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J. Cl. TOUGERON

Let (X, 0) be a germ of analytic space (reduced and of pure dimension n)

at the origin of CN; let F: (€Y ,0) - (CP,0) a germ of analytic mapping and
f = F!X. the restriction of F to X. We denote sing F the singular set of F, i.e.

the germ of points x € CN such that dF(x) has a rank < r(F), r(F) meaning the

generic rank of F. Many results on F or f are true and well known when
sing F = @ or when F is flat. In this paper, we give examples where these
results can be extended with an hypothesis on the codimension of sing F.

1) If the rank of F is constant (= r), F admits a factorisation N , 0) B

(C",0) %S (CP,0), where A is a submersion and g an immersion. In the general
: sitﬁﬁon, we associate to F' a differential form QF of degree r; if the codimension

of sing .QF in CV is > 3 andif O‘F is decomposable, there exists a factorisation

by a generic submersion and a generic immersion. If codim Y sing F-> 2

and if there exists a formal factorisation F = E o h, then there exists an analytic
factorisation which approximates the formal one. These results are an easy
consequence of Malgrange's Frobenius theorem.

2) If s is the generic rank of f, there does not exist in general a

factorisation : (X,0) —» (Y ,o0) c_i. (CP ,0), where (Y ,0) is an analytic germ,

reduced and of pure dimension s at the origih of CP and i is the canonical

injection. Nevertheless, this is true if F is a flat morphism and if codim N X =

codim cP f(X). We prove analogous results when (X, 0) is a complete

intersection, an hypothesis about the codimension of sing F taking the place of
the flatness.

3) At last, let y = (y; , ... » ¥p) (resp. x = (x; , ..., %)) a system of
coordinates at the origin of CP (resp. CY) and let N a sub-modulus of C [lynd.
Let us suppose that (N o F) CI[[x]] is generated on C [[x]] by elements of C (x)9?
(C {x} is the ring of convergent series in x); then, if F is flat, N is also analytic,

i.e. is generated on C [[y]] by convergent series. The same is true when
hypothesis about the codimension of sing F take the place of the flatness.
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1- A factorisation theorem, _
Let r=r (F) be the generic rank of F' : (C*,0) = (CP,0) and let AT{x} be the
free modulus on C{x} composed with germs at 0 € CN of holomorphic

differential forms of degree r.

Lemma 1.1: There éxists a differential form Qg e AT{x}, r = r(F), unic modulo
multiplication by inversible elements of Clx}, such that :

(1) codimgy sing QF 2 2.

(2) VI={(1,..,iy),1 i1 <..<ir <p,there exits 01 € Clx} such that d F1=01.QF.
(dF;=d F i A A d Fir and sing Qp= {x; Qp (x) = 0}).

Proof : For every I such that d Fy = 0, we can write d F; = 6';. Q; where
07€C {x} and Q; is a form such that codim CN sing Q7 > 2. Let I, J be such that

d‘FI #0,dF;#0 #the generic rank of F being r, we havé Qy=a. Qr with «
mieromorphic at the origin of CV ; but « is holomorphic in cMN\ sing Q;,
so o € Clx}. Permuting I and J, we see that a is inversible and the lemma
follows. , |

Let ©f be the ideal génerated by all the 6; in Cfx} andblet us denote V(Op)
the germ of zeros of ©F ; obviously :

sing F' = V(OF) U sing Q. v

If codimgy sing F 22 andif F =g o h, where A : (C*,0) — (C7,0) is a generic

submersion and g : (C",0) - (C?,0) is a generic immersion, then we may choose
Qp=d hya..nd hy; Opis then the ideal of C{x} generated by all the
determinants of order r of the matrix (dg) o h.

Our result is a corollary of the singular Frobenius's theorem :
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‘Theorem 1.2 (Malgrange, [3]) : Let q,..., », be in Al{x) and let us put
Q=w1 Ai..A 0 . We suppose that fori=1,..,r, dojaQ=0.Then: . ;

Q) If codich sing Q 2 3, the system {w1,...,0} is integrable, i.e. there exist
f1yeenfr € Clx) such that :

(w1,...,07) . Clx} = (df1,...,dfr).Clx}.

@) If codimCN sing Q > 2 and if the system {w1,...,0r} is formally integrable
(i.e. there are formal series fi,...fr € Clixl] such that (w1,....0r).Cllx]] =

d A,....dfr ).CIxID), then the system is integrable.

We use also the following result (cf [3]or [4]) :

Lemma 1.3 :Let h: (CN,0) = (C,0) be a germ of holomorphic mapping such
that r=r (h) and such that codimy sing h 2 2. Then, if f : (CV,0) - C verifies

dfndhy A ... Adh, =0, we have f=g o h, with g : (C",0) — C analytic.

Proposition 14 :

(1) Let us suppose that codimCN sing QF > 3 and let us suppose that Qg is

decomposable, ie. Q= wl A ee A a)r‘ , With w; € Al {x}. Then, there exists a
factorisation F =g o h, where h : (€N,0) = (C7,0) and g : (Cr,0) - (CP,0)
are analytic.

(2) Conversally‘ ,if F admits such a factorisation and if codim cn sing F 22, Qp

is decomposable.

Proof : The system (®y,...,0,) is locally integrable in CN\V(©p), because
dF1=91. Qp and 50 dw; A vcol Ak @p =0 fbri =‘1,’.‘..,:r.‘ By theorem 12, we may
suppose that ;= dh;,i=1,..r, with h; € Cx), 2;(0) = 0. At last, for every
| g=1,‘..,, D, df«;- A dhy Ao dhy = 0 and so F"J- = gj (h1,...,h,) with g; analytic, by

lemma 1.3. The converse (2) is obvious.
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- Proposition 1.5 : Let us suppose that codimCN sing F 2 2 and let us suppose

that F admits a formal factorisation F=g o h (h : (CN,0) - (C",0) and
g :(CT,0) > (CP,0)). Then F admits an analytic factorisation F=go h and we

may choose g and b as closely as we wish tog and h .

Proof : From the hypothesis, 2z admits a formal decomposition :

QF =4 .dh1 A...A dhy, with 4 € Cllx]] and 4 (0) = 0. By Artin's approximation
theorem [1], Q is decomposable, i.e. Qp = w1 A...A 0 With w; € Al{x} and the
system {w1,...,0, } is formally integrable. By the part (2) of theorem 1.2, the

system is integrable and we conclude as in the proof of 1 .4.

Proposition 1.6 : Let F : CN 5 U — CP be an holomorphic mapping with generic
rank r ; we suppose that the set of singular points of F has codimension 2 3. Then,
the set T of points x € U such th_at thegerm F, : (Ux) - (CP, E(x)) is factorisable in

the sense of 1.4, is the compliment of a closed analytic subset of U.

Proof : The result being of local nature, we may suppose that there exists

Q e A7(U) such that Vx € U, the gerni Q , induced by Q in x, is a differential

form Qg .By 1.4, the point x belongs to I' if and only if the equation :
F, ,

Qy=w1A...A ®r admits an holomorphic solution. The proposition results from

a general theorem about the solutions of a system of analytic equations depen-

ding analytically of a parameter (cf [6]).

Remark 1.7 : Let us suppose that F': (CN,0) — (CP,0) admits a factorisation by

(Cr,0), with codimCN sing F > 2. Then this factorisation is unic, in the following

sense :if F=go0 h, F=g’o h' are two factorisations, there is a unic analytic
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difféomorphism 7: (Cr,0) = (Cr,0) such that the following diagram is

’ (Crao)
(CN,0) e
(Cr,0)

1.8. Special Cases

commutative :

(1.8.1.) Let us suppose that V(Op) = @ ; for instance, let us suppose that
8@1,...,r)(0) = 0. Then we may choose Qp=dF; A .. AdF, and if j > r, we get
Fj=gj (Fl,...,Fr ), with 8; analytic. So F =g o h , where g is the immersion
C’ s (2q,....2, ) = (29,....2, ; &, +1(z),...,gp(z)).' The converse is obvious and we get
an equivalence :

(V(OF) = 0) © codim cN sing F > 2 and there exists a factorisation F =g o h, where

g :(C7,0) » (CP,0) is an immersion.

(1.8.2) Let us suppose that sing Qz = @ ; the form Qg is generically
decomposable and non singular and so, by remark 1.9, it is decomposable, and
we may apply 1.4. We get that F =g o h where A is a submersion and fhe
converse is obvious :

(sing Qp =0 ) < Thereexists a factorisation F = g.o h where b : (CN,0) — (C", 0)

is a submersion.

(1.8.3) Let us sup;ﬁose that the rank of F' at 0 is r~1.Then Qpis decomposvable ;

indeed, with a convenient choice of coordinates, we may suppose that

F1=x1;...,F,_ 1=%,_1and 80 Qp =dx; A...Adxr-1 A w, and we may apply 1.4.

IS
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1.9 A decomposable form must verify obvious conditions. Let E be a vector

space of dimension N on C and let e,,....,e5; be a basis of E. Let us consider the
mapping :

N
CNr =Er 5 (w1,...,0r) 2 Q=01 A..AOr € ATE —--C(’).

Obviously, w1 A..A ©r = ®'1 A...A ©'r if and only if there exists a matrix
Me G¢(N, C) with determinant 1 such that
(01,0000,.) M =(0'¢,...,0°).
Outside qb“l(O) the mapping ¢ is a fibering with fiber of dimension r2-1 and
¢(0) is the set of matrices (w1, ....,.0,) with rank < r and so ¢71(0) is an algebraic
variety in E” of codimension N-r+1. The image of ¢ is an algebraic variety in
ATE, of dimension Nr-r?+1, with an isolated sihgularity at the origin.
If X 01 ey (er =€, A...A ¢;) is the generic point of A" E and if U; is the
open set 6;# 0, then Im ¢ N U; is regular and is the transverse intersection of

(ﬁl)— (Nr—r2+1) algebraic hypersurfaces Fl,a = 0, where FI,a is homogeneous

of degreer (if r=2, Im¢={Q; QA Q=0}.
So, a decomposable differential form Q must verify (Z’Y)- (Nr-r2+1)

independent conditions. Conversally, if these conditions are full filled and if Q
is non singular, then Q is decomposable. If Q is singular and decomposable
(Q= w1 A...A @), every irreducible component of singQ = {x;rank (01 A..A@) <1}

has codimension < N-r+1.

Another condition is the following one. Let v(QQ) = iIIlf v(9]) be the infimum
of the multiplicities at the origin of the 6; (2 = 2 6;dx; and let #(Q) be the
1

ideal generated in Cf{x) by 0r's. If v(Q) = s < r and if Q=w1 A...A0p , then r-s
- forms w; are linearly independant at the origin and by choosing suitable

coordinates :
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Q=( 3 07 dxp) A dxN_(r—s}+1 Aendxy
1 ' '
with I = (iq,...,05), 1 < Iy < .<ly £ N-(r-s) ; so the minimal number of generators
of $(Q)is < (N‘(sr“”) _
TFor instance, if N = 3, r =2, the conditions FI,a(Q) = 0 are vacant. A form

Q with an isolated singularity at the origin is not decomposable ; the form
Q=xy dx dy + y2 dy dz + z dx dz, with the x—axis as a line of singularities, is not

decomposable. Nevertheless, it is decomposable at every point outside the origin
(fx#0,Q=(Cdx-ydz)a (ydy+§ dz)). .

If N=4, r=2, there is one  condition Fi,a = 0:012034 — 013094 +
This condition is not sufficient, but I do not know if the hypotheses that O is
decomposable at every point outside the origin, implies that €) is decomposable.

1.10 In this paragraph, we give some upper bounds for codimCN sing F

(1.10.1). First, every irreducible component of F’ ~1(0) has codimension <r = r(F)

(indeed, if F' is the germ at 0 of £ : U — CP, the generic codimension of the fiber

Egl F(&) is r and this codimension is a lower semi-continuous function of &) ;

after, F1(0)\sing F is a regular variety of codimension r. Accordingly :
r(F) 2 codimgy F ~(0) 2 inf (+(F), codim gy sing F)
(1.10.2) If codim -y sing F'2 2 and if V(Op)* ), there is an inclusion :

FY0) cV(@p).
Accordingly , if V(Op) # @, we get codim cN V(Op) <r,andso:

codimCN sing F<r (wesupposer >1).
Indeed, if F-1(0) @V(©p) there exists an holorﬁorphic curve C > t— x(t) e CN
~ such that x(0) =0 and x(¢) € F-1(0O\V(®p) if ¢ # 0. From (1.8.1), the morphism

F;: (CN,(x(t))l—> (CP,0) (t # 0 small enough) admits a factorisation ‘thfough a
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germ X, of analytic variety of dimension r at the origin of CP. All X, are equal to
al_Z and F = Fy admits a factorisation thrdugh Z. From (1.8.1), V(®f) = ¢, c.q.f.d.
(1.10. 3) Let us suppose that Qris decomposable. From 1.9, if sing Qp# @ :
codim cN sing QF < N-r+1.

Nevertheless, if six_lg Qp =0, there is from (1.8.2) a factorisation F =g o &,
where A is a submersion, and V(®p) is the germ of zeros of the ideal A* #, where
# is the ideal generated by all determinants of order r of the matrix
pxr(dgy,....dgp).
So,if V(Op) =9, codimCN V(®p) < p-r+l.

Accordingly, if sing F # @ and if Qp is decomposable :

codim cN sing F' < sup (p,n)-r+l.

The codimension being lower semi-continuous :

Let us suppose that there exist points x € sing F, as closely as we wish from
the origin, such that Qg is decomposable (this is true if d, F has rank r-1, cf
F, )

(1.8.3)). Then :
codim cN sing F' < sup (p,n)-r+1.

We have also the following remarks :

Let us suppose there exist points x € sing Qp , as closely as we wish from the
origin, such that Qg is decomposable ;then
b 4

codim .y sing QF <n-r+l

Let us suppose there exist points x € V(©g), as closely as we wish from the

origin, such that Qp is decomposable ; if codich sing QF 2 3, then :
=

codimy V(Op) <p-r+l.

‘Remarks 1.11 : The proposition 1.5 is false in general if we suppose that the
dimension of the space by which we factorise is not equal to r = r (F). For

example (cf [2]), there exists an analytic morphism F : (C2,0) » (C%,0)

5
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with Fy=x;, Fo=%%9, F3=x% 5%, F = ¢ (F1, F, F3), where ¢ is formal
and cannot be choosen analytic.Then r(F) = 2, ker F* = 0 and ker F*is
generated__ by y4-§_ (y1,¥2,¥3). So, there is a formal factorisation of
F:(C2,0) —}>l (C3,0) g (C4,0), where C3={y € C4;y4=0) and g is the graph of

¢ ;if F: go fis an analytic factorisation of F near of the preceding one, g is

(as E) an immersion and ker F* # 0, but this is false. In this example,

codimC2 sing F =1, but_ we may modify it, in such a way that

codim .y sing F22.

2 - On the regularity of a germ of analytic mapping.

In this paragraph and the fgllbwing one, we suppose that F _is a generic
submersion, i r = _

2.1. Let us suppose that (X,0) is irreductible and let us suppose that
f:F|X:(X,0) > CP has generic rank s. If © xis the ring of germs of
holomorphic functions on (X,0) and if f*: C{y} 0@ xis the homomorphism

induced by f, there is inequalities :

s<s'=dim @x/ker f¥)<s" = dim (0Oy /ker f*).

Let us recall the following result (Gabrielov, [21):

Theorem 2.2 :Ifs=s', weget s =s"=s", i.e if the topological dimension of the
image f(X) is equal to its formal dimension, then ii is also equal to its analytical
dimension ; therefore : ker f; = 1;:1*7*.

The morphism f is regular (Gabrelov's definition) if s = s’ =s"; if (X,0) is
reduced, the morphism fis regular if it is regular in restriction to each |

irreducible component of (X,0) . The morphism f is regular if £ is finished or if

(X,0) ahd f are algebraic ; here is another condition :

SO
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Proposition 2.3 : Let us suppose that (X,0) is irreducible ; the morphism f is
regular under every following hypothesis :

1) r(f) = codimy f~ 1(0) (the inequality r{ f) = codimy f~ 1(0) is always true)

(2) F'is a flat morphism and codimCNX= codimﬂ, JX.

Proof : 1) LetZcC¥bea generic plane of codimension n—s (s = r(f)) passing
through the origin ; then, every irreducible component Xy ; of XNnX has
codimension (n—sH+(N-n) = N-;s in €V, so has dimension s and X3 i nf1(0)=(0). |
If g=f|Xzi,g8 :Xzi— CP is afinite morphism, and its rank is s.

The kernel of g* : Cly} - © XZ,i) is a prime ideal Px; such that Cl{yl/ =5,
has dimension s. Generically, X3 ; contains points x as closely as we wish to the
origin, which are regular for X5; and X with:

rank d, f = rankd, g =s
(the notations X , g etc... mean sets, functions etc.., the germs of which at the
origin being X, g...). If o e ¥z, 00 f isnullonXs; and ¢ o_f is null onX in
the neighborhood of every x. Therefore, ¢ 0 f =0 and { 5 ; < ker f*. The inverse

inclusion is obvious because C{y}/ P x; has dimension s, and the morphism f is
regular.

(2) The morphism F being flat, codimy F-1(0)=p, so codimCNf“l(O) >p
and codimy FLo) = codimCNf‘l(O) - codimCNXZ p- codimcp X)) = r(f).

Therefore r(f) = codimy f~ 1(0) and the result is a consequence of (1).

Example 2.4 : Let ¢1(xp) ,..., ¢n-1(xn) € Clxp} be germs, algebraically
independent on C, such that (p'1(0)7 =.. = (p'n_1(0) = 1. Let us consider the

morphism f:

(C,0) 5 (1.0 %) = (K1peve X1, X1 PLER)sere k01 Pr-1(tn)) € C20-2,
Then r(f)=n and sing f=f 1(0). is the x,—axis ; so codimCN f10)=n1;

10
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besides, the rank of df at 0 is n-1. The morphism f is not regular if n> 2
more precisely, ker f‘?‘ =0. Indeed, let g € C [[y]] be such that:
& (x1,...,2n-1, X1 P1(xp),...2xn-1 Pn-1(xn)) = 0.

o0
If g = 2 gv is the decomposition of g in homogeneous polynomials, and if

v=1
x1=t &1 sy Xp-1 =t Ep1 :

Y 1Y gy Elrenkin-1, E1 01En)seesbn-1 Pn1(@n)) =0

v=1
50 gW(E1,eEn-1, €1 10n),e.fn-1 Pn-1(xn)) = 0,ie. gy =0, Vv.
This example, a variant of Osgood's example, shows that it is difficult to
improve 2.3. Nevertheless, in 2.3 (2), we may replace the hypothesis of flatness

on F' by a condition of regularity on F.

Remark 2.5 :If codimCN.sing F 2 p, the morphism F is flat. Indeed, by
1101),p=r(F) = codimCN F-1(0) and this means exactly that F is flat. Here is
an example where codimy sing F= p-land F is not flat ; F :C2p-2 - CPis

defined by
F1(x) =x1; ... ; Fp1(x) =xp_1 ; Fp(x) = x12p + X2Xp41+ ... + Xp-1X2p-2.

Proposition 2.6 : Let us suppose that codich sing F 2 3, where

F:(CN,0) — (CP,0)is a generic submersion. If (X,0) is a germ of hypersurface
at the origin of CN such that codime X =1(= codimCN X), then f=F |Xis

regular (X = F1(Y), where Y is a germ of hypersurface at the origin of CP).
Proof : Let ¢ =0 be a reduced equation of X ; the condition on the generic rank

of f meéns that at each régulaf pdiht of X, dx ¢ is a linear conbination ofd F; ,

ie:

77
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(%) | d¢=¢.wfi ¢; dF;
i=1
with ® € Al{x} and ¢; € Cix}.
So do=-% d @) ndFi;
i=1

and do A dFj A..n dFp = 0. By 2.9, the hypothesis codimy sing F 2 3
implies that o=d¥ mod(dF), where(dF) is the submodulus of Al{x} geherated by
dFl,...,de . From (%):

d(peV) e (dF)
and from lemma 1.3 : ¢ =e¥ . (6 0 F), with 6 € C{y}.
If Y is the hypersurface with reduced equation 6 =0, then X = f~ Ly).

Corollary 2.7 :If codimCN sing F 2 3and ifY is a germ of irreducible

hypersurface at the originof CP, X = F~ YY) is also irreducible
(indeed, if X =X" U X" is a proper decomposition of X, we may apply to X' and X"’ the
previous reasoning, and X' = Fl(Y'), X" =FLy™" ;s0Y =Y U Y"”isa proper

decomposition of Y which is not irreducible).

Corollary 2.8 : Let us suppose that codimCN sing F 2 3 and that Qgpis

decomposable (we do not suppose that F is a generic submersion). If

codim N V(OF)2r=rF), F and the restriction of F to every hypersurface (X,0) of

(CN , 0), are regular morphisms.

Proof : By 1.4, there is a factorisation, F =g o A, where h is a generic
submersion and g is a generic finite immersion. So F is regular ; if Xis a germ
of irreducible hypersurface at the origin of CY, either the rank of h|X is equal to
rand f = F|X is regular ; or this rank is r-1, but then we may apply 2.6 and

again f is regular.
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2.9. In the proof of 2.6, we used a very particular case of the following result
(cf [3] or [4]). Let us suppose that codimCN sing F > q

(F : (Cv,0) - (CP,0) is a generic submersion) and let 1<s £r<g be integers.
We put :
AP} = (0 € Al ; 0 A dFy AAdF;_ =0

forevery 1<ii<ig<... <ip-s11<p} =

weAlx}; 0= 2 By e A dF"jl A...AdEjs
J1<..<Js
with 0j, J, € ATs{x}}.

This last equality is an easy consequence of the division lemma (Saito, [8])
stated below. If we write A7S(F) = AT{x}/A%’(x} then d induces a morphism :
ATS(F) — Artls(F) ;
there is an exact sequence :
d d d d
As—L{x} = ASS(F) — AStLs(F) — ... = ALS{F}
and the of kernel the first d is the submodulus of As-1{x} generated by the
images of F* : As—1{y} - As-1l{x} and d : As—2{x} — As-1l{x}. In particular, if q =2,
; F* d d
there is an exact sequence 0 — Cfy} = Clx} - ALLF) 5 A2,1(F) ; this sequence
is used in the proof of 2.6.

The division lemma says that, if codimCN sing F > q and if w € A9{x} is

such that  AdFi A..AdFp = 0, then o = i 0; A dF;, with 9; e Ad-1 {x}.
i=1

2.10. It would be interesting to extend 2.6 to complete intersections. If a

complete intersection (X,0) of codimension % at the origin of CV is defined by a

reduced system of equations ¢; =...= ¢, =0 and if codim , F(X) =codimyX,

then

:’!\?
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dp=Q .9+ i 6;.dF;

1=
?1

where ¢ = [ }, Q is a k x k matrix with coefficients in Al{x}, 6; is a column

Pr
vector with coefficients in Cix}. So :

. [dQ-QAe=0 mod(dFy.
If we may choose Q such that dQ-QaAQ =0 mod (dFj) and if
codim cN sing F' 2 3, then by the arguments of the proof of 2.9 :
Q=dM.M"~ 1 mod (dF;)

where M is an inversible 2 x 2 matrix with coefficients in Cix}, so

dM1¢)=0 mod (dF;) -

01

By 2.9, M1 ¢ =0 0 F, where 6 =(
6, -

} , 8; e Cly}, 6;(0) =0, and X = F-1(Y)

where Y is a complete intersection.

Therefore, the main problem is finding conditions on X and F such that

the integrability condition dQ - Q A Q=0 mod (dF;) is verified by a suitable Q.

3 - A criteria of analyticity for modulus.
If A is a (commutative and unitary) ring withdut divisors of zero, we

denote by [A] the quotient field of A. A modulus 4 on A, of finite type, is without

torsion if a € A\0}, m ¢ 4\{0} implies a.m # 0. This means also that 4 is

isomorphic to a submodulus of A", where r = dimfa] # e4 [A] is the generic
rank of A .
If (X,0) is a germ of analytic space, we denote by (9}( the completion of the

‘ring @®x of analytic germs on X. We shall use the following result (Tougeron,

(7

74
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Theorem 3.1 : Let f (X,0) - (Y,0) be a generic analytic submersion between
ﬁvd irreducible gérms of analytic spaces (so fq‘ : (DAY — (9}( is injectiire). Then :

(p [(’)Ay] and p o f € [0x]}) = ¢ € [0yl

A submodule X of (5%— is analytic if it is generated on (D;z by elements of

q
oy .

Corollary 3.2 : Under the hypothesis of 3.1", if M = (5% / ¥ is without torsion

and if the vector space generated by ¥ o fin [ @}( ]41is analytic (i.e. is generated

by vectors with coefficients in ©x), then ¥ is analytic.

Proof : Let ¢1,..., ¢9s € X be such that gol A...A g # 0 and r = generic rank of
M =qg—s. Then ¢ e ¥ & ¢ A 1 A...A 05 =0 (because A is without torsion). Let us

put 91 A...A Qs = ZGIeI where e; = e; A-ne; is the canonical basis of (5% .
. 4

Let us suppose that 6; 07 0 ; the modulus generated by W o f being analytic,

each (07/6 Io) o F is analytic, so by 3.1 67/6 I, is analytic for every I. Therefore

X 1is analytic, c.q.f.d.

This corollary admits the following extension :

Proposition 3.3 : Let f : (X,0) — (Y,0) be a morphism between two irreducible

germs of analytic spaces and let us suppose that the Agerni of points x € X such that
f, is not flat has codimension v in X. Let H = (9({;/ X be a modulus such that the

two following conditions are full filled :

~ every prime ideal associated to M has height < v,
— the submodule f*X generated by Xof in (937{ is analytic. Then X is analytic.



Let us recall that if # is a modulus on a ring A = éy and if fis a prime
ideal of A, thengl is associated to 4 if there is an injective map : A/Nc, M. Thé
modulus 4 is __coprimary ifa € A\Qy=> (# 3 m — a.m € M) is injective and a e
=M >5m-o>ameM)is nilpétent. If p1,.es [k are the prime ideals associated
tok.»t then there exist submodules W; of A, with 4M/X; Pi-coprimary, such that

N N;=0 (cf[5D.
i=1

If # =Ad/) is [ -coprimary, we define a sequence No=N Cc N1 C..C
Ns CNg+1 = A4 of submodules of A? such that for every i =0,.....s : ¥31 (E €A

F £ c Xi}. Then, for every i : ¥i41/¥; is a modulus on A/ps without torsion. We

prove first :

Lemma 3.4 : With the hypothesis of 3.3, let us suppose that M is gy—coprimary ;

then 3.3 is true.

" Proof : First , we observe that {2 is analytic. In fact, as a consequence of the
flatness, the prime ideals of height < v associated to @g{/ SF*XN are exactly the

| prime ideals of height < v associated to o x/ f*p ; F*X being analytic, these

-~
N t

prime ideals are analytic, and there exist a prime ideal 8’ of ®x such that I~
is a minimal prime ideal containing f*g. If X’ is the germ of analytic set (c X)
defined by §', then@is the kernel of the morphism f* : (5y N x/ (5 " and by
Gabrielov's theorem, ‘:3 is analytic. |

After, we prove by inductionon i = s, s-1,...,0 that J; is analytic. If ¥ il

is analytic, let g4,...,g; be an analytic system of generators of ¥, ; and let us

write X 1 = (’A)};v/ Ai+1 where R;;1 is the modulus of relations between g, ..., g,
"Thenw, /XNi= (5}{,/ A'iv1 , R'iv1 D Ris1 ; by the flatness of f,' S*R’;41 1s analytic

at the generic point of X" ; by 3.2, #';;1is analytic and so J; is analytic.
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Remark : In the previous proof we don't use the complete assertion that f*x is

analytic ; we only use that f*¥ is analytic at the generic point of X".

Proof of 3.3 : Let [1,.., @, be the minimal prime ideals associated to
M= (5%/ X . As in the proof of 3.4, let F"'i be a minimal prime ideal of éX

containing f* Pi s then P'i is analytic. If X; is the germ of analytic set defined by

Wi, then @; is the kernel of the morphism f* ZéY -0 x/p’i and so, by

Gabrielov's theorem, \:l‘i is analytic. Let X¥; be a submodule of (5% such
k

that N ;=X and (5%/.)\(,' is f4; -coprimary.
i=1

Let H1,.... p# be the minimal prime ideals in the family {3 1,..., M} ;
then, by flatness, f*¥; is analytic at the generic point of X'; , fori=1,..., ’. By
3.4 and the remark, J; is analyticifi <k&’.

There is an injection :

(*) (A NV (OXN)—>0% A N
i<k’ - >k’
Let gy,....8n be a system of analytic generators of N ; and let us write

i<k

é@/mz (_\k Xi where & is the modulus of relations between theg;. Then
i<k’

(9; X)) (NN} ~<5’§/9‘L’ where ' > A. The prime ideal associated to (’3’{;/9‘1
i<k’

are among { g41,..., Nk , because of the injection (x) and by flatness /™ &’ is
analytic outside an analytic set of codimension v .
Therefore, we may prove the result by induction on the number % of

prime ideals Vi By the induction hypothesis, 2’ is analytic and so X is

analytic.
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