Instantons and representations of an associative algebra

YOSHITAKE HASHIMOTO 橋本 義 武

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo Tokyo 113, Japan

In this note we show that instantons on S^4 can be identified with some representations of an associative algebra.

Let A be the free algebra over \mathbb{C} generated by two elements q, p. We define a new product * in A as follows:

$$f_1 * f_2 = f_1(pq - qp)f_2, \quad f_1, f_2 \in A.$$

Then (A,*) is an associative algebra (with no unit), which is an extention of the Weyl algebra A/(pq-qp-1). We consider finite dimensional representations of (A,*). Let W be the complex vector space of dimension l, and h be a linear map from A to End W. Then h induces a linear map

$$\widetilde{h}\colon A\otimes W\to A^*\otimes W$$

defined by

$$\langle \widetilde{h}(f_1 \otimes w), f_2 \rangle = h(f_2 f_1) w, \quad f_1, f_2 \in A, \ w \in W.$$

We denote by H(l,k) the set of all algebra homomorphisms $h: (A,*) \to \text{End } W$ such that the rank of \widetilde{h} is k.

Let P be the principal SU(l) bundle over $S^4 = \mathbb{R}^4 \cup \infty$ with $c_2 = k$, and $\widetilde{M}(SU(l),k)$ be the framed moduli space for anti-self-dual (ASD) connections on P: { ASD connections on P } $/\mathcal{G}_{\infty}$, where \mathcal{G}_{∞} stands for the group of all gauge transformations on P fixing the points in the fiber over ∞ . $\widetilde{M}(SU(l),k)$ is a 4kl-dimensional smooth manifold.

Our main result is the following:

Theorem 1. The framed moduli space $\widetilde{M}(SU(l),k)$ is diffeomorphic to H(l,k).

§1. Some remarks on a theorem of Donaldson.

Let $X = \operatorname{Mat}(k, k; \mathbb{C}) \times \operatorname{Mat}(k, k; \mathbb{C}) \times \operatorname{Mat}(l, k; \mathbb{C}) \times \operatorname{Mat}(k, l; \mathbb{C})$. We define the action of $G = GL(k, \mathbb{C})$ on X as follows:

$$p \cdot (\alpha_1, \alpha_2, a, b) = (p\alpha_1 p^{-1}, p\alpha_2 p^{-1}, ap^{-1}, pb)$$

for $p \in G$, $(\alpha_1, \alpha_2, a, b) \in X$. We call a point x in X stable when the map $G \ni p \mapsto p \cdot x \in X$ is proper. We denote by X^s the set of all stable points in X. Let

$$\omega(\alpha_1, \alpha_2, a, b) = \operatorname{tr}(d\alpha_1 \wedge d\alpha_2 + db \wedge da),$$

$$\mu = \alpha_1 \alpha_2 - \alpha_2 \alpha_1 + ba.$$

We can show by easy computation that

$$\omega(p\alpha_1 p^{-1}, p\alpha_2 p^{-1}, ap^{-1}, pb) = \omega(\alpha_1, \alpha_2, a, b) + \operatorname{tr}(p^{-1} dp \wedge d\mu) + \operatorname{tr}(p^{-1} dp \wedge p^{-1} dp \cdot \mu).$$

(This is suggested to the author by H. Nakajima from the viewpoint of hyperkähler structure.)

THEOREM (DONALDSON [1]). The framed moduli space $\widetilde{M}(SU(l),k)$ is diffeomorphic to $G\setminus \mu^{-1}(0)\cap X^s$.

So we deduce from geometric invariant theory [4] that $\widetilde{M}(SU(l),k)$ is an open dense nonsingular subset of an affine algebraic variety.

Next we seek a criterion for the stability in this case. Let $A^m \in \operatorname{Mat}(2^m l, k; \mathbb{C})$ be the matrix which is the column of matrices $a\alpha_{i_1} \cdots \alpha_{i_m}$, $i_j = 0, 1$, and $B^m \in \operatorname{Mat}(k, 2^m l; \mathbb{C})$ be the matrix which is the row of matrices $\alpha_{i_1} \cdots \alpha_{i_m} b$, i. e.

$$A^{0} = a, A^{1} = \begin{pmatrix} a\alpha_{1} \\ a\alpha_{2} \end{pmatrix}, A^{2} = \begin{pmatrix} a\alpha_{1}\alpha_{1} \\ a\alpha_{2}\alpha_{1} \\ a\alpha_{1}\alpha_{2} \\ a\alpha_{2}\alpha_{2} \end{pmatrix}, \dots, A^{m} = \begin{pmatrix} A^{m-1}\alpha_{1} \\ A^{m-1}\alpha_{2} \end{pmatrix},$$

$$B^{0} = b, B^{1} = (\alpha_{1}b \ \alpha_{2}b), B^{2} = (\alpha_{1}\alpha_{1}b \ \alpha_{1}\alpha_{2}b \ \alpha_{2}\alpha_{1}b \ \alpha_{2}\alpha_{2}b),$$

..., $B^{m} = (\alpha_{1}B^{m-1} \ \alpha_{2}B^{m-1}).$

We set

$$A_m = \begin{pmatrix} A^0 \\ \vdots \\ A^m \end{pmatrix}, \quad B_m = (B^0 \dots B^m).$$

LEMMA 2. The point $x=(\alpha_1,\alpha_2,a,b)\in X$ is stable if and only if rank $A_{k-1}B_{k-1}=k$.

LEMMA 2'. The point $x = (\alpha_1, \alpha_2, a, b) \in X$ is stable if and only if rank $A_m B_n = k$ for some m, n.

PROOF: We can test the stability of a point by the following:

HILBERT CRITERION ([1,4]). The point $x \in X$ is stable for G if and only if for all $g \in G$ and integers $(w_1, \ldots, w_k) \neq (0, \ldots, 0)$:

$$g\begin{pmatrix} t^{w_1} & & \\ & \ddots & \\ & & t^{w_k} \end{pmatrix}g^{-1}\cdot x \to \infty \quad \text{as} \quad t \to \infty.$$

CLAIM: If rank $A_{m+1} = \operatorname{rank} A_m$, then rank $A_{m'} = \operatorname{rank} A_m$ for all $m' \geq m$. Similarly, if rank $B_{m+1} = \operatorname{rank} B_m$, then rank $B_{m'} = \operatorname{rank} B_m$ for all $m' \geq m$.

PROOF: Assume that rank $A_{m+1} = \operatorname{rank} A_m$. Then the row vectors in A^{m+1} can be written by the linear combinations of the row vectors in A_m . So the row vectors in $A^{m+2} = \begin{pmatrix} A^{m+1}\alpha_1 \\ A^{m+1}\alpha_2 \end{pmatrix}$ are the linear combinations of the row vectors in $A_m\alpha_1$, $A_m\alpha_2$, which are the row vectors in A_{m+1} . So rank $A_{m+2} = \operatorname{rank} A_{m+1}$. The claim follows by induction.

Now we go back to the proof of Lemma 2, 2'. First we assume that rank $A_{k-1} = k' < k$. If k = 1, then a = 0 and

$$t^{-1} \cdot (\alpha_1, \alpha_2, a, b) = (\alpha_1, \alpha_2, 0, t^{-1}b) \to (\alpha_1, \alpha_2, 0, 0)$$
 as $t \to \infty$.

This implies that $(\alpha_1, \alpha_2, a, b)$ is not stable.

If k > 1, we deduce from the Claim that rank $A_{k-2} = k'$. So

$$A_{k-1}g = \begin{pmatrix} A_{k-2}g \\ A^{k-1}g \end{pmatrix} = \begin{pmatrix} A' & 0 \\ * & 0 \end{pmatrix},$$

for some $g \in G$, where the column vectors in A' are linearly independent. Particularly, ag = (* 0). Since the row vectors in $A_{k-2}\alpha_1$ are the ones in A_{k-1} ,

$$(A' \ 0)g^{-1}\alpha_1g = (* \ 0).$$

This implies that $g^{-1}\alpha_1g=\begin{pmatrix} *&0\\ *&* \end{pmatrix}$. Similarly we get $g^{-1}\alpha_2g=\begin{pmatrix} *&0\\ *&* \end{pmatrix}$. So

$$\begin{pmatrix} 1_{k'} & & \\ & t^{-1}1_{k-k'} \end{pmatrix} \cdot (g^{-1}\alpha_1 g, g^{-1}\alpha_2 g, ag, g^{-1}b)$$

converges as $t \to \infty$. Therefore if rank $A_{k-1} < k$, then $x = (\alpha_1, \alpha_2, a, b)$ is not stable. Similarly, if rank $B_{k-1} < k$, x is not stable.

Next we assume that $(\alpha_1, \alpha_2, a, b)$ is not stable. From the Hilbert Criterion we get some $g \in G, (w_1, \ldots, w_k)$ such that

$$\begin{pmatrix} t^{w_1} & & \\ & \ddots & \\ & & t^{w_k} \end{pmatrix} \cdot (g^{-1}\alpha_1 g, g^{-1}\alpha_2 g, ag, g^{-1}b)$$

converges as $t \to \infty$. We may assume that $w_1 \ge ... \ge w_k$. If $w_{k'} \ge 0 > w_{k'+1}$, we deduce that

$$ag = (* 0), g^{-1}\alpha_1 g = \begin{pmatrix} * 0 \\ * * \end{pmatrix}, g^{-1}\alpha_2 g = \begin{pmatrix} * 0 \\ * * \end{pmatrix}.$$

This implies that $A_m g = (* 0)$. Similarly, if $w_{k'} > 0 \ge w_{k'+1}$, then $g^{-1}B_n = {0 \choose *}$. Therefore if $(\alpha_1, \alpha_2, a, b)$ is not stable, then rank $A_m B_n < k$ for all m, n.

§2 The proof of Theorem 1.

First we give the map φ from $\widetilde{M}(SU(l),k)$ to H(l,k). Let

$$h(f) = \varphi(\alpha_1, \alpha_2, a, b)(f) = af(\alpha_1, \alpha_2)b$$

for $(\alpha_1, \alpha_2, a, b) \in \mu^{-1}(0) \cap X^s$. φ is G-invariant. Since $\mu(\alpha_1, \alpha_2, a, b) = 0$,

$$h(f_1 * f_2) = h(f_1(pq - qp)f_2)$$

$$= af_1(\alpha_1, \alpha_2)(\alpha_2\alpha_1 - \alpha_1\alpha_2)f_2(\alpha_1, \alpha_2)b$$

$$= af_1(\alpha_1, \alpha_2)baf_2(\alpha_1, \alpha_2)b$$

$$= h(f_1)h(f_2).$$

We give $i \colon \mathbb{C}^k \to A^* \otimes \mathbb{C}^l, j \colon A \otimes \mathbb{C}^l \to \mathbb{C}^k$ by

$$\langle i(v), f \rangle = af(\alpha_1, \alpha_2)v$$

 $j(f \otimes w) = f(\alpha_1, \alpha_2)bw$

for $f \in A$, $v \in V$, $w \in W$. Then we have $\tilde{h} = i \circ j$. Lemma 2' implies that i is injective and that j is surjective, so rank $\tilde{h} = k$. Therefore $h \in H(l, k)$.

On the other hand, the inverse $\psi \colon H(l,k) \to \widetilde{M}(SU(l),k)$ is defined as follows. For $h' \in H(l,k)$, we set $V = \text{Coim } \widetilde{h}' \cong \text{Im } \widetilde{h}' \cong \mathbb{C}^k$. Let

$$\widetilde{h}' = i' \circ j', \quad i' \colon V \to A^* \otimes W, \\ j' \colon A \otimes W \to V.$$

For $f \in A$ we define $\langle f | \in \text{Hom } (V, W), | f \rangle \in \text{Hom } (W, V)$ by

$$\langle f|(v) = \langle i'(v), f \rangle, \quad v \in V,$$

 $|f\rangle(w) = j'(f \otimes w), \quad w \in W.$

We set $a' = \langle 1|, b' = |1\rangle$. The multiplications by q, p in A induce linear maps $\alpha'_1, \alpha'_2 \in \text{End } V$ respectively:

$$\alpha'_1|f\rangle = |qf\rangle, \quad \alpha'_2|f\rangle = |pf\rangle$$

for $f \in A$. If $|f\rangle = 0$, then h(f'f) = 0 for all $f' \in A$. So $\alpha'_1, \alpha'_2 \in \text{End } V$ are well-defined. We get

$$\psi(h') = (\alpha_1', \alpha_2', a', b') \in X$$

by fixing the basis of V,W. Since

$$\bigcap_{f \in A} \operatorname{Ker} \, a' f(\alpha_1', \alpha_2') = \bigcap_{f \in A} \operatorname{Ker} \, \langle f | = 0,$$

$$\sum_{f \in A} \operatorname{Im} \, f(\alpha_1', \alpha_2') b' = \sum_{f \in A} \operatorname{Im} \, |f\rangle = V,$$

we deduce from Lemma 2' that $\psi(h')$ is stable. Since $h': (A, *) \to \text{End}$ W is an algebra homomorphism, we have

$$\langle f_{1}|\alpha'_{1}\alpha'_{2} - \alpha'_{2}\alpha'_{1} + b'a'|f_{2}\rangle$$

$$= h'(f_{1}(qp - pq)f_{2}) + \langle f_{1}|1\rangle\langle 1|f_{2}\rangle$$

$$= -h'(f_{1} * f_{2}) + h'(f_{1})h'(f_{2})$$

$$= 0.$$

Therefore $\psi(h') \in G \setminus \mu^{-1}(0) \cap X^s$.

If $(\alpha'_1, \alpha'_2, a', b') = \psi(h')$

$$a'f(\alpha'_1, \alpha'_2)b' = \langle 1|f(\alpha'_1, \alpha'_2)|1\rangle$$
$$= \langle 1|f\rangle$$
$$= h'(f).$$

Hence $\varphi \circ \psi(h') = h'$.

If $h' = \varphi(\alpha_1, \alpha_2, a, b)$, we can take i' = i, j' = j by the stability. Then

$$\langle f|=af(\alpha_1,\alpha_2),\quad |f\rangle=f(\alpha_1,\alpha_2)b.$$

This implies that

$$\langle 1| = a, |1\rangle = b,$$

 $|qf\rangle = \alpha_1 f(\alpha_1, \alpha_2) b = \alpha_1 |f\rangle,$
 $|pf\rangle = \alpha_2 f(\alpha_1, \alpha_2) b = \alpha_2 |f\rangle.$

Hence $\psi \circ \varphi = id$.

REFERENCES

- 1. S.K.Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984), 453-460.
- 2. M.Furuta and Y.Hashimoto, Invariant instantons on S^4 , preprint (1988).
- 3. Y.Hashimoto, Group actions on the moduli spaces for instantons over S^4 , Master thesis (in Japanese) (1987).
- 4. D.Mumford and J.Fogarty, "Geometric Invariant Theory, 2nd Edition," Springer-Verlag, Berlin-Heidelberg-New York, 1982.