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An interpretation of a candidate’s formula

電通大電子情報 久保木 久孝 (Hisataka Kuboki)

Abstract. A candidate’s formula for the Bayesian predictive distribution of a

future observation is a predictive version of Bayes’ formula. However the formula

connects the expected entropy, a measure of the goodness of prediction fit, with the

expected information gain about a parameter.

1. Introduction

Let $\phi(y)$ be the density of a future observation $y$ . Suppose that we can use the

observation $x$ which has the density $\psi(x)$ . Assume that $y$ and $x$ are independent but

that $x$ provides information on $y$ through the same indexing parameter (Aitchison&

Dunsmore, 1975, p. 1). We consider the problem of estimating the true distribution

$\phi(y)$ . When the joint distribution $\phi(y)\psi(x)$ is a member of a parametric family

$M=\{f(y|\theta)g(x|\theta) : \theta\in\Theta\}$ , such an estimate $f(y|x)$ is obtained from

$f(y|x)= \int f(y|\theta)p(\theta|x)d\theta$ ,

using a distribution $p(\theta|x)$ which specifies a parameter $\theta$ based on the observation

$x$ . Akaike (1978) termed $p(\theta|x)$ an inferential distribution.

Consider the situation where the distributions $\phi(y)$ and $\psi(x)$ are chosen ran-

domly from the family $M$ by a prior distribution $\pi(\theta)$ . Then the Bayesian predictive

distribution $f^{*}(y|x)$ is usually calculated from

$f^{*}(y|x)= \int f(y|\theta)\pi(\theta|x)d\theta$,
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where $\pi(\theta|x)$ is the posterior distribution of $\theta$ . Recently, it is pointed out by Besag

(1989) that $f^{*}(y|x)$ is expressible in the form

(1) $f^{*}(y|x)=f(y|\theta)\pi(\theta|x)/\pi(\theta|y, x)$

without any need for integration, where $\pi(\theta|y, x)$ is the posterior distribution of $\theta$ ,

with $x$ augmented by an additional observation $y$ . This expression is termed a can-

didate’s formula. However, we remark here that (1) is a predictive version of Bayes’

formula; see also Leonard (1982). In fact, setting $h(y, x)= \int f(y|\theta)g(x|\theta)\pi(\theta)d\theta$

and $g(x)= \int h(y, x)dy$ , we can easily see that the formula (1) follows from Bayes’

formula

(2) $\pi(\theta|y, x)h(y, x)=f(y|\theta)g(x|\theta)\pi(\theta)$ ,

and the relation

(3) $f^{*}(y|x)=h(y, x)/g(x)$ .

The purpose of the present note is to point out that the expression (1) is of

theoretical importance, besides being usefUl in calculating $f^{*}(y|x)$ . In the next

section, we give an information-theoretic interpretation to this formula. The note

closes with some comments on those three methods of specifying prior distributions

which are proposed by Akaike $(1978, 1983)$ and Bernardo (1979).

2. An interpretation

When a distribution $f(y)$ is used as an estimate of $\phi(y)$ , an appropriate measure

of the goodness of prediction fit is the entropy of $\phi(y)$ with respect to $f(y)$ defined

by

$B( \phi, f)=-\int\frac{\phi(y)}{f(y)}\log\{\frac{\phi(y)}{f(y)}\}f(y)dy$ ;

see Akaike (1978). Thus the neg-entropy-B$(\phi, f)$ , which is identical to the well-

known Kullback-Liebler information, is a measure of the badness of prediction fit

to $\phi(y)$ . Since the distributions $\phi(y)$ and $\psi(x)$ are produced from the family $M$
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according to the prior distribution $\pi(\theta)$ , the goodness of a predictive distribution
.

$f(y|x)$ . is then evaluated by the expected entropy

$E_{\theta}E_{x|\theta}[B \{\phi, f(\cdot|x)\}]=-\int\pi(\theta)\int g(x|\theta)\int f(y|\theta)\log\{\frac{f(y|\theta)}{f(y|x)}\}dydxd\theta$ .

We are interested in finding $f(y|x)$ which will maximize the expected entropy or

minimize the expected neg-entropy. As noted by Aitchison (1975), the desired max-

imum is attained with $f^{*}(y|x)$ ; i.e.

(4) $E_{\theta}E_{x|\theta}[B\{\phi, f^{*}(\cdot|x)\}]\geq E_{\theta}E_{x|\theta}[B\{\phi, f(\cdot|x)\}|$ .

On the other hand, if we follow Lindley (1956), the amount of information about

$\theta$ provided by $y$ after the value $x$ is observed, with prior knowledge $\pi(\theta)$ , can be

defined to be

$I \{\pi(\cdot|y, x), \pi(\cdot|x)\}=\int\pi(\theta|y, x)\log\{\frac{\pi(\theta|y,x)}{\pi(\theta|x)}\}d\theta$ .

Thus the expected information gain about $\theta$ is

$E_{y,x}[I \{\pi(\cdot|y, x), \pi(\cdot|x)\}]=\iint I\{\pi(\cdot|y, x), \pi(\cdot|x)\}h(y, x)dydx$ .

The following result describes the relation between the expected neg-entropy and

the expected information gain.

THEOREM. For any inferential distribution $p(\theta|x)$ ,

$E_{y,x}[I\{\pi(\cdot|y, x), \pi(\cdot|x)\}]\leq E_{\theta}E_{x|\theta}[-B\{\phi, f(\cdot|x)\}]$,

with equality if, and only if, $f(y|x)$ agrees with the right hand side of (1).

The proof is straightforward from the formula (1) and the inequality (4). This

theorem shows that the expected information gain about $\theta$ provided by $y$ after the

value $x$ is observed becomes a lower bound to the badness of the prediction fit to

$\phi(y)$ . Then the formula (1) states how the information gain about the parameter $\theta$

is converted into the best prediction of the future observation $y$ .
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3. Discussion

The theorem in \S 2 suggests the use of the lower bound $E_{y,x}[I\{\pi(\cdot|y, x), \pi(\cdot|x)\}]$

for the comparison of various possible prior distributions; that is, we select a prior

distribution $\pi(\theta)$ such that the future observation $y$ adds ‘minimum’ amount of in-

formation to the corresponding posterior distribution $\pi(\theta|x)$ . The impartial prior

distribution introduced by Akaike (1978), although it is actually defined by a prior

distribution $\pi(\theta)$ which maximizes the quantity $\min_{\theta\in\Theta}E_{x|\theta}[B\{\phi, f^{*}(\cdot|x)\}]$ , is sim-

ilar to this prior distribution. On the other hand, the definition of the reference

posterior distribution introduced by Bernardo (1979) is based on a prior distribu-

tion $\pi(\theta)$ which (maximizes’ the expected information gain about $\theta$ provided by the

observation $x$ :

$E_{x}[I \{\pi(\cdot|x), \pi\}]=\int g(x)\int\pi(\theta|x)\log\{\frac{\pi(\theta|x)}{\pi(\theta)}\}d\theta dx$ .

If interest is both in estimation of the parameter $\theta$ and in prediction of the future

observation $y$ , then to compare various possible prior distributions, we should use

a criterion function which evaluates both the information gain about $\theta$ and the

prediction fit to $\phi(y)$ . As a natural choice of such a function we adopt

(5) $E_{x}[I\{\pi(\cdot|x), \pi\}]+E_{\theta}E_{x|\theta}[B\{\phi)f^{*}(\cdot|x)\}]$ .

We want then to find a prior distribution $\pi(\theta)$ which (maximizes’ this criterion

function.

Let us now consider the special situation where $\phi(\cdot)=\psi(\cdot)$ and $f(\cdot|\theta)=g(\cdot|\theta)$ .
From (2) and (3),

$\frac{h(y,x)}{g(y)g(x)}=\frac{\pi(\theta|y)f^{*}(y|x)}{\pi(\theta)g(y|\theta)}$ .

Here using (2), we have

$\pi(\theta|y, x)h(y, x)\log\{\frac{h(y,x)}{g(y)g(x)}\}$

$=$ $g(x| \theta)g(y)\pi(\theta|y)\log\{\frac{\pi(\theta|y)}{\pi(\theta)}\}-\pi(\theta)g(x|\theta)g(y|\theta)\log\{\frac{g(y|\theta)}{f^{*}(y|x)}\}$.
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Since $f(\cdot|\theta)=g(\cdot|\theta)$ , it follows that $E_{y}[I\{\pi(\cdot|y), \pi\}]=E_{x}[I\{\pi(\cdot|x), \pi\}]$. Thus we

obtain

$\int\int h(y, x)\log\{\frac{h(y,x)}{g(y)g(x)}\}dydx=E_{x}[I\{\pi(\cdot|x), \pi\}]+E_{\theta}E_{x|\theta}[B\{\phi, f^{*}(\cdot|x)\}]$ .

This observation shows that the minimal information prior distribution introduced

by Akaike (1983) agrees with that $\pi(\theta)$ which maximizes the criterion function (5).
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