On the regularity of a germ of analytic mapping

J. Cl. TOUGERON

Let (X, o) be a germ of analytic space (reduced and of pure dimension n) at the origin of \mathbb{C}^N ; let $F:(\mathbb{C}^N,o)\to(\mathbb{C}^p,o)$ a germ of analytic mapping and f=F|X the restriction of F to X. We denote $sing\ F$ the singular set of F, i.e. the germ of points $x\in\mathbb{C}^N$ such that dF(x) has a rank < r(F), r(F) meaning the generic rank of F. Many results on F or f are true and well known when $sing\ F=\emptyset$ or when F is flat. In this paper, we give examples where these results can be extended with an hypothesis on the codimension of $sing\ F$.

- 1) If the rank of F is constant (=r), F admits a factorisation $(\mathbb{C}^N, o) \xrightarrow{h} (\mathbb{C}^r, o) \xrightarrow{g} (\mathbb{C}^p, o)$, where h is a submersion and g an immersion. In the general situation, we associate to F a differential form Ω_F of degree r; if the codimension of $sing \ \Omega_F$ in \mathbb{C}^N is ≥ 3 and if Ω_F is decomposable, there exists a factorisation by a generic submersion and a generic immersion. If $codim_{\mathbb{C}^N} sing F \geq 2$ and if there exists a formal factorisation $F = \overline{g} \ o \ \overline{h}$, then there exists an analytic factorisation which approximates the formal one. These results are an easy consequence of Malgrange's Frobenius theorem.
- 2) If s is the generic rank of f, there does not exist in general a factorisation: $(X,o) \to (Y,o) \subset (\mathbb{C}^p,o)$, where (Y,o) is an analytic germ, reduced and of pure dimension s at the origin of \mathbb{C}^p and i is the canonical injection. Nevertheless, this is true if F is a flat morphism and if $codim_{\mathbb{C}^N} X = codim_{\mathbb{C}^p} f(X)$. We prove analogous results when (X,o) is a complete intersection, an hypothesis about the codimension of $sing\ F$ taking the place of the flatness.
- 3) At last, let $y=(y_1,\ldots,y_p)$ (resp. $x=(x_1,\ldots,x_N)$) a system of coordinates at the origin of \mathbb{C}^p (resp. \mathbb{C}^N) and let \overline{N} a sub-modulus of \mathbb{C} $[[y]]^q$. Let us suppose that $(\overline{N} \circ F) \mathbb{C}$ [[x]] is generated on \mathbb{C} [[x]] by elements of \mathbb{C} $[x]^q$ (\mathbb{C} [x] is the ring of convergent series in x); then, if F is flat, \overline{N} is also analytic, i.e. is generated on \mathbb{C} [[y]] by convergent series. The same is true when hypothesis about the codimension of sing F take the place of the flatness.

1 - A factorisation theorem.

Let r = r(F) be the generic rank of $F: (\mathbb{C}^n,0) \to (\mathbb{C}^p,0)$ and let $\Lambda^r\{x\}$ be the free modulus on $\mathbb{C}\{x\}$ composed with germs at $0 \in \mathbb{C}^N$ of holomorphic differential forms of degree r.

Lemma 1.1: There exists a differential form $\Omega_F \in \Lambda^r\{x\}$, r = r(F), unic modulo multiplication by inversible elements of $\mathbb{C}\{x\}$, such that:

- (1) $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega_F \geq 2$.
- $\begin{array}{ll} (2) & \forall I=(i_1,...,i_r), \ 1 \leq i_1 < ... < i_r \leq p, \ there \ exits \ \theta_I \in \mathbb{C}\{x\} \ such \ that \ d \ F_I=\theta_I.\Omega_F. \\ (dF_I=dF_{i_1} \wedge ... \wedge dF_{i_r} \ and \ \operatorname{sing} \Omega_F=\{x; \ \Omega_F(x)=0\}). \end{array}$

Proof: For every I such that d $F_I \neq 0$, we can write d $F_I = \theta'_I$. Ω_I where $\theta'_I \in \mathbb{C}$ $\{x\}$ and Ω_I is a form such that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega_I \geq 2$. Let I, J be such that d $F_I \neq 0$, d $F_J \neq 0$; the generic rank of F being r, we have $\Omega_J = \alpha$. Ω_I with α mieromorphic at the origin of \mathbb{C}^N ; but α is holomorphic in $\mathbb{C}^N \setminus \operatorname{sing} \Omega_I$, so $\alpha \in \mathbb{C}\{x\}$. Permuting I and J, we see that α is inversible and the lemma follows.

Let Θ_F be the ideal generated by all the θ_I in $\mathbb{C}\{x\}$ and let us denote $V(\Theta_F)$ the germ of zeros of Θ_F ; obviously:

$$sing F = V(\Theta_F) \cup sing \Omega_F$$
.

If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 2$ and if $F = g \circ h$, where $h : (\mathbb{C}^n,0) \to (\mathbb{C}^r,0)$ is a generic submersion and $g : (\mathbb{C}^r,0) \to (\mathbb{C}^p,0)$ is a generic immersion, then we may choose $\Omega_F = d \ h_1 \wedge \ldots \wedge d \ h_r$; Θ_F is then the ideal of $\mathbb{C}\{x\}$ generated by all the determinants of order r of the matrix $(dg) \circ h$.

Our result is a corollary of the singular Frobenius's theorem:

Theorem 1.2 (Malgrange, [3]): Let $\omega_1,..., \omega_r$ be in $\Lambda^1\{x\}$ and let us put $\Omega = \omega_1 \wedge ... \wedge \omega_r$. We suppose that for i = 1,..., r, $d\omega_i \wedge \Omega = 0$. Then:

(1) If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega \geq 3$, the system $\{\omega_1,...,\omega_r\}$ is integrable, i.e. there exist $f_1,...,f_r \in \mathbb{C}\{x\}$ such that:

$$(\omega_1,...,\omega_r)$$
. $\mathbb{C}\{x\}=(df_1,...,df_r).\mathbb{C}\{x\}$.

(2) If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega \geq 2$ and if the system $\{\omega_1,...,\omega_r\}$ is formally integrable (i.e. there are formal series $\overline{f_1},...,\overline{f_r} \in \mathbb{C}[[x]]$ such that $(\omega_1,...,\omega_r).\mathbb{C}[[x]] = (d\overline{f_1},...,d\overline{f_r}).\mathbb{C}[[x]]$, then the system is integrable.

We use also the following result (cf [3] or [4]):

Lemma 1.3: Let $h: (\mathbb{C}^N,0) \to (\mathbb{C}^r,0)$ be a germ of holomorphic mapping such that r = r(h) and such that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} h \geq 2$. Then, if $f: (\mathbb{C}^N,0) \to \mathbb{C}$ verifies $df \wedge dh_1 \wedge ... \wedge dh_r = 0$, we have $f = g \circ h$, with $g: (\mathbb{C}^r,0) \to \mathbb{C}$ analytic.

Proposition 1.4:

- (1) Let us suppose that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega_F \geq 3$ and let us suppose that Ω_F is decomposable, i.e. $\Omega_F = \omega_1 \wedge ... \wedge \omega_r$, with $\omega_i \in \Lambda^1\{x\}$. Then, there exists a factorisation F = g o h, where $h : (\mathbb{C}^N, 0) \to (\mathbb{C}^r, 0)$ and $g : (\mathbb{C}^r, 0) \to (\mathbb{C}^p, 0)$ are analytic.
- (2) Conversally , if F admits such a factorisation and if $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 2$, Ω_F is decomposable.

Proof: The system $(\omega_1,...,\omega_r)$ is locally integrable in $\mathbb{C}^N \setminus V(\Theta_F)$, because $dF_I = \theta_I$. Ω_F and so $d\omega_i \wedge \omega_1 \wedge ... \wedge \omega_r = 0$ for i = 1,...,r. By theorem 1.2, we may suppose that $\omega_i = dh_i$, i = 1,...,r, with $h_i \in \mathbb{C}\{x\}$, $h_i(0) = 0$. At last, for every g = 1,...,p, $dF_j \wedge dh_1 \wedge ... \wedge dh_r = 0$ and so $F_j = g_j(h_1,...,h_r)$ with g_j analytic, by lemma 1.3. The converse (2) is obvious.

Proposition 1.5: Let us suppose that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 2$ and let us suppose that F admits a formal factorisation $F = \overline{g}$ o \overline{h} $(\overline{h}: (\mathbb{C}^N, 0) \to (\mathbb{C}^r, 0)$ and $\overline{g}: (\mathbb{C}^r, 0) \to (\mathbb{C}^p, 0)$). Then F admits an analytic factorisation F = g o h and we may choose g and h as closely as we wish to \overline{g} and \overline{h} .

 $\mathbf{Proof}: \mathbf{From}$ the hypothesis, Ω_F admits a formal decomposition:

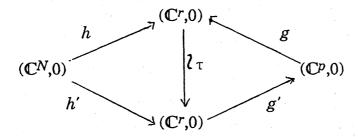
 $\Omega_F = \overline{\lambda} \cdot d\overline{h}_1 \wedge ... \wedge d\overline{h}_r$, with $\overline{\lambda} \in \mathbb{C}[[x]]$ and $\overline{\lambda}(0) \neq 0$. By Artin's approximation theorem [1], Ω_F is decomposable, i.e. $\Omega_F = \omega_1 \wedge ... \wedge \omega_r$ with $\omega_i \in \Lambda^1\{x\}$ and the system $\{\omega_1,...,\omega_r\}$ is formally integrable. By the part (2) of theorem 1.2, the system is integrable and we conclude as in the proof of 1.4.

Proposition 1.6: Let $\underline{F}: \mathbb{C}^N \supset U \to \mathbb{C}^p$ be an holomorphic mapping with generic rank r; we suppose that the set of singular points of \underline{F} has codimension ≥ 3 . Then, the set Γ of points $x \in U$ such that the germ $\underline{F}_x: (U,x) \to (\mathbb{C}^p, \underline{F}(x))$ is factorisable in the sense of 1.4, is the compliment of a closed analytic subset of U.

Proof: The result being of local nature, we may suppose that there exists $\underline{\Omega} \in \Lambda^r(U)$ such that $\forall x \in U$, the germ $\underline{\Omega}_x$ induced by $\underline{\Omega}$ in x, is a differential form $\Omega_{\underline{F}_x}$. By 1.4, the point x belongs to Γ if and only if the equation: $\underline{\Omega}_x = \omega_1 \wedge ... \wedge \omega_r$ admits an holomorphic solution. The proposition results from a general theorem about the solutions of a system of analytic equations depending analytically of a parameter (cf. [6]).

Remark 1.7: Let us suppose that $F:(\mathbb{C}^N,0)\to(\mathbb{C}^p,0)$ admits a factorisation by $(\mathbb{C}^r,0)$, with $\operatorname{codim}_{\mathbb{C}^N}\operatorname{sing} F\geq 2$. Then this factorisation is unic, in the following sense: if F=g o h, F=g'o h' are two factorisations, there is a unic analytic

difféomorphism $\tau:(\mathbb{C}^r,0)\xrightarrow{\sim}(\mathbb{C}^r,0)$ such that the following diagram is commutative:



1.8. Special Cases

(1.8.1.) Let us suppose that $V(\Theta_F)=\emptyset$; for instance, let us suppose that $\theta_{(1,\ldots,r)}(0)=0$. Then we may choose $\Omega_F=dF_1\wedge\ldots\wedge dF_r$ and if j>r, we get $F_j=\mathsf{g}_j$ (F_1,\ldots,F_r) , with g_j analytic. So F=g o h, where g is the immersion $\mathbb{C}^r\ni (z_1,\ldots,z_r)\to (z_1,\ldots,z_r;g_{r+1}(z),\ldots,g_p(z))$. The converse is obvious and we get an equivalence:

 $(V(\Theta_F) = \emptyset) \Leftrightarrow \operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 2 \text{ and there exists a factorisation } F = g \text{ o } h, \text{ where}$ $g: (\mathbb{C}^r, 0) \to (\mathbb{C}^p, 0) \text{ is an immersion.}$

(1.8.2) Let us suppose that sing $\Omega_F = \emptyset$; the form Ω_F is generically decomposable and non singular and so, by remark 1.9, it is decomposable, and we may apply 1.4. We get that $F = g \ o \ h$ where h is a submersion and the converse is obvious:

(sing $\Omega_F = \emptyset$) \Leftrightarrow There exists a factorisation F = g o h where $h: (\mathbb{C}^N, 0) \to (\mathbb{C}^r, 0)$ is a submersion.

(1.8.3) Let us suppose that the rank of F at 0 is r-1. Then Ω_F is decomposable; indeed, with a convenient choice of coordinates, we may suppose that $F_1 = x_1, \dots, F_{r-1} = x_{r-1}$ and so $\Omega_F = dx_1 \wedge \dots \wedge dx_{r-1} \wedge \omega$, and we may apply 1.4.

1.9 A decomposable form must verify obvious conditions. Let E be a vector space of dimension N on \mathbb{C} and let e_1, \ldots, e_N be a basis of E. Let us consider the mapping:

$$\mathbb{C}^{Nr} \simeq E^r \ni (\omega_1, ..., \omega_r) \to \Omega = \omega_1 \wedge ... \wedge \omega_r \in \Lambda^r E \simeq \mathbb{C}^{\binom{N}{r}}.$$

Obviously, $\omega_1 \wedge ... \wedge \omega_r = \omega'_1 \wedge ... \wedge \omega'_r$ if and only if there exists a matrix $M \in G\ell(N, \mathbb{C})$ with determinant 1 such that

$$(\omega_1,...,\omega_r)$$
 $M=(\omega_1',...,\omega_r').$

Outside $\phi^{-1}(0)$ the mapping ϕ is a fibering with fiber of dimension r^2-1 and $\phi^1(0)$ is the set of matrices $(\omega_1, ..., \omega_r)$ with rank < r and so $\phi^{-1}(0)$ is an algebraic variety in E^r of codimension N-r+1. The image of ϕ is an algebraic variety in $\Lambda^r E$, of dimension $Nr-r^2+1$, with an isolated singularity at the origin.

If Σ θ_I e_I ($e_I = e_{i_1} \land ... \land e_{i_r}$) is the generic point of $\Lambda^r E$ and if U_I is the open set $\theta_I \neq 0$, then $\operatorname{Im} \phi \cap U_I$ is regular and is the transverse intersection of $\binom{N}{r} - (Nr - r^2 + 1)$ algebraic hypersurfaces $F_{I,\alpha} = 0$, where $F_{I,\alpha}$ is homogeneous of degree r (if r = 2, $\operatorname{Im} \phi = \{\Omega : \Omega \land \Omega = 0\}$).

So, a decomposable differential form Ω must verify $\binom{N}{r}$ – $(Nr-r^2+1)$ independent conditions. Conversally, if these conditions are full filled and if Ω is non singular, then Ω is decomposable. If Ω is singular and decomposable $(\Omega = \omega_1 \wedge ... \wedge \omega_r)$, every irreducible component of $\operatorname{sing} \Omega = \{x; \operatorname{rank} (\omega_1 \wedge ... \wedge \omega_r) < r\}$ has codimension $\leq N-r+1$.

Another condition is the following one. Let $v(\Omega) = \inf_I v(\theta_I)$ be the infimum of the multiplicities at the origin of the θ_I ($\Omega = \sum_I \theta_I dx_I$ and let $\mathcal{F}(\Omega)$ be the

ideal generated in $\mathbb{C}\{x\}$ by θ_I 's. If $v(\Omega) = s < r$ and if $\Omega = \omega_1 \wedge ... \wedge \omega_r$, then r-s forms ω_i are linearly independent at the origin and by choosing suitable coordinates:

$$\Omega = (\sum_{I} \theta_{I}^{*} dx_{I}) \wedge dx_{N-(r-s)+1} \wedge ... \wedge dx_{N}$$

with $I=(i_1,...,i_s), 1 \le i_1 < ... < i_s \le \text{N-(r-s)}$; so the minimal number of generators of $\mathcal{F}(\Omega)$ is $\le \binom{N-(r-s)}{s}$.

For instance, if N=3, r=2, the conditions $F_{I,\alpha}(\Omega)=0$ are vacant. A form Ω with an isolated singularity at the origin is not decomposable; the form $\Omega=xy\ dx\ dy+y^2\ dy\ dz+z\ dx\ dz$, with the x-axis as a line of singularities, is not decomposable. Nevertheless, it is decomposable at every point outside the origin $(\text{if } x\neq 0,\ \Omega=(x\ dx-y\ dz)\ \land\ (y\ d\ y+\frac{z}{x}\ dz)).$

If N=4, r=2, there is one condition $F_{i,\alpha}=0:\theta_{12}\theta_{34}-\theta_{13}\theta_{24}+\theta_{14}\theta_{23}=0.$

This condition is not sufficient, but I do not know if the hypotheses that Ω is decomposable at every point outside the origin, implies that Ω is decomposable.

1.10 In this paragraph, we give some upper bounds for $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F$

(1.10.1). First, every irreducible component of $F^{-1}(0)$ has codimension $\leq r = r(F)$ (indeed, if F is the germ at 0 of $\underline{F}: U \to C^p$, the generic codimension of the fiber \underline{F}_{ξ}^{-1} $\underline{F}(\xi)$ is r and this codimension is a lower semi-continuous function of ξ);

after, $F^1(0)$ \sing F is a regular variety of codimension r. Accordingly:

$$r(F) \ge \operatorname{codim}_{\mathbb{C}^N} F^{-1}(0) \ge \inf (r(F), \operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F)$$

(1.10.2) If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \ge 2$ and if $V(\Theta_F) \ne \emptyset$, there is an inclusion :

$$F^{-1}(0) \subset V(\Theta_F).$$

Accordingly , if $V(\Theta_F) \neq \emptyset$, we get $\operatorname{codim}_{\mathbb{C}^N} V(\Theta_F) \leq r$, and so :

$$\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \le r \quad (\text{we suppose } r \ge 1).$$

Indeed, if $F^{-1}(0) \not\subset V(\Theta_F)$ there exists an holomorphic curve $\mathbb{C} \ni t \to x(t) \in \mathbb{C}^N$ such that x(0) = 0 and $x(t) \in \underline{F}^{-1}(0) \setminus V(\Theta_F)$ if $t \neq 0$. From (1.8.1), the morphism $\underline{F}_t : (\mathbb{C}^N, (x(t)) \to (\mathbb{C}^p, 0) \ (t \neq 0 \text{ small enough)}$ admits a factorisation through a

germ Σ_t of analytic variety of dimension r at the origin of \mathbb{C}^p . All Σ_t are equal to a Σ and $F = \underline{F}_0$ admits a factorisation through Σ . From (1.8.1), $V(\Theta_F) = \phi$, c.q.f.d. (1.10.3) Let us suppose that Ω_F is decomposable. From 1.9, if sing $\Omega_F \neq \emptyset$: codim $\Omega_F = 0$ sing $\Omega_F \leq N - r + 1$.

Nevertheless, if sing $\Omega_F = \emptyset$, there is from (1.8.2) a factorisation $F = g \circ h$, where h is a submersion, and $V(\Theta_F)$ is the germ of zeros of the ideal $h^* \mathcal{F}$, where \mathcal{F} is the ideal generated by all determinants of order r of the matrix $p \times r(dg_1, ..., dg_p)$.

So, if $V(\Theta_F) \neq \emptyset$, $\operatorname{codim}_{\mathbb{C}^N} V(\Theta_F) \leq p{-}r{+}1$.

Accordingly, if sing $F \neq \emptyset$ and if Ω_F is decomposable : $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \leq \sup (p,n) - r + 1.$

The codimension being lower semi-continuous:

Let us suppose that there exist points $x \in \text{sing } F$, as closely as we wish from the origin, such that $\Omega_{\underline{F}_x}$ is decomposable (this is true if d_x F has rank r-1, cf (1.8.3)). Then:

$$\operatorname{codim}_{\mathbb{C}^N}\operatorname{sing} F \leq \sup (p,n) - r + 1.$$

We have also the following remarks:

Let us suppose there exist points $x\in \mathrm{sing}\ \Omega_F$, as closely as we wish from the origin, such that $\ \Omega_{\underline{F}_+}$ is decomposable; then

$$\operatorname{codim}_{\mathbb{C}N}\operatorname{sing}\Omega_F \leq n{-}r{+}1$$

Let us suppose there exist points $x \in V(\Theta_F)$, as closely as we wish from the origin, such that $\Omega_{\underline{F}_x}$ is decomposable; if $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} \Omega_F \geq 3$, then:

$$\operatorname{codim}_{\mathbb{C}^N} V(\Theta_F) \leq p - r + 1.$$

Remarks 1.11: The proposition 1.5 is false in general if we suppose that the dimension of the space by which we factorise is not equal to r = r(F). For example (cf [2]), there exists an analytic morphism $F: (\mathbb{C}^2,0) \to (\mathbb{C}^4,0)$

with $F_1=x_1$, $F_2=x_1\cdot x_2$, $F_3=x_1x_2e^{x_2}$, $F_4=\overline{\phi}$ (F_1,F_2,F_3) , where $\overline{\phi}$ is formal and cannot be choosen analytic. Then r(F)=2, $\ker F^*=0$ and $\ker \widehat{F^*}$ is generated by $y_4-\overline{\phi}$ (y_1,y_2,y_3) . So, there is a formal factorisation of $F:(\mathbb{C}^2,0)\stackrel{\overline{h}}{\to} (\mathbb{C}^3,0)\stackrel{\overline{g}}{\to} (\mathbb{C}^4,0)$, where $\mathbb{C}^3=\{y\in\mathbb{C}^4:y_4=0\}$ and \overline{g} is the graph of $\overline{\phi}$; if F:g of is an analytic factorisation of F near of the preceding one, g is $(\operatorname{as}\overline{g})$ an immersion and $\ker F^*\neq 0$, but this is false. In this example, $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 2$.

2 - On the regularity of a germ of analytic mapping.

In this paragraph and the following one, we suppose that F is a generic submersion, i.e. r(F) = p.

2.1. Let us suppose that (X,0) is irreductible and let us suppose that $f:F|X:(X,0)\to\mathbb{C}^p$ has generic rank s. If \mathcal{O}_X is the ring of germs of holomorphic functions on (X,0) and if $f^*:\mathbb{C}\{y\}\to\mathcal{O}_X$ is the homomorphism induced by f, there is inequalities:

$$s \le s' = \dim (\mathcal{O}_X / \ker f^*) \le s'' = \dim (\mathcal{O}_X / \ker f^*).$$

Let us recall the following result (Gabrielov, [2]):

Theorem 2.2: If s = s', we get s = s' = s'', i.e if the topological dimension of the image f(X) is equal to its formal dimension, then it is also equal to its analytical dimension; therefore: $\ker \widehat{f^*} = \ker \widehat{f^*}$.

The morphism f is regular (Gabrelov's definition) if s = s' = s''; if (X,0) is reduced, the morphism f is regular if it is regular in restriction to each irreducible component of (X,0). The morphism f is regular if f is finished or if (X,0) and f are algebraic; here is another condition:

Proposition 2.3: Let us suppose that (X,0) is irreducible; the morphism f is regular under every following hypothesis:

- (1) $r(f) = \operatorname{codim}_X f^{-1}(0)$ (the inequality $r(f) \ge \operatorname{codim}_X f^{-1}(0)$ is always true)
- (2) F is a flat morphism and codim $CN X = \operatorname{codim}_{CP} f(X)$.

Proof: (1) Let $\Sigma \subset \mathbb{C}^N$ be a generic plane of codimension n-s (s = r(f)) passing through the origin; then, every irreducible component $X_{\Sigma,i}$ of $X \cap \Sigma$ has codimension (n-s)+(N-n)=N-s in \mathbb{C}^N , so has dimension s and $X_{\Sigma,i} \cap f^1(0)=(0)$. If $g = f \mid X_{\Sigma,i}$, $g: X_{\Sigma,i} \to \mathbb{C}^p$ is a finite morphism, and its rank is s.

The kernel of $g^*: \mathbb{C}\{y\} \to \mathcal{O}_{X_{\sum,i}}$ is a prime ideal $\mathcal{P}_{\sum,i}$ such that $\mathbb{C}\{y\}/\mathcal{P}_{\sum,i}$ has dimension s. Generically, $X_{\sum,i}$ contains points x as closely as we wish to the origin, which are regular for $X_{\sum,i}$ and X with:

$$\operatorname{rank} d_x f = \operatorname{rank} d_x g = s$$

(the notations \underline{X} , \underline{g} etc... mean sets, functions etc.., the germs of which at the origin being X, g...). If $\varphi \in \not\vdash_{\Sigma,i}$, φ of is null on $X_{\Sigma,i}$ and φ of is null on \underline{X} in the neighborhood of every x. Therefore, φ of = 0 and $\not\vdash_{\Sigma,i} \subset \ker f^*$. The inverse inclusion is obvious because $\mathbb{C}\{y\}/\not\vdash_{\Sigma,i}$ has dimension s, and the morphism f is regular.

(2) The morphism F being flat, $\operatorname{codim}_{\mathbb{C}^N} F^{-1}(0) = p$, so $\operatorname{codim}_{\mathbb{C}^N} f^{-1}(0) \geq p$ and $\operatorname{codim}_X f^{-1}(0) = \operatorname{codim}_{\mathbb{C}^N} f^{-1}(0) - \operatorname{codim}_{\mathbb{C}^N} X \geq p - \operatorname{codim}_{\mathbb{C}^p} f(X) = r(f)$. Therefore $r(f) = \operatorname{codim}_X f^{-1}(0)$ and the result is a consequence of (1).

Example 2.4: Let $\varphi_1(x_n)$,..., $\varphi_{n-1}(x_n) \in \mathbb{C}\{x_n\}$ be germs, algebraically independent on \mathbb{C} , such that $\varphi'_1(0) = \dots = \varphi'_{n-1}(0) = 1$. Let us consider the morphism f:

 $(\mathbb{C}^n,0)\ni (x_1,...,x_n)\to (x_1,...,x_{n-1},\,x_1\,\,\varphi_1(x_n),...,x_{n-1}\,\,\varphi_{n-1}(x_n))\in \mathbb{C}^{2n-2}.$ Then r(f)=n and sing $f=f^{-1}(0)$ is the x_n -axis; so $\operatorname{codim}_{\mathbb{C}^N}f^{-1}(0)=n-1$;

besides, the rank of df at 0 is n-1. The morphism f is not regular if n > 2; more precisely, $\ker \hat{f} = 0$. Indeed, let $g \in \mathbb{C}[[y]]$ be such that:

$$g(x_1,...,x_{n-1},x_1 \varphi_1(x_n),...,x_{n-1} \varphi_{n-1}(x_n))=0.$$

If $g = \sum_{v=1}^{\infty} g_v$ is the decomposition of g in homogeneous polynomials, and if

$$x_1 = t \; \xi_1 \; , ..., \; x_{n-1} = t \; \xi_{n-1} :$$

$$\sum_{v=1}^{\infty} t^{v} g_{v} (\xi_{1},...,\xi_{n-1}, \xi_{1} \varphi_{1}(x_{n}),...,\xi_{n-1} \varphi_{n-1}(x_{n})) = 0$$

so
$$g_v(\xi_1,...,\xi_{n-1}, \xi_1 \varphi_1(x_n),...,\xi_{n-1} \varphi_{n-1}(x_n)) = 0$$
, i.e. $g_v = 0$, $\forall v$.

This example, a variant of Osgood's example, shows that it is difficult to improve 2.3. Nevertheless, in 2.3 (2), we may replace the hypothesis of flatness on F by a condition of regularity on F.

Remark 2.5: If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq p$, the morphism F is flat. Indeed, by $(1.10.1), p = r(F) = \operatorname{codim}_{\mathbb{C}^N} F^{-1}(0)$ and this means exactly that F is flat. Here is an example where $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F = p-1$ and F is not flat; $F: \mathbb{C}^{2p-2} \to \mathbb{C}^p$ is defined by

$$F_1(x) = x_1$$
; ...; $F_{p-1}(x) = x_{p-1}$; $F_p(x) = x_1x_p + x_2x_{p+1} + ... + x_{p-1}x_{2p-2}$.

Proposition 2.6: Let us suppose that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 3$, where $F:(\mathbb{C}^N,0) \to (\mathbb{C}^p,0)$ is a generic submersion. If (X,0) is a germ of hypersurface at the origin of \mathbb{C}^N such that $\operatorname{codim}_{\mathbb{C}^p} f(X) = 1$ (= $\operatorname{codim}_{\mathbb{C}^N} X$), then $f = F \mid X$ is regular $(X = F^{-1}(Y), \text{ where } Y \text{ is a germ of hypersurface at the origin of } \mathbb{C}^p)$.

Proof: Let $\varphi = 0$ be a reduced equation of X; the condition on the generic rank of f means that at each regular point of X, $d_x \varphi$ is a linear combination of $d_x F_i$, i.e.:

$$d\varphi = \varphi \cdot \omega + \sum_{i=1}^{p} \varphi_i dF_i$$

with $\omega \in \Lambda^1(x)$ and $\varphi_i \in \mathbb{C}\{x\}$.

So
$$d\omega = -\sum_{i=1}^{p} d\left(\frac{\varphi_{i}}{\varphi}\right) \wedge dF_{i};$$

and $d\omega \wedge dF_1 \wedge ... \wedge dF_p = 0$. By 2.9, the hypothesis $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 3$ implies that $\omega = d\Psi \operatorname{mod}(dF)$, where (dF) is the submodulus of $\Lambda^1\{x\}$ generated by $dF_1,...,dF_p$. From (*):

$$d(\varphi e^{-\psi}) \in (dF)$$

and from lemma 1.3 : $\varphi = e^{\psi}$. $(\theta \circ F)$, with $\theta \in \mathbb{C}\{y\}$.

If Y is the hypersurface with reduced equation $\theta = 0$, then $X = f^{-1}(Y)$.

Corollary 2.7: If $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 3$ and if Y is a germ of irreducible hypersurface at the origin of \mathbb{C}^p , $X = F^{-1}(Y)$ is also irreducible (indeed, if $X = X' \cup X''$ is a proper decomposition of X, we may apply to X' and X'' the previous reasoning, and $X' = F^{-1}(Y')$, $X'' = F^{-1}(Y''')$; so $Y = Y' \cup Y''$ is a proper decomposition of Y which is not irreducible).

Corollary 2.8: Let us suppose that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 3$ and that Ω_F is decomposable (we do not suppose that F is a generic submersion). If $\operatorname{codim}_{\mathbb{C}^N} V(\Theta_F) \geq r = r(F)$, F and the restriction of F to every hypersurface (X,0) of $(\mathbb{C}^N,0)$, are regular morphisms.

Proof: By 1.4, there is a factorisation, $F = g \circ h$, where h is a generic submersion and g is a generic finite immersion. So F is regular; if X is a germ of irreducible hypersurface at the origin of \mathbb{C}^N , either the rank of h|X is equal to r and f = F|X is regular; or this rank is r-1, but then we may apply 2.6 and again f is regular.

2.9. In the proof of 2.6, we used a very particular case of the following result (cf [3] or [4]). Let us suppose that $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F > q$

 $(F:(\mathbb{C}^{\nu},0)\to(\mathbb{C}^{p},0)$ is a generic submersion) and let $1\leq s\leq r\leq q$ be integers. We put:

$$\Lambda_F^{r,s}\{x\} = \{\omega \in \Lambda^r\{x\} \; ; \; \omega \wedge dF_{i_1} \wedge ... \wedge dF_{i_{p-s+1}} = 0$$

for every $1 \le i_1 < i_2 < ... < i_{p-s+1} \le p$ =

$$\{\omega\in \Lambda^r\{x\}\;;\;\;\omega=\sum_{j_1<\ldots< j_s}\;\;\theta_{j_1}\ldots\;_{j_s}\;\wedge\;dF_{j_1}\;\wedge\ldots\wedge dF_{j_s}$$

with θ_{j_1} ... $j_s \in \Lambda^{r-s}\{x\}$.

This last equality is an easy consequence of the division lemma (Saïto, [8]) stated below. If we write $\Lambda^{r,s}(F) = \Lambda^r \{x\}/\Lambda_F^{r,s} \{x\}$ then d induces a morphism :

$$\Lambda^{r,s}(F) \to \Lambda^{r+1,s}(F)$$
;

there is an exact sequence:

$$\Lambda^{s-1}\{x\} \xrightarrow{d} \Lambda^{s,s}(F) \xrightarrow{d} \Lambda^{s+1,s}(F) \xrightarrow{d} \dots \xrightarrow{d} \Lambda^{q,s}\{F\}$$

and the of kernel the first d is the submodulus of $\Lambda^{s-1}\{x\}$ generated by the images of $F^*: \Lambda^{s-1}\{y\} \to \Lambda^{s-1}\{x\}$ and $d: \Lambda^{s-2}\{x\} \to \Lambda^{s-1}\{x\}$. In particular, if q=2, there is an exact sequence $0 \to \mathbb{C}\{y\} \xrightarrow{F^*} \mathbb{C}\{x\} \xrightarrow{d} \Lambda^{1,1}(F) \xrightarrow{d} \Lambda^{2,1}(F)$; this sequence is used in the proof of 2.6.

The division lemma says that, if $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F > q$ and if $\omega \in \wedge^q \{x\}$ is such that $\omega \wedge dF_1 \wedge ... \wedge dF_p = 0$, then $\omega = \sum_{i=1}^p \theta_i \wedge dF_i$, with $\theta_i \in \wedge^{q-1} \{x\}$.

2.10. It would be interesting to extend 2.6 to complete intersections. If a complete intersection (X,0) of codimension k at the origin of \mathbb{C}^N is defined by a reduced system of equations $\varphi_1 = ... = \varphi_k = 0$ and if $\operatorname{codim}_{\mathbb{C}^N} F(X) = \operatorname{codim}_{\mathbb{C}^N} X$,

then

$$d\varphi = \Omega \cdot \varphi + \sum_{i=1}^{p} \theta_i \cdot dF_i$$

where $\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_k \end{pmatrix}$, Ω is a $k \times k$ matrix with coefficients in $\Lambda^1\{x\}$, θ_i is a column

vector with coefficients in $\mathbb{C}\{x\}$. So:

$$(d\Omega - \Omega \wedge \Omega) \varphi = 0 \mod (dF_i)$$
.

If we may choose Ω such that $d\Omega - \Omega \wedge \Omega = 0 \mod (dF_i)$ and if $\operatorname{codim}_{\mathbb{C}^N} \operatorname{sing} F \geq 3$, then by the arguments of the proof of 2.9:

$$\Omega = dM.M^{-1} \mod (dF_i)$$

where M is an inversible $k \times k$ matrix with coefficients in $\mathbb{C}\{x\}$, so

$$d(M^{-1}\varphi) = 0 \qquad \mod(dF_i)$$

$$By \ 2.9, \ M^{-1} \ \varphi = \theta \ o \ F, \ \text{where} \ \theta = \begin{pmatrix} \theta_1 \\ \theta_k \end{pmatrix}, \ \theta_i \in \mathbb{C}\{y\}, \ \theta_i \ (0) = 0, \ \text{and} \ X = F^{-1}(Y)$$

where *Y* is a complete intersection.

Therefore, the main problem is finding conditions on X and F such that the integrability condition $d\Omega - \Omega \wedge \Omega = 0 \mod (dF_i)$ is verified by a suitable Ω .

3 - A criteria of analyticity for modulus.

If A is a (commutative and unitary) ring without divisors of zero, we denote by [A] the quotient field of A. A modulus \mathcal{M} on A, of finite type, is <u>without</u> torsion if $a \in A\setminus\{0\}$, $m \in \mathcal{M}\setminus\{0\}$ implies $a.m \neq 0$. This means also that \mathcal{M} is isomorphic to a submodulus of A^r , where $r = \dim_{[A]} \mathcal{M} \otimes_A [A]$ is the generic rank of \mathcal{M} .

If (X,0) is a germ of analytic space, we denote by \mathcal{O}_X the completion of the ring \mathcal{O}_X of analytic germs on X. We shall use the following result (Tougeron, [7]):

Theorem 3.1: Let $f:(X,0) \to (Y,0)$ be a generic analytic submersion between two irreducible germs of analytic spaces (so $f^*: \hat{\mathcal{O}_Y} \to \hat{\mathcal{O}_X}$ is injective). Then: $\{\varphi \in [\hat{\mathcal{O}_Y}] \text{ and } \varphi \text{ o } f \in [\mathcal{O}_X]\} \Rightarrow \varphi \in [\mathcal{O}_Y].$

A submodule $\mathcal X$ of $\hat{\mathcal O}_Y^q$ is <u>analytic</u> if it is generated on $\hat{\mathcal O_Y}$ by elements of $\mathcal O_Y^q$.

Corollary 3.2: Under the hypothesis of 3.1, if $\mathcal{M} = \hat{\mathcal{O}}_{Y}^{q} / \mathcal{N}$ is without torsion and if the vector space generated by \mathcal{N} of in $[\hat{\mathcal{O}_{X}}]^{q}$ is <u>analytic</u> (i.e. is generated by vectors with coefficients in \mathcal{O}_{X}), then \mathcal{N} is analytic.

 $\begin{aligned} \mathbf{Proof} : \mathrm{Let} \ \ \varphi_1 \ , \dots, \ \ \varphi_s \in \mathscr{N} \ \ \mathrm{be} \ \mathrm{such} \ \mathrm{that} \ \ \varphi_1 \wedge \dots \wedge \ \varphi_s \neq 0 \ \mathrm{and} \ r = \mathrm{generic} \ \mathrm{rank} \ \mathrm{of} \\ \mathscr{M} = q - s. \ \mathrm{Then} \ \ \varphi \in \mathscr{N} \Leftrightarrow \varphi \wedge \varphi_1 \wedge \dots \wedge \varphi_s = 0 \ (\mathrm{because} \ \mathscr{M} \ \mathrm{is} \ \mathrm{without} \ \mathrm{torsion}). \ \mathrm{Let} \ \mathrm{us} \\ \mathrm{put} \ \varphi_1 \wedge \dots \wedge \varphi_s = \sum_I \theta_I e_I \quad \mathrm{where} \ e_I = e_{i_1} \wedge \dots \wedge e_{i_s} \ \mathrm{is} \ \mathrm{the} \ \mathrm{canonical} \ \mathrm{basis} \ \mathrm{of} \ \ \hat{\mathcal{O}}_Y^q \ . \end{aligned}$

Let us suppose that $\theta_{I_0} \neq 0$; the modulus generated by \mathcal{N} of being analytic, each (θ_I/θ_{I_0}) of F is analytic, so by 3.1 θ_I/θ_{I_0} is analytic for every I. Therefore \mathcal{N} is analytic, c.q.f.d.

This corollary admits the following extension:

Proposition 3.3: Let $f:(X,0) \to (Y,0)$ be a morphism between two irreducible germs of analytic spaces and let us suppose that the germ of points $x \in X$ such that f_x is not flat has codimension v in X. Let $\mathcal{M} = \hat{\mathcal{O}}_Y^q / \mathcal{N}$ be a modulus such that the two following conditions are full filled:

- every prime ideal associated to \mathcal{M} has height < v,
- the submodule $f^*\mathcal{N}$ generated by \mathcal{N} of in $\hat{\mathcal{O}}_X^q$ is analytic. Then \mathcal{N} is analytic.

Let us recall that if \mathcal{M} is a modulus on a ring $A = \hat{\mathcal{O}}_Y$ and if p is a prime ideal of A, then p is associated to \mathcal{M} if there is an injective map : $A/p \subset_{\rightarrow} \mathcal{M}$. The modulus \mathcal{M} is coprimary if $a \in A/p \Rightarrow (\mathcal{M} \ni m \to a.m \in \mathcal{M})$ is injective and $a \in p$ $\Rightarrow (\mathcal{M} \ni m \to a.m \in \mathcal{M})$ is nilpotent. If $p_1, ..., p_k$ are the prime ideals associated to \mathcal{M} then there exist submodules \mathcal{N}_i of \mathcal{M} , with $\mathcal{M}/\mathcal{N}_i$ p_i -coprimary, such that $p_i = 0$ (cf [5]). $p_i = 0$ (cf [5]).

If $\mathcal{M} = A^q/\mathcal{N}$ is \bowtie -coprimary, we define a sequence $\mathcal{N}_0 = \mathcal{N} \subset \mathcal{N}_1 \subset ... \subset \mathcal{N}_s \subset \mathcal{N}_{s+1} = A^q$ of submodules of A^q such that for every $i = 0,...,s : \mathcal{N}_{i+1} \{ \xi \in A^q : \beta \subset \mathcal{N}_i \}$. Then, for every $i : \mathcal{N}_{i+1}/\mathcal{N}_i$ is a modulus on A/\wp without torsion. We prove first:

Lemma 3.4: With the hypothesis of 3.3, let us suppose that \mathcal{M} is β -coprimary; then 3.3 is true.

Proof: First, we observe that $\not \simeq$ is analytic. In fact, as a consequence of the flatness, the prime ideals of height < v associated to $\hat{\mathcal{O}}_X^q / f^* \mathcal{N}$ are exactly the prime ideals of height < v associated to $\hat{\mathcal{O}}_X / f^* \not \simeq$; $f^* \mathcal{N}$ being analytic, these prime ideals are analytic, and there exist a prime ideal $\not \simeq$ of $\not \simeq$ such that $\hat{\not}\simeq$ is a minimal prime ideal containing $f^* \not \simeq$. If X' is the germ of analytic set $(\subset X)$ defined by $\not \simeq$, then $\not \simeq$ is the kernel of the morphism $\hat{f}^*: \hat{\mathcal{O}}_Y \to \hat{\mathcal{O}}_X / \hat{\not}\simeq$ and by Gabrielov's theorem, $\not \simeq$ is analytic.

After, we prove by induction on i=s,s-1,....,0 that \mathcal{N}_i is analytic. If \mathcal{N}_{i+1} is analytic, let $g_1,...,g_h$ be an analytic system of generators of \mathcal{N}_{i+1} and let us write $\mathcal{N}_{i+1} = \hat{\mathcal{O}}_Y^h/\mathcal{R}_{i+1}$ where \mathcal{R}_{i+1} is the modulus of relations between $g_1,...,g_h$. Then $\mathcal{N}_{i+1}/\mathcal{N}_i = \hat{\mathcal{O}}_Y^h/\mathcal{R}_{i+1}'$, $\mathcal{R}_{i+1}' \supset \mathcal{R}_{i+1}$; by the flatness of $f, f^*\mathcal{R}_{i+1}'$ is analytic at the generic point of X'; by 3.2, \mathcal{R}_{i+1}' is analytic and so \mathcal{N}_i is analytic.

Remark: In the previous proof we don't use the complete assertion that $f^*\mathcal{N}$ is analytic; we only use that $f^*\mathcal{N}$ is analytic at the generic point of X'.

Proof of 3.3: Let $\wp_1, ..., \wp_k$ be the minimal prime ideals associated to $\mathcal{M} = \hat{\mathcal{O}}_Y^q / \mathcal{N}$. As in the proof of 3.4, let \wp_i' be a minimal prime ideal of $\hat{\mathcal{O}}_X$ containing $f^*\wp_i$; then \wp_i' is analytic. If X_i' is the germ of analytic set defined by \wp_i' , then \wp_i' is the kernel of the morphism $\hat{f}^*: \hat{\mathcal{O}}_Y \to \hat{\mathcal{O}}_X / \wp_i'$ and so, by Gabrielov's theorem, \wp_i' is analytic. Let \mathcal{N}_i be a submodule of $\hat{\mathcal{O}}_Y^q$ such that $\bigcap_{i=1}^k \mathcal{N}_i = \mathcal{N}$ and $\hat{\mathcal{O}}_Y^q / \mathcal{N}_i$ is \wp_i' -coprimary.

Let $\not\vdash 1,..., \not\vdash k'$ be the minimal prime ideals in the family $\{\not\vdash 1,..., \not\vdash k\}$; then, by flatness, $f^*\mathcal{N}_i$ is analytic at the generic point of X'_i , for i=1,...,k'. By 3.4 and the remark, \mathcal{N}_i is analytic if $i \leq k'$.

There is an injection:

$$(*) \qquad (\bigcap_{i \leq k'} \mathcal{N}_i) / (\bigcap \mathcal{N}_i) \to \hat{\mathcal{O}}_{Y}^{q} / \bigcap_{i > k'} \mathcal{N}_i.$$

Let $g_1,...,g_h$ be a system of analytic generators of $\bigcap_{i\leq k'}\mathcal{N}_i$ and let us write $\hat{\mathcal{O}}_Y^h/\mathfrak{R}\simeq \bigcap_{i\leq k'}\mathcal{N}_i$ where \mathfrak{R} is the modulus of relations between the g_i . Then $(\bigcap_{i\leq k'}\mathcal{N}_i)/(\bigcap \mathcal{N}_i)\sim \hat{\mathcal{O}}_Y^h/\mathfrak{R}'$ where $\mathfrak{R}'\supset \mathfrak{R}$. The prime ideal associated to $\hat{\mathcal{O}}_Y^h/\mathfrak{R}'$ are among $\bowtie_{k'+1},...,\bowtie_k$, because of the injection (*) and by flatness $f^*\mathfrak{R}'$ is analytic outside an analytic set of codimension v.

Therefore, we may prove the result by induction on the number k of prime ideals $\not \succ_i$. By the induction hypothesis, $\mathscr R$ is analytic and so $\mathscr N$ is analytic.

Bibliography.

- [1] ARTIN, M.: On the solutions of analytic equations.

 Invent Math 5, 277-291 (1968).
- [2] GABRIELOV, A.M.: Formal relations between analytic functions.

 Izv. Akad. Nauk SSSR 37, 1056-1088 (1973).
- [3] MALGRANGE, B.: Frobenius avec singularités,1,2.

 Invent math 39 (1977).
- [4] MOUSSU R., TOUGERON J. Cl.: Fonctions composées analytiques et differentiables.

C.R.A.S. t 282, Serie A - 1237 (1976).

- [5] SERRE J. P., Algebre locale, multiplicités.

 Lecture notes in mathematics, 11 (1965)
- [6] TOUGERON J. Cl. : Familles noethériennes de modules sur k [[x]] et applications.
 - Preprint Rennes (1984).
- [7] TOUGERON J. Cl.: Sur les racines d'un polynôme à coefficients series formelles.

Springer, Symposium Trento octobre 88.