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1. Introduction

The present note contains the investigation of .the topology of
a singular set of stable mappings. It is a continuation of the
author’s note [3], where analogous theorems on the topology . of
singular sets of certain mapping are formulated. Our main concern
is the stable mapping from 4-manifolds into 3—dim euclidean space,

f: M AaR). Since f is stable, possible singularity types are the

followings ,
1) (u,x,y,z) —_ (u,x,yzi z2), fold point (A, —type)
2) (u,x,y.2) —s (u,x,y3+uyizz), cusp point (A,—type)
3) (u,x,y,2) _— (u,x,y4+uy2+xyizz), swallow tail(Az—type)

In this case it is easy to see that the singular set, S(f), of .the
mapping f is 2-dim submanifolds of M4! Then it arises a question
to what extent the structure of S(f) is determined by the mapping
and. topology of M*. We are concerned with the location of S(f) in
M.
2. Congruence formula

To extract embedding phenomina of S(f) in M4, we will study the
structure of the normal bundle of S(f) in M. To be precise, we
will formulate +the relation between self-intersection number '~ of
S(f) and signature of M. We set several assumptions for simplicity
from now on: M is oriented and first integral homology group of M
vanishes. This means that torsion of second (co)homology is free,
for H?%*(M;Z) = Hom(H,(M;Z),2) ® Ext(H,(M;Z2),Z), which follows from
"universal coefficient theorem.

For a.stable mapping £:M*a R?, we can prove the following formula,

6 (M)=—S (f)S(f) mod4 ' (1)

Here G(M) is defined as the signature of the cup product bilinear
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form on the 2—nd cohomology group and the dot stands for the self
intersection number of S(f) in M*. Before proving formula (1), we
need a key result. For our mapping f it holds,
x(M)= x(S(f)) mod2 (2)
where X denotes the Euler characteristic. The requisite technique
of the proof is to consider the orthogonal projection from R’ toc an
one dimensional linear subspace L of R®( See [1] ). We can regard
L as a line through an origin of R’i.e. an element of RP*, 2-dim
projective space. Let A (f) stand for an Ay—type singular set of f
- (1<k<3). It follows from the genericity of the above projection T:
R® 4 L that for almost every line of RP? the tomposed mapping M- £
and TM-f|AK(f) (1<k<£3) are Morse functions. Let #C(g) be the number
of critical points of a Morse function g: M»®R. Since the closure
of Ay(f), A,(f), is a disjoint union of a circle, #C(T-£]A,(£)) is
even. Moreover, it is easy to see
#C(To£) = #C(T-£]1A (L)) mod2,
#C(M-£|S(f)) = #C(T-£]A(£f)) + #C(T-£]A,(£))
= #C(T-£]A,(f)) mod2.
From the Morse theory the Euler characteristic of a compact
manifold is mod2 congruent with the number of critical points of
the Morse function over the manifold. Thus formula (2) follows.
Next, the following is well known as the generalized Whitney
congruence (See [2]). Let F? be a characteristic surface of M*. If

the first integral homology group of M vanishes, it holds

6 (M)= F-F+2x (F) mod4. (3)
F is characteristic if the mod 2 cycle [F]Zis dual to the 2—nd
Stiefel-Whitney class w,(M). In our situations the following fact
ié well known (See [4]). S(f) is a mod 2 cycle and its Poincaré
dual coincides with w,(M). Thus formula (1) automatically follows
from (2) and (3). Formula (1) merely suggests certain kind of
restriction between the topology of a domain and singular set and

does not completely elucidate the location:of S(f).

3. Orientability of singular sets

We should need to consider the orientability of S(f). For our
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mapping f we have an immediate result concerning the orientability
of S(f).
(i) If the signature of M* is odd, then S(f) must be unorientable.
- More precisely, S(f) contains unorientable surfaces with odd genus
, which follows from classification of closed surfaces and formula
(2).
The case where((M) is even is more complicated and subtile. We
will continue to study the orientability of S(f), assuming O0(M) is
even. Let ¥ be a smooth embedding of S(f) into M , y: S(f) - M. If
W*: H (M;Z2/2) - H (S(f);Z2/2) is the homomorphism, induced by ¥, we
assume Y* is an injection for a while, then we obtain the following
bundle isomorphism
T (S (£)) @y = @* © (M),
where V, denotes the normal bundle of S(f) in M. Then it holds,
W(TM) =(1+w 1 (S(£))+ wo(S(£))) (Lwy(Vy)Htwy( V)
= 1+ (W (S(£))+w () )+ (W (S(E£))Hwy () +w (S(£))w (vy))

H(Wo(S(£))w (vp)tw (v )W(S(£)))+w o (S(£))w, (vy) - (4)
If 5(f) is orientable, then wl(Sf)) and w,o(S(f)) vanishes. Thus we
have,

9 o (MY) = wy (g

= wa(S(£))tw,y(vg)+ wy(S(£))w, (vy)

= w,(0y). (5)
On the other hand, from formula (1) the self—-intersection number
of S(f) is even since (M) is even. Hence,

<wy(vg), [S(£)],> = S(f)-S(f) =0 mod 2.

If the mod 2 cycle [S(f)],is a zero element, then w,(M) vanishes
from the fact‘which we state above. Otherwise, wz(L%) vanishes.
Also in this case by equation (5) w, (M) vanishes from the
injectivity of Y. Thus we have proven that M is spin. From the
‘classical Rochlin’s theorem , the signature of M must be divisible
by 16. Therefore, assume (M) is even and not divisible by 16, if

?* is an injection then S(f) is unorientable.

4. Branched covering space
In this section we will study the general:case in which the

target space is an arbitrary oriented 3-manifold. For any stable
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mapping f: M* N3, the mod2 cycle [S(f)],is also dual to the 2-nd
Stiefel-Whitney class of M since any orientable 3-manifold is
parallelizable and vanish the contributions of characteristic
classes of f* T(N) in the Thom polynomial. Accordingly, it is
expected that if M is a spin manifold, namely, w, (M)=0, the
embedding phenomina of S(f) should be more accurately evaluated.
We will explain our trial to calculate the self—-intersection
number of S(f) in M hereafter. Since M is spin, (S(f)]zis a zero
element of H,(M;Z/2). Suppose S(f) is orientable. Non-orientable
case will be treated afterwards. Let §:S(f) - M be a smooth
embedding with »@*'[S(f)]= ueHZ(M;Z). Then we can define the
divisibility of S(f),
'div(S(f))= max{n € Z; u=nv for some veH,(M;Z) }.
We have an immediate result from this definition, considering the
following homomorphism
Hp(M;Z) —> Ho(M;Z/2) —»H2(M;2/2),

where the first arrow is mod2Z coefficient homomorphism and second
one 1is Poincaré duality isomorphism. We claim div(S(f)) is even,
and we set div(S(f))=2m. This follows from the fact that {S(f)}zis
a zero element since M is spin. Then the integral homology class
[S(f)] 4is dual to 2mx for some x of HZ(M;Z) by Poincaré duality.
Let E be the complex line bundle over M such that c;(E)=x, where
c;(E) denotes the first Chern class of E. Then cl(E”§=c1(E®-n ®E)=
2mx, where E™is the 2m—fold tensor product bundle of E. Choose a
cross—section s:M- E®*"of the bundle E“which is transeversal to
the =zero section M and equal to zero exactly on S(f) embedded in
M. Such a cross section always exists by Thom’s transeversality
theorem.TTWe define pah:E*Emby Po{V)= V®-®V. P,,1is a branched
covering of order 2m branched along the zero section,M. Take M= p;,q
"s(M). The covering map : M—-M is the composition of p,, M with the
bundle projection EZ> M. M is a 2m—fold branched covering branched
along the zeroes S(f) of s. It is a diffeomorphism on S(f) and an

usual covering on the complement of S(f) in M and M.

5. Algebraic invariant and its application

‘Let H be a finite dimensional real vector space and t a linear
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transformation of H such that t"=id. Let f be a gquadratic form

over H, invariant under t. Define the polynomials by the formula,

z—1 if k=0
Py(z)= - (z-¢®) (=z—¢%) if 1<k<n/2 (6)
z+1 if k=n/2

-, where g¢=exp(2uti/n).
Then it obviously holds,

2]

z" —1 =kT( P, (z). : ‘ (7)

- This expansion corresponds to a decomposition of H in the direct
sum of subspaces KerPy(z) (0<k<[n/2]). Then we define t-signature

of a quadratic form f,

n/2]

o(f,t) = 2. a(k)cos2kT/n, (8)
k=0

where a(k) denotes the signature of.f over KerPy(t). If t=id, then
0(f,t) denotes the ordinary signature o(f) of a quadratic form f.

Moreover, we define the numbers a(0),...,a(n-1) by
a(k) if k=0,n/2
a(k) = a(k)/2 if 1<k<n/2 (9)
a{n-k)/2 if n/2<k<n-1 '
n-1
It is easy to see, O0(f,t)= 2, a(k)ck. (10)
=0

=

Subspaces KerP, (t)(0<k<[n/2]) are pairwise orthogonal with respect

to a quadratic form f. Thus we have
n-! 2] : | '
O(Ff.t )=2a(k)c® =5""a(k)cos2kst/n (s=0,...,n—1) (11)
k=0 k:o

and in particular, since O(f)=0(f,1id)

3

- In22]

O(f)= 2 a(k) =2 a(k). . (12)
k=0 k=0
Since

n if s=s,

oy
PICLY-
k=o

o if s%s,
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we have L
a(k)=l/n 2. o(f,t5)¢™ " . (k=0,...,n-1)
S=o
n-t )
=1/n{0(f) +§o(f,t5)g~k5} (13)
and
n-1 n-i
a(0)=1/n 2, 0°(f,t>)=1/n{c(f) +SZIG(J‘.t5)} (14)

Combining (13) and (14),
a(k)=a(0)-1/nL & (f,t*) (1)
—a(0)=2/n> o (f,t5 )sin*ksi/n . (15)
s=1 .

In the previous section we have constructed a 2m—fold branched
‘covering T: M>M branched along S(f). Consider the homomorphism qr
H? (M;R)— H?(M;R), induced by 9. 9”isomorphically maps H?(M;R) on
the set of Hz(ﬁ}R)%T which are fixed with respect to Z,, action.
Consequently, H?Z (M;R)Z KerP,(t). Thus we have a(0)=¢(M). In our
situation there 1s an adaption of Atiyah—-Singer G-—signature
theorem ,[5]. 7
O(f,t3)= e[F]/nsinZ%TI (s=1l,...,n"1), (16)
where F is the fixed point set of the diffeomorphism h:M-> M of
period n and e[F] denotes the self-intersection number of F in M.
Accordingly, we have, applying (16) to (15) in our statement

n

a(k):o(M)—z/nZS(f)-S(f)i sin“-‘ﬁsn/ sin?ﬁrt (17)
, =

W

We can easily show, considering second difference equation

n-| IG 5
sin’ r/sin? 2T = k(n—k) (18)
=|

w

Thus we have _
a(k) = 0(M)—2k(n—k)S(£f) S(f)/n>. (19)
In our case H=H2(ﬁ;R) andc(f)=0(ﬁ). Hence we obtain from (12)
“and (19),

o (M)

n-\
2. a((k)
k=0 n-1

n OC(M) — 25(f)-S(f)/n2k2__’.k(n—k)

1l
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=n O (M) =(n*~1)S(f)-S(£)/3n (20)
This is Hirzebruch’s formula, [6].
Since n=2m,
6m 0 (M) = 12m*>G(M)—(4m2~1)S(£f)-S(f). (21)
M is spin, the signature of M is divisible by 16. If we can prove
that M is also spin,i.e. ﬂ*(wz(M))z wz(ﬁ), we can calculate the

self-intersection number of S(f). Since div(S(f)) is even, we have

S{(£)-S(f) = 0 mod 4 if m=1,
S(f)-S(f) = 0 mod 16 if m=2,
S(£)-5(f) = 0 mod 36 if m=3 and so on.

Applying equation (21) to this result,
S(f)-S(£) E‘O mod 32
S(f)'S(f) = 0 mod 64
S(f)-S(f) = 0 mod 288 and so on.
If S(f) 1is non-orientable, we can construct a double branched

covering branched along S(f). Thus this case is contained in m=l.
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