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"THIRD ORDER ASYMPTOTIC PROPERTIES OF A CLASS OF TEST STATISTICS

UNDER A LOCAL ALTERNATIVE

By Masanobu TANIGUCHI

Hiroshima University, Hiroshima 730, Japan

Summary

Suppose that gn = (Xl,...,Xn) is a collection of p-dimensional random
vectors forming a stochastic process, Let pn?e(gn) R §n € RHP, be the
probability density function of gn depending on 6 £ ©, where © is an open
set bf‘Rl. We consider to test a simple hypothesis H : 6 = 60 against
the alternative A : 6 # eo. For this testing problem we introduce a cléss
of tests S, which contains the likelihood ratio, Wald, modified Wald and
Rao tests as special cases. Then we derive the third—ordervasymbtotic
expansion of the distribution of T € S under a sequence of local alterna-
tives. Using this result we elucidate various third-order asymptotic
properties of T € S ( e.g., Bartlett's adjustments, thifd—order asymptotically
most powerful properties ). OQur results are very general, and can be
applied to i.i.d. case, multivariate analysis and time series analysis.
Two concrete examﬁles will be given. One is.a Gaussian ARMA process
( dependent case ), and the other is a nonlinear regression model ( non-

identically distributed case ).

Some key words : Higher-order asymptotics of test, asymptotic expansion,
local alternative, third-order most powérful test, Bartlett's adjustment,

Gaussian ARMA process, nonlinear regression model.
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1. Introduction

Supggse that gﬁ'= ( Xl,,..,Xn) is a coileétion of p-dimensional random
vectors forming a stochastic-process. Let'pn’e(gn),.}fn € Rnp, be the
probability density function of gn depending on 6 € 0, where 0 is an open
set of Rl. ‘ The problem considered is that of testing a simple hypothesis
H: 6= 60 against the alternative A : 6 # 90. Fo; this problem we propose
a class of tests S, which contains the likelihood ratio (LR), Wald (W),
modified Wald (MW) and Rao (R) tests as special cases. Then we derive the
third-order asymptotic expansion of the distribﬁtion of T € S under a
sequence of 1ocal élternativesye =‘90+e/cn, wheré € > 0 and {cn} is an
appropriate'sequence of positive numbers satisfying c, T > as p > ®, The
resulting automatic formula is very general, hence it can be applied to i.i.d.
case, multivariate analysis and time series analysis. Using this formula
we elucﬁdate various third-order‘asymptotic properties of T ¢ S.

In Section 3 we discuss Bartlett's adjustment procedure. Since T ¢ S
is not generally adjustable in the sense of Bartlett ( e.g.,Taniguchi(1988))
we give a sufficient condition that a modified test T#* = h(éML)T is adjustable
in the sense of Bartlett, where h(6) is a smooth function and éML is the
maximqm likelihood estimator of eo. Under this sufficient condition we can
apply the Bartlett adjustment to T¥*. The resulting test statistic is written
in the form T** = (l+c;2p*)T*, where p#* is the Bartlett adjustment factor.
Then we give the third-order asymptotic expansion of the distribution of T**
under a sequence of local alternatives 6 = 60+c/cn. This result implies
that the second-order asymptotic powers of all the modified tests T** are
eqﬁal, and that there is in general no test in S which is third-order
asymptotically most powerful uniformly in e.

In Section 4 it is shown that we can find the third-order asymptotically
most powerful tést in S at any specified ¢ > 0 and level x. Two concrete

examples will be given. One is a Gaussian ARMA process ( dependent case ),

and the other is a nonlinear regression model ( non-identically distributed
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case 5.

Tﬁroughoutkthis paper we restrict ourselves to the situation where 6 is
scalar because éxtension of our results to multiparameter case’gauses
unnecessarily long and complex formulae ( although it is methodologically

straightforward ) and obscures our theoretical framework.

2. General theory

In this section, for a testing problem, we introduce a class of tests S,
and derive the third-order asymptotic expansion of the distribution of T ¢
S under a sequence of local alternatives. This result can be applied to
i.i.d. case, multivariate analysis and time series analysis.

Let Xn = (X .,Xn) be a collection of p-dimensional random vectors

e

forming a stochastic process. Let P, e(}_gn), X € bRnp, be the probability
>
density function of gn depending on 6 & O, where © is an open set of Rl.

It is desired to test a simple hypothesis H : 6 = against the alternative

%
A9 # 60.

We require the following assumptions.
) P e(zgn) is continuously five times differentiable with respect to
’

6 € 0.

(2) The partial derivative 3/36 and the expectation Ee with respect to

pn’e(gn) are interchangeable.

(3) -For an appropriate sequence {cn} satisfying c > ®asn >, the

asymptotic cumulants of

1, 9t | ot
0 { ;gi log pn;e(gn) - Eg — log pn’e(gn)}, (i=1,2,3),

Z.(8) =c¢
* 36

are evaluated as follows ;

cumy {2, (6),2,®)) = « 7 (0) + <22 x (Do) +o(eTD, @
cumg {2, (8),2,(8),2,(®)) = c.1 k{1 (®) +o(c;?), 2.2)
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cumy 12, (63,2, (6,2, (0).2,(®)} = e « (1) (8) + (7D, (2.3)

i,j,k,m =""‘~"""l,'2,3, and the Jth-order ( J‘z 5 ) cumulants satisfy

) _ -J+2
um, {Zil(e),...,zij(e)} =0(c~ ), (2.4)

where i ,...,i. ¢ { 1,2,3 }.

1 J

Henceforth we adopt the following notatiomns j
16) = D), 38 =@, 1@ =D, ue =@, xe) -
1) _ _ @
<371 ®) N(®) = 5(8), H(®) = x7];

resulting formula in the asymptotic expansion can be expressed only in terms

(8) and A(®) = K(Z)(e), because the

of them. Occasionally we shall use the simpler notations Zi’ I,J, L, etc.
instead of zi(e), I(8), J(8), L(®). etc..

Consider the transformation

= %
Wl Zl/ I,
-1
Wz = 22 -J I Zl’
W, =2, - LIz
3 3 1°
For the testing problem H : 6 = 60 against A : 9 # 60, we introduce the
flollowing class of tests :
2 -1 3
S={T|T-= W+ e T ( alwlw2 +aW) )
2 2 4 3 3
( blwl + b2Wl 2 + b3wl + b4W1w2 + bsw W, ) + o (c ),

under H, where ai( i=1,2) and bi( i=1,...,5) are nénrandom
constants }.
This class S is a very natural one. We can show that four famous tests
below belong to S in the same way as Taniguchi(1988) did for Gaussian ARMA

processes.

Examples. Let éML be the maximum likelihood estimator of 60, and put

zn(e) = log pn’e(gn).

(i) The likelihood ratio test LR = 2] zn(éML) - zn(eo)'] belongs to S with

3/2 2

the coefficients a.= 1/I, a.,= -K/31 -A/T, b2= 1/17,

2,,.3
1 9 b3—~(J+K) /41

b1=
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= (3M+6N+H) /1212, b= - (3+K) /1°72 and bg= 173132,

(ii) Wald's test W = cz( 8 .- 8 )ZI(é ) belongs to S with the coefficients
n ML 0 ML

a, = 2/1, a, 31372, b= ~20/T, b= 3/12, b= — (37244 IR4K2Y J4T° +

(4L+3N+) /612, b, = ~K/T°72 and b= 1/1°72.

4 5

2 A
(iii) A modified Wald's test MW = cn( eML_ 90)21(80) belongs to S with the

coefficients a,= 2/I, a,= —(J+K)/13/2, b,= -24A/1, b2= 3/12, b3= (9J2+14JK

1 2 1
+5K2) /413 - (L43M+68+H) /312, b= —(63+4K) /172 and b= /1372,

(iv) Rao's test R = 21(60)21(90)_1 belongs to S with the coefficients

Now we proceed to derive the third-order asymptotic expansion of the

distribution of T € S under a sequence of local alternatives 6 = 6 +e/cn,

0
(e>0). Since the actual calculation procedure is formidable we give

a sketch of the derivation. First, we evaluate the characteristic function

of T, i.e.,

itT

b, (t.e) = E, +e/c © s _ T e S.
0 n
Denoting Ln(§n) = pn’e te/c (1~<n)/pn’e (gn), we have
0 n 0
_ itT(x )
b (t,e) = J e n’ L o(x) pn’eo(gn) dx |
_ Ee e{1tT + log Ln} ) 2.5)
0

We expand log Ln(gn) in a Taylor series in e/cn, leading to

_ . Ic? -1, €2J e? 3
log L (X ) = e/TW -5 +c {577 W+ 5 W,- ¢ (33K) }

=2 €L . ed . ae? e? . -2
+ e, { T W1+ E-W3— - EZ-(4L+3M+6N+H) } o+ op(cn ). (2.6)

{itT+log Ln}

Inserting (2.6) in e we obtain, after further expansion and

collection of terms,

- Ie2/2 } 1

. 2 JT
e{ltT + log L} _ e{ltwl +e/I W {1+ X q W0
<, 1771772

1
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1 -2
+ ?n' q2(wl’w2’w3) + op(cn )}: (2-7)

where ql( , ) and q2( , s ) are polynomials. In view of the assumption (3)
we can easily evaluate the asymptotic cumulants of W= (Wl,WZ,W3)'. Thus
the third-order Edgeworth expansion of the distribution of W is given in the

form ( see Taniguchi(1986, (3.7))),

Pa,o LW < Wpa Wy < vy, Wy <wy = f_Jw J £ ) £yGpwy) T

0 —e) a0
1 2 Wy 1 (3)
* %e ) ke By + 5z 5k By
n j:ksl =1. J n j, k=1 J
3
1 (l) 1 (1) (l)
+ y H (W) + y c :(w) ]dw
24cnZ 5kt,me1 Cjkem “ikem 72cn7 PR ike ¢ gt kLKL
jikle'=1
-2 ‘
+ o(cn ) (2.8)
W, (W, (W
= J % j 3 qw) 4w + O(C;z), say,
= ' = _1/2 - _i. = -1
where w (wl,wz,w3) . fl(wl) (27m) exp > f2(w2,w3) (27)
-1/2 1 -1 . ) .
x[QZI exp 2(w2,w3)92 (wz,w3) , and Hjl"'js(w) are the Hermite pdly
nomials. Here the above coefficients c?i? and the matrix Q éan be

2

( ) given in (3). From (2.5),(2.7)

expressed in terms of the cumulants k.

and (2.8) it follows that

.2 2
¢n(t,€) = JJJ e{ltw1+ e/T Y1~ Ie /Z}X[l + c;lql(wl,wz) + C;Zqz(w SWa W )]

1°7°2°73
-2
x q(w) dw + o(cn ). (2.9)
First, we calculate the integral (2.9) with respect to W2 and w3. Then,
integration of it with respect to v, yields
2 s
y_(t,e) = expl —i—li—t— @ - 2ie) 21 2 BJ(T) - 2it)7d
0 .
-2 (T, . "3 -2
e _2_ cj (1. 2it) 7 ] + ol ), (2.10)
where
B0= —35 + 0es6,  B=uet/2 - x4 313/2a2)e/21,.
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B§T)= - 13/23253/2 + (K + 313/2a2)€/21, B§T)= (K + 313/2a2)e3/6,
Cé&)= (K+3a2I3/2}2e5/72, o = 53,13/ 24y % /241 - a213/2(3a213/2+K)86/12,
céT) (3a 13+6a2J13/2+2x;)e6/24 + (éﬁa§13+éﬁa112-90a313—36Ka213/2
+12b313+HI—5K2)e“/241 + 5(K+313/2a2)232/812,
(T) {- 3a (6J+K)T 3/2_ K(3J+K) }e®/36 + {—4b313—2ﬁai13—2Na112+15a513
+ 2a2(K+6J)13/244JK}s“/81 + (12b313+3ﬂail3+6Na 1 —45a§ 3-21K3213/2
+HI—5K2)82/412 + 532,17 12247,
<T) (39%+ 2a,1 312 (354x) 1e® 24 + {3Ma’1 + 6fta T - 6a,1°/% (374K) + 6f
- 2K(6J+K) }e*/241 + {4b1I3+4b2ﬁ13—24b3I3-1Zﬁa?13-14ﬁa112+45a313
+ 2(3J+6K)13/2a2+412A—2HI+2KJ+5K2}82/812 + {3ﬂgf13+6ﬁa112—30a§13
—16Ka213/2+12b313+HI—5K2}/813,
D= 5yt /12 + (4114307 6ffa 1%+ 2(32,1%/24K) (334K) Ye* /241
+ {-2b, -2 M +RI-KI+3Ha 1+ (ﬁ+ﬁ)a112—3a2JI3/2}52/412 + {~6ftal1

—Sﬁa112+15a313+6Ka213/2+4b113+4ﬁb213—12b313+4A12—2HI+5K2}/813,

céT)= (334K)2e8/72 + (3M-4L-IM-6N-H)e"*/24 + (-261-fa T-N)e? /4T + (—12b113

—12ﬁb213+9ﬁa§I3+6N3112—12A12+3HI—5K2)/2413,

with M = M - J2/I and N = N - JKI_l. Inverting (2.10) by the Fourier

inverse transform we have,

Theorem 1. The distribution function of T £ S under a sequence of local

alternatives 6 = 60+e/cn has,tﬁe asymptotic expansion

Pﬁ,e +€/cn[ T<x]=¢f Xi(s) <x 1+ C 2 B P[ x1+2 L(8) £x ]

0
L P L 5@ £ x 1+ o(eD, (2.11)

where 62= Ie?/2, and x;(&) is a noncentral x? random variable with j degrees

of freedom and noncentrality pérameter §2.

v



48

Theorem 1 can be applied to i) dependent observations, and ii) not -
f@énéically distributed observations. Concrete examples of i) and ii) will

be given in Section 4. We end this section with the following remark.

Remark 1. For a random sample from a multivariate normal distribution,
Sugiura(1973) considered to test the equality of a covariance matrix ( = I
}-to a given matrix ( = ZO ). Then he gave the third-order asymptotic

expansion of the LR statistic under a sequence of local alternatives An :

-1/2. -1/2 _ -1/2
by Tly =

our formula (2.11) for this problem agrees with that of Sugiura(1973) when

I+n ©, where 0 is a symmetric matrix. It is shown that

the parameter concerned is scalar.

3. Bartlett adjustments

Bartlett's adjustment procedure has beeﬁ elucidated in various directioms.
Barndorff-Nielsen and Cox(1984) established a simple connection between the
Bartlett adjus;ment factor of the likelihood ratio statistic LR and the
normalizing constant for the density of a maximum likelihood estimator
conditioned on an ancillary statistic. They discussed various expressions
for these quantities. Barndorff-Nielsen and Blaesild(1986) described, for
the numerical calculation of Bartlett adjustments‘of LR, a methbdehich may
be of use when the cumulants of the log likelihood derivatives are easy to
determine in one parametrization while the hypotheses to be tested are all
linear in some other parametrization. For Gaussian ARMA processes Taniguchi
(1988) gave a necessary and éufficient condition for T € S such . that T is
adjustable in the sense of Bartlett, and showed that, among the four tests
LR, W, MW and R, the LR test is the only one which satisfies this condition.

NQ& wesexplain Bartlett's adjustment in oﬁr situation. Under the null
hypothesis H it is easy to see that the expectationvof T ¢ S can be written
as

E(T)‘= 1 - p/cﬁ } o(c;?);Ai>

8
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and that

T/ET) = (L4 T ¢ o ().

Henceforth p is called the Bartlett adjustment factor. If the terms of
order C;Z in the asymptotic expansion of the distribution of T* = (1+p/ci)T
vanish (i.e., P [T* <x ] =P[ xz <£x 1]+ o(c—z)), we say that T is
v n,@o 1 n
adjustable in the sense of Bartlett ( B-adjustable for short ).
In view of Taniguchi(1988), T € S is not generally B-adjustable. Thus

we consider to modify T so that T* = h(éML)T is B-adjustable, where h(8) is

a smooth function. Then we can state,

Theorem 2. Suppose that h(8) is continuously three times differentiable.
For T € S, the modified test T* = h(éML)T is B-adjustable if h = h(8),
h' =h'(8,) and h'' = h''(8,) satisfy

i) ~ h=1,

3/

Gi) b= -Ea, % 1)/,

3/2
- 21b3+ (21 a,- J - K)(3a21

(iii) h'' = -Iﬁaf/z - fa 3/2, ¢y /312

1

- (18 - 3K%)/61°.

[proof] We give a sketch of the proof because the actual calculation is

troublesome. It is shown that the stochastic expansion of § is given by

ML

_ -1.-1/2 -2, -3/2 . 2,2 -2
wim 80 T S LWy e ST W, - (HOW /217) + 0 (e ), (3.1)

( see Taniguchi(1986),(1987),(1988)). Expand T* as

T* = h(f, )T

ML

3 i; ' l.A - 2 R} -2
{1+ (eML eo)h (Qo) + 2(GML 60) h (60)}T + op(cn ). (3.2)
Inserting (3.1) in_(3.2) we obtain

2 3
1ot 3N

1 + c;z[ b + B bW+ bW ]

2 -1 2
A =
TH =W +c [ aW g+ P3W + bW Wy + bW, Wy

2 2
1 1 1M+ bW

| +o (), (3.3)
vhere a} = a + h'T /2 12 g4 K)h'/212+ h''/2I and

2 2
[ - ] "1/2
b[+ b4+ h a1I

'=
,bi=b

+ h'I”3/2; This implies T* € S, and hence a necessary

1
3+ h‘azl
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and sufficient condition for its Bartlett'adjustability is that the coef~"

ficients satisfy

W aj = -x/31°/%,

(2) 3I3ﬁa§ + 612ﬁal + 1213b5 + 18 - 3K = 0,

( see Theorem 2 of Taniguchi(1988)). Solving (1) and (2) with respect to

h' and h'', we get the relations (ii) and (iii). 1

For h(8) satisfying (i),(ii) and (iii), evaluating the expectation of (3.3),

Bartlett adjustment factor p* of T* is given by

A= —{1212A + 1213b1+ 1213ﬁb2— 913&ai_ 6Izﬁal— 3IH + 5K2}/1213. (3.4)

It follows that the stochastic expansion of T#** = (1 + p*/ci)T* is

* -
T = 1% + 2wt 4o (TP
c 1 P n
n
) -1 2 , ) 2.2 43
=W +c [ aWW,+aj w3 RN 2ty 1 W+ b W Wo+ DI+ bW,
3 -2
by ] +o (e ), (3.5)
where
by' = —121ls + 1213ﬁb2- 9I3ﬁai— 612ﬁai— 3TH + 5K%)/121°.

Application of Theorem 1 to (3.5) leads to,

Theorem 3. Suppose that h(®) satisfies (i)—(iii) in Theorem 2, and that
p* is given by (3.4). Then, for T € S, the distribution function of the
modified test T** = (1 + c;zp*)h(GML)T under a sequence of local alternatives

8 = 90+ e/cn, has the third-order asymptotic expansion

2
* = 2 -1 (T**) 2
P8 +e/c [T** < x ] =P x38) <x ] +ec D By P[ x1+2j(6) < x ]
0 n j=0
(T*%)
{o ¢ Pl x 1+2 (s) £x ]+ o(c 2y, (3.6)
where
EE.3 * % X%
BéT ) -(3J+K)e3/6, B{T ) . Je¥/2, BéT ) Keli/6,
* %
céT ) - k%8772, c(T ") Ike®/12 + (-3 af + H)e*/24,
* % -~ . -~
céT ) = (932- 63k - 2k%)e/72 + (MI3 a1+ 2M12al+ 2KJ + 28I)e*/8I

10



+ (—9ﬁl3ai+ 30T - SK2)e2/241%,

(p44

cf ) _3(334K)e® /12 + (41L+3J2-6ﬁ12a1)e“/241 + (-3HI+1212A
+5K2+6ﬁ1+9ﬁ13a§+6ﬁ12a1)62/2 412,
%% ’ - - o
céT ) o (3J+K)266/72 + (3M-4L-3M-6N-H)e"/24 + (—ZIA—N—MIal)ezlél.
In this theorem we observe that the coefficients Bg') in (3.6) are

independent of T ¢ S, and hence all the powers of the modified tests T*#*
are identical up to second-order. On the other hand the coefficients CS')
in (3.6) depend on T € S unless M= 0. Therefore, in general, thére is no
test which is third-order uniformly most powerful in S unless M = 0. Here

we note that Yg = ﬁl/zll is a counterpart of Efron's statistical curvature

in time series analysis. Therefore the results above agree with those of
Kumon and Amari(1983) and Amari(1985) which elucidate higher-order asymptotics

of test for a curved exponential family. In the next section we will give

a further study of third-order asymptotiés of test.

4. Third-order asymptotics of test and examples

In the previous section we saw tﬁat the third-oraer terms of power of the
modified test T** depend on T unless M = 0. However, in this section, it is
shown that we can find a third-order optimal test in S at each fixed e and
level x.

The following relation is well known,

P{ x§+2(6) >x ] - P[ xJ%(G)‘ >x ] = 2pj+2(x;52), (4.1)

where pj(x;éz) is the probability density function of x;(é ). From (4.1)

and Theorem 3, the power of T** up to third-order can be written as,

. 402 '
[T >x ] =P[x](6) >x ]+ c;l ) B_—gT“)P[ Xi,:(8) > x 1

P .
n,8 +e/cn 520 1423

0

2

9.2 .82 v SR a2 v 4
+ zcn [ A4p9(x,5 Y + { A3 MI aje /8 }p7(x,6 ) + { A+ MIa e /4

- 3ﬂ1a§82/8 }ps(x;éz) + { A1+ ﬁalez/é }p3ﬁx;62) ]+ o(c;Z), (4.2)

11



where Al""’A4 depend only on 60 and ¢ (i.e., independent of al).
Differentiating the third—qrder terms of (4.2) with respect to al, we éan

see that for each given ¢ and x,

a) = al(e,x,eo) = {Iezps(x;ﬁz) + p3(x;525}/{1252p7(x;62) + BIpS(x;SZ)}

(4.3)

gives the maximum of the third-order terms with respect to a. Hence,

Theorem 4. Let ¢ and x be a given positive number and a given level,
respectively. Suppose that a test T belongs to S with the coefficient
a, = al(e,x,eo) given by (4.3). Then the modified test T** is third-order
asymptotically most powerfgl in the sense that it maximizes the power (4.2)
up to third-order.

- 1-1/2

Setting ¢ t, we rewrite (4.3) as follows ;

Ia

L= 1 Gse/2) + py et/ ePp GseR/2) + 3p (et /)

il

f(t), say.
Let X, be .the level a(0 < o < 1) point of Xi (i.e., P[ xi > X ] =a).

In the following figure we plot the graphs of f(t) for a« = 0.05, 0.025, 0.01.

ft) Figure 1. The graphs of f(t).

o oc=_ XYoo
10E ok L 4 = Lo o255
i.= { L = Xg gy
oo b 'ﬁ

5] - !

i '

) ‘i
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= .= S LT s 4,5 G S t
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From Figure 1 we can design the third-order asymptotically most powerful test

1/2

at each given t ( € = 1 t ) and level x = xa. Conversely, for a given

test ( € S ) with the coefficient a1= 51 and level x- xa‘we can find a value:

]

of t satisfying 151 = f(t).

Now let us see the modification procedure T » T** a + p*/ci)h(éML)T
described in Section 3 for the four tests LR, W, MW and R. Their Bartlett
adjustment factors p* and the derivatives h'= h'(eo) and h''= h"(eo) of

their transformations are given by the following table.

LR W MW R
h' 0 —-(3J+K)/31 | (3J+2K)/3I -K/31
~{12M+18N+8L| 12N+4L+3H K2-2KJ
h'! 0 +3H}£6I + ' gI 612
{275%+205k+ | _ J __H
4K%1}/612 212 61
M N A N A N A H
. Tt | T TF 1t -1t 5
P l,m sk | ®m sk’ | H 5k | sk
412 12713 412 1213 412 1213 1213

Table 1. Table of h', h'' and p*.

More concretely we give two examples I and II.
I) Let { Xt } be a Gaussian ARMA process with mean zero. Suppose that

{ X, } has the spectral demsity
CA\ —'A
: Ll a-yethHa-yeh
g =1 k k :
fo M) =57 —% x =y (4.4)
0 Hk=l 1 - e (a1 - e )

there wl,...,wq, pl,...,pp are real numbers such that lel <1, j=l,...,q,

lojl <1, j=l,...,pP- We also aésume that fe(A) is continuously five times
differentiable with respéct to 6. Then fhe quaﬁtities I, J, K, eté., are

expressed in terms of the spectrél density. For examples;

m . ) ) ) m _ .
1(6,) = 75 L (35 log £ VYO, K(Rg) = o j_"{g—e o (01’2 ) ‘a,

( see Taniguchi(1986) concerning the other quantities ). We can easily

13
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find the explicit forms of h(6) for W, MW and R tests.

Test |Unknown parameter Transformation h(8)
_ .2 b 0 2 L e 242
W 90— g 1 + 332(6 o) + 604(9 g°)
2y 3Y2-5
= oM a0 B _(gy Y2
®0% ¥ L= qoqz(0-vp) + 5a5mya (0-4y)
m m
(e—pm)z
% *n LT IaDh
_ 2 2 a2 1 282
- 6,=© 1 - 35, (8-0%) + 5%, (8-0%)
V23 )
%7 'n B TTETA LAY
2pm 7p;+l
= _m W a2
m m
8= o2 1 - —Z—(e—cz) +<—£¢(6—02)2
R 0 302 20
29 71;;;—3
- _ oz 2
60 wm L+ i:Eg(e ¢m) + 2(1—11)m)2(e wm)
2p
_ _m _ _ 3 3 2
%7 Pm b1z o) T g (Oey)

Table 2. Table of h(8) for the tests W, MW and R when {Xt} has the
spectral density (4.4).
Turning to the evaluation of Bartlett's adjustment factor p* of T* =
h(éML)T, we restrict ourselves to the case where the process {Xt} is an AR(1)
or MA(1l) because calculation of A is very troublesome. Suppose that {Xt}

has the AR(l) spectral density

2
1
fg V) =37

—_— (4.5)
90 ll _ pelllz

Then we can evaluate p* for LR, W, MW and R as follows.
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Test T | Unknown parameter | p*= p*(eo) for T* = h(§ML)T
' " Z
eo o] 1/3
LR e =
0 . -2
— 3 _
g 60 o 1/3
%= ¢ {50%- 1}/{2(1 - p2)}
60= o2 - 1/3
MW 5= :
o P {502- 1}/{2(1 - 02)}
60= g? - 1/3
R
9= ¢ {11 - 1502}/{2(1 - p2)}

Table 3. Table of p* for the tests LR, W, MW and R when {Xt} has the
spectral density (4.5).

Next we assume that { X } has the MA(1l) spectral density
(4.6)

Similarly we have,

Test T | Unknown parameter | p*= p*(eo) for T* = h(GML)T
0 o2 - 1/3
LR 6 m
0 -1+ 292)/(1 - y?)
6 .= o2 -1/3
O
W ) m
0 {792+ 9}/{2(1 - ¢ )}
8. .= g2 - 1/3
O
MW 5= : :
0 ; {79+ 9}/{2(1 - v}
60 g2 -1/3
R 5 =7
0 {11 - 3p2}/{2 -y}

Table 4. Table of p* for the tests LR, W, MW and R when {Xt} has the
spectral density (4.6).

Now we discuss the second example.

II1) Consider the nonlinear regression model

X, = o+ B62cos (t-1)A + u s t =1,...,n, 4.7)
where 6 is an unknown parameter satisfying 0 < 6 < m; a, B and A = gg&

( £ ; an integer ) are known parameters, {ut} is a sequence of i.i.d.N(0,02)

random variables. Then it follows that
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I = 2826%/0%, J = 28%6/0%, M =28% /6?2, K=N=L =H =4 = 0. (4.8)
For our model (4.7) we can also calculate the Bartlett adjustment factor p#*
and the derivatives h' and h'' for the four tests LR, W, MW and R. From

Table 1 and (4.8) the results are given by

LR W MW R
h' 0 -1/6 1/0 0
h'' 0. 5/202 | 1/262 0
o* 0 0 0 0

Table 5. Table of h', h'' and p* for the model (4.7).

Here it should be noted that M =M - J2/I = 0. Recalling Theorem 3, we
can see that, for any T € S, the local powers of all the modified tests T*#*

are identical up to third-order.
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