall v \in H_{m+1}(\pi)$$

となるものが一意に存在する.更に

$$|R_{\pi}(x;\varepsilon)|_{\text{op,m}} \leq (1-C|\varepsilon x|_{\text{ad,m+1}})^{-1}.$$

ただし、 $|\cdot|_{\rm op,m}$ は $|\cdot|_{\pi,m}$ に関する作用素 norm で、 $C=C_12^{m+1}$ (if $\pi=ad$), or $C_{1,\Lambda}2^{m+2}$ (if $\pi=\pi_{\Lambda}$).

これにより [4, Chap IX] の criterion が適用できて 次の定理を得る.

定理4.4. m=0, 1, 2, ..., $x\in k_{m+2}$ とする・ $H_m(\pi)$ 上の有界作用素からなる 1-径数群 $e^{t\pi(x)}=\exp(t\pi(x))$, t $\in R$ でその無限小生成作用素が $\pi(x)$: $H_{m+1}(\pi)\longrightarrow H_m(\pi)$ の閉包であるようなものが一意に存在する・更に

$$|e^{\pi(x)}|_{op,m} \le \exp(C|x|_{ad,m+1}).$$

もちろん,m 〈 m' のとき $x \in f_{m'+2}$ に対して $H_m(\pi)$ 上の $e^{\pi(x)}$ と $H_{m'}(\pi)$ 上の $e^{\pi(x)}$ は $H_{m'}(\pi)$ 上では一致する.従って上の定理は,言葉をかえていえば, $H(\pi)$ 上で定義された $x \in f_{m+2}$ の exponential $e^{\pi(x)}$ が部分空間 $H_1(\pi)$, $H_2(\pi)$, . . . , $H_m(\pi)$ を全て不変にすることを主張している.

さて x, y є ŧ_{m+3}, v є H_{m+1}(π) とすると定理4.1 によ

$$\begin{split} &\frac{1}{\delta} \left\{ e^{(t+\delta)\pi(x)} e^{(t+\delta)\pi(y)} v^{-e^{t\pi(x)}} e^{\pi(y)v} \right\} \\ &= e^{(t+\delta)\pi(x)} \left\{ \frac{1}{\delta} \left(e^{(t+\delta)\pi(y)} v^{-e^{t\pi(y)}} v \right) - \pi(y) e^{t\pi(y)} v \right\} \\ &+ e^{(t+\delta)\pi(x)} \pi(y) e^{t\pi(y)} v^{+\frac{1}{\delta}} \left\{ e^{(t+\delta)\pi(x)} \right\} e^{\pi(y)v} \\ &\longrightarrow e^{t\pi(x)} \pi(x+y) e^{t\pi(y)v} \quad (\delta \longrightarrow 0) \quad \text{in } H_m(\pi). \end{split}$$

種題4.5.
$$\forall x, y \in f_{m+3}, v \in H_{m+1}(\pi)$$
 に対して
$$\frac{d}{dt}e^{t\pi(x)}e^{t\pi(y)}v = e^{t\pi(x)}\pi(x+y)e^{t\pi(y)}v$$

in $H_m(\pi)$.

従って

$$e^{\pi(x)}e^{\pi(y)}v-v = \int_{0}^{1} e^{t\pi(x)\pi(x+y)}e^{t\pi(y)}v dt$$
in $H_{m}(\pi)$.

C を補題4.3 の通りとすると

$$\begin{split} & | \, e^{\pi \, (\, x \,)} \, e^{\pi \, (\, y \,)} \, v - v \,|_{\, \pi \,, \, m} \\ & \leq \, \int\limits_{0}^{1} \, e^{\, C \, t \,|\, x \,|\, \, ad \,, \, m \,+ \, 1} \! C \,|\, x + y \,|_{\, ad \,, \, m \,+ \, 1} \! e^{\, 2 \, C \, t \,|\, y \,|\, \, ad \,, \, m \,+ \, 2} |\, v \,|_{\, \pi \,, \, m \,+ \, 1} \, \, dt \,. \end{split}$$

結局次の命題を得る・

特に \exp : \mathfrak{t}_{m+3} \ni \times \longrightarrow $e^{\pi(\times)}$ \in $B_s(H_m(\pi))$ は, \mathfrak{t}_{m+3} の $|\cdot|_{ad,m+2}$ について有界な任意の部分集合上で, $|\cdot|_{ad,m+1}$ について一様連続.ただし $B_s(H_m(\pi))$ は $H_m(\pi)$ 上の有界作用素全体に強位相を考えたもの.

この連続性によって [3, §5] で与えた exponentials の満たす交換関係が次の様に拡張される. まず連続性によって

命題4.7(cf. [3, Prop.5.4]) $\forall x \in f_4$, $y \in H_1(ad)$ $e^{\pi(x)}\pi(y)e^{-\pi(x)} = \pi(e^{(ad x)}y).$

従って,二つの一径数群 $e^{\pi(x)}e^{t\pi(y)\cdot\cdot e^{-\pi(x)}}$ と $\exp(t_{\pi}(e^{(ad\ x)}y))$ $(x\in f_4, y\in f_2)$ が同じ無限小生成作用素を持つことになり,結局次を得る.

命題4.8(cf. [3, Prop.5.5]) $\forall x \in {}^{t}_{4}$, $y \in {}^{t}_{2}$ $e^{\pi(x)}e^{\pi(y)}e^{-\pi(x)} = exp_{\pi}(e^{(ad x)}y).$

参考文献

- [1] V. G. Kac, Infinite dimensional Lie algebras,
 Birkhäuser, 1983.
- [2] V. G. Kac and D. H. Peterson, Unitary structure in representations of infinite dimensional groups and a convexity theorem, Invent. Math., 76 (1984), 1-14.
- [3] K. Suto, Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra, J. Math. Kyoto Univ., 28 (1988), 633-659.
- [4] K. Yosida, Functional analysis, Springer-Verlag,