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A FULL-INFORMATION BEST-CHOICE PROBLEM WITH ALLOWANCE

$ux? BEYD  ZEKA Mitsushi Tamaki)
0.  INTRODUCTION

The basic form of ghe full—information best-choice problen, o;iginilly studied
by Gilbert and Mosteller (1966) can be described as follows: Let Xi, i=[,2,...,n be
the value attached to the i*"™ item and suppose that XI,X;,,,,,Xn are independent
and identically distributed random variables froﬁ 2 known continuous distribution
functfon F. On arrival of theri‘h item, we observe X; and decide immediately
either to accept or reject this itenm, weighing the poésibility of obtaining a better
item against the risk of losing the current item, The objective is to maximize
the probability of choosing ihe overall best, i, e ,the item which has the largest
value among all, assuming no solicitation of the previously rejected item  1f the
n-1 items have been rejected, the last one must be accepted, Generalizations and
thensions of this problem were made by Pefruccelli(lQSZ) and Tamaki (1986),

In the real situation, though the chosen item is not the overall Best, we will
be satisfied with it if its value is sufficiently large compared with the overall
best. This motivates our problems, In Section , an allowance function () will
be introduced, Let x be the value of the chosen item and y be the largest value
among all, then this selection is 2 sucqess if x2y= @(y)., We seek an optimal

strategy, which maximizes the probability 6f‘succes&

I, ALLOWANCE MODEL

Here Xi, Xz,..., Xa are assumed to be independent and identically distributed
non-negative random var;ables from 2 known continuous distribution funcfidn F(x).
F(x) is also assumed to be increasing on the set where 0<F (x) <1,

Let Y,=max {Xi, Xz, ..., K}, 1Sign, and £y} be a prescribed allowance function
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defined on[0,®): ~Then the state of the decision process after having observed
Xy, Xz, ..., Knx can be described as (x, v, k), 0SxSy, 0Sk<{n, if Xa—x=x and Ya-x=y (note
that k represents the number of the remaining observations available) and choosing

Xa-x in this state can be regarded as a success if Yo Q(Vn) SXnoxSVa,

‘To make the subsequent analysis simple, we put the following two assumptions

0n ﬁ(ﬂ.

(A1) pPly) is a continuous function of y with 0< P Sy,

(A2) y- ©{y) is non-decreasing in y,

(A1) is a natural assumption, VNow let
E={{x, y) : y-ply) x5y ],
then (AZ)‘assures that, for each k, it is not optimal to accept Xno-x in state
(x,y,%) for which (x,y)¢ E. This is easily seen because, under (A2), if (x, y)¢ B
then (x,y’)¢ E for y' 2y and because the maximum value observsd so far does nol
decrease as time goes, This is why we'confine our attention to state (k,y,k) for
which (x,y)€E E If (x, )€ B, x is called a candidate with respect to y (sometimes
‘x is simply called 2 candidate), lt»should'be noted that
qnder (AZ), if xis g candidate with respect to y, then
x is also a candidate with respect to y' when (x8)y'<y, -y
Défine
,B(X)=5,“P r: x,y)EE}.
. fﬁx) then represents the maximal value of‘y, {orvwhifh x remains a candidatp. It
follows from(Al) and (A2) thatJﬂ(x)’is jnc;egsjng jn X where F(B(x))(l, but possibly

have several discontinuity points. To guarantee that ;3&) is a continuously



increasing function, (AZ) must be replaced by
(A2)’ y-ﬁ(y) is increasing in 7y,

Two typical cases of (O(y) which satisfy (Al) and (A2) are as follows.

Corresponding /B(X) is also given:

Example | (proportional allowance)

el =ry, y20 '
(E(x) =x/T, x20 where T=[-1 and 051!,

Fxample 3 (constant allowance)
P =min{y, ¢), y20 and >0
F(x)=x+c,_ x20,
Example 1 satisfies (A2)’' but Bxample 2 does not satisiy (A2)',

In state (x,y, k), we have two altérnativ'es; acceptance (stopping) and rejection
’(continuance). Let s« (x,y) be the probability of success when we accept the
candidate and c« (x,y) be the corresponding probability when we assume continuation
in an optimal manner, It is easy to see that s« {x,y) (cw(x,y)) depends on (x,7y)
only through x (y). So we simply write s« (x) and cx(y) for them Put, for (x, y)€EE
and 0Sk<n, | | o |

Yol 1) =max sa (0, x ()], - (2
Then we have the following recursive relations ‘ '
s;(x)={F(F(x))l", 70§k<n o ,; | (1. 3)
cx (1) =F (y=p(0)) cx—t (1) +13- orn vamo {6, ) AF () HI5 v (8, 1) iF (t) (1. 4)
: : 12k<,
with the boundary condition co (y) =0,
Eq. v(l, 3) is immediate since all the remaining observations must have values not
gréaterv‘tl'xan ’F(x)‘ fo‘r ‘our .sclecti;n Xnox to bé ] suc;ess,k After ;lea\}ing stake

(x, 7, k), Xn-xs: is observed but rejected if it is not a candidate, i, e,
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Xo-x+<y-Qly).  Otherwise state makes transition into (t,y, k=1) or (t, t, k-1).
depending on wﬂether Xn-x+15t<y or Xa—x+1=t2y, This yields Eq. (1. 4). Note that
Bq. (1. 2) for k=n-1 is defined only for x=y due to X.=Y1 and the probabiliiy of
success is calculated as {3 va=u (x, x) dF (x).

We start with the following lemma,

Lemma I, 1, Assume that (Al) and (A2} hold. Then, for each k,

cx {y) is continuous and non-increasing in y.

Proof, Denote by ¢y, i=1,2, an optimal strategy followed after ledving state
(x, ¥y, k), where y.Dy2(2x) and compare the following two situations:

situation I: We leave (x,yi, k) and use G\, |

situation 2: We leave (x,yz k) and use G'1.
It is easy to see from (I, 1) that the success in situation [ is alsova success in
situation 2  Thus the probability of success in situation 2 is at least as large as
¢k {y(), and consequently cx{yz)2cx{(y).. Continuity follows by induction on k f{rom

(1 4).

Remart. We can prove dox {y) /dyS0 by induction on k assuming all.differentiability
required,  Let f({t)=dF(t)/dt, then differentiating formally both sides of (l.4)
yields | | |
e (5) =F (3= p1)) e’ (1)

' () -0 1 {-p()) [reer (y=ply), 1) =ca-t (1)}

3= pon (v (6, 1) /371 R (1),
cx—1 (y) and vye—, (t,y) are non-increasing in y from.the fnducikbn hypothesis‘and
CL=pt (y) 20 ffﬁm (Ai).v Hencﬁ, each term in the right Side of th; above equation is

non-positive and ci' {y) 20,
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Let, for 05k<n,
Ge={(x, Y) € B su(x}2ex(y) 1.
Then it is optimal to accept the candidate in state (x,y, %) for which (x, y)€E Gy,
Since, under ({(Al} and (A2), s« (x) 1is increa?ing in x, where sx (x)<l (because ﬁ%ﬂ

is increasing), the following theorem is an immediate consequence from Lemma I, I,

Theorem [ 2. Assume that (Al) ‘and (A2) hold. Then, for' kél, there exist two
critical numbers |

ac=ind {y: su (y) Zen (y) 1, ' ' (L 5)

ba=inf bys sx - 2en ) ), (L. 8)
and a non-increasing continuous function

Py =ind (x: sx (x)2en (y) 1, 248y5hy, - ' (l.v7)
such that |

Gx={(x, y) + P (y) Sx8y, axSysha JUl(x, y) ¢ y-00y) $x5y, buly .

When k=0, 20=bo=0 and Go=E.

Remarks, {l1) 1{ X; is bounded, i.e , there exists A such that F{t)=] for t24
then a.§A~IO(A) sinc; sx (x) =1 for xZA—(O(A).
(2) Assume that (Al) and (A2)" hold,  Then F(x) is continuously increasing and so
is sx{x), where sx (x)<I.- ‘Hence, in this case, (I, 5)?(1. 7 can be reduﬁed to the
f.ollowing forms:
ax 15 the unique root y of the equation

sx (1) =ea () S | )
by is the unique root y of the equation

s (y=ply)) =cx (y) (L 8"
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and Jx (y) is the unique root x of the equation

S {x) =cu (y), axSyshy . : (rLn'

Lemma [, 3., Assume that (Al) and (A2)’ hold. Then

Gk+1§Gx, 0§k<n-l,

Proof  Let ¥*>0 bé the smallest k such that GyfE, Then,‘by the cpntinuity
property ofrsk(x) and cx (y), there exists a non-empty set(subset of Gx) defined by

Tl € a2 ), k2
To prove the lemma, it is sufficient to show tha}! for (x,y)Eﬁh

| Cirt (¥) 28wer (x), ' - (L. 8)
From (I, 4) and the assumption that (x, y) €Gy, | |
Cat (V) =F (y-L05)) o (1) +15- 000 v (8, ¥) dF (1)

Hi% va(t, y) dF () +13 v (8, 1) dF (1) »

=F (y-p(1)) cu (1) +13- psn cx (y) AF (1) +f% sk(t)drF(i)

=F (x) o (y) 1% su (t) dF (1)

=F (x) sx (x) +§3 sx (t) dF (t),
where the last equality follows since cx {y)=sx (x) on (x,y)Eﬁk.'vThus, from the
monotonicity property of su(t) with:respect to t,

vt (¥) =5kt (x)

=F (x) sx (x) +§% sx () dF (1) =skes (x)

2F (x) sx (x) +sx (x) §3 dF (x) =sxes (x)

=sx (x) =sx+1 (x)

={l-F (F(x))l {F(‘A(x))] y

v

0,

which proves (1. 38),
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»Remarl. Example 2 {(constant ailowance) does not satisfy (A2)', but it is easy to
show by induction that ay, by, and Px{y) can be determined by (L)' -(L 7" and
Lemma [, 3 still holds if F(i?)(l, We can ac;ievé sucﬁess witg certainty if F(2¢c)=1I
In this case, there e#ists a finite number A such that A=inf {x: F(t) =1, t2x }<ic,
Hence, we employ a strategy which accepts an item whose'valug exceeds A-c¢ and, if

no such item appears in the first n-1 observations, abceprs the last item,

What is left is to determine the sequences of the decision numbers f{a.} and
{Bk}, and the sequence.of fhe decision function‘fx(y) for 1xSyShy. Hereaftef we
assume (Al) and (A2)', unless otherwise specified, Letting k=1 in (1.3} and: (I, 4)
yields
sl(xL=F(P(x)).‘
¢ (y) =1-F (y-ply)).

Thus, frem (l.5)'-(I.7)", a, is the unique root y of the equation

FBO) R (-pl)) =L, (L9
b, is the unique root y of the equation

Flr) +F (r-p 0l =1, - » (L 10
and | | ,

P = e () -0 (e ). | o

For %22, corresponding quantities are difficult to be obtained by solving
recursively (1, 2)-(l.4).  Repeated use of (L. 4) yields, for y>o,
ex (1) =25 [P (- P 1 32 orn ¥ams (6 YV AR (640 vacs (8, ) AF (1)),
In particular, for y2bxy, ‘ ‘
Cx (y)v =Zy= [Fly=ply)) ] 15— anlF (BL))} X2 AF (1), N
which follows because the optimal strategy, after leaving state (x, v, k),

immediately accepts a candidate that appears due to the monotonicity property of
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Gx given in Lemma 1. 3. This makes it easy to calculate bx,

Lemma I, 4, The decision numbef be, 1Sk<n, is the unique root y(ébx;,) of the
equation

(B =2y 2o (F =P 17 - po (F(BUINI TR (). (L, 13)

Proof, From (L. 6)', bx is the value of y which equates sx(y—p(y)) with ¢y (y)
Thus the result is immediate from (l.12), since by2bx—, from Lemma I, 3 and

sdv-p(v))ﬂ“ﬁ(r-ﬂ(ﬂ)l"= (F(y)}* from the definition of A().

Remark. Let QO(y)=0 and denote by tx Lhe co:resp;nding decision number by, Them
from (1, 13), tx satisfies |

(Fep) b *=Z, 2 (F(y)} 271 (R (L)) ¥ dF (t) (1, 13)"
or equivalently

(F () %5050 LR ()1 22 = (R ()} X1/ (k= 1),
This is the well known result in the full-information best-choice problem(see

Gilbert and Mosteller 1966 or Sakaguchf 1973)

The following lemma provides an algorithm for calculating ax and P {y) for
axSyShy, when a,, b, and P (y) for a,Sysb, and ISs<k are given, We use notation

IJ=(bl"|rbj]' jgl.

Lemma 1,5 2, by, and Pi(y) for a,Sysb, are calculated from (L 9) - (. 11). Assume
that a, bs, and J(y) for a.8ySb, are known, where 1Ss<k(28k<n). - First solve
be from (I.13) and let i(1Si<k) be the integer such that ax—:€l:. Then cu(y) for

“ax-15ySby, 2x, and P (y) fd; axSyS$hy can be calculated as follows:
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(i) Let
2 FIR (), 2<k
ll(y) =
N & 7=k

and define, for iSjsk,

{ (ak"h b|]1 j:]
I]’= .
Iy, i<jsk,

Then, for yel,',
ox (1) s (y)m=0 3= pl) 121 s BRI 0@ | .

13553 g (1) 1% o0 (F (,S(X) )10 dF (x),

where the vacuous sum is assumed Lo e 0.

(i) ax is the unique toob y in (aacy, ba) of the equation
L) = (y)

(i) - .

Se ) =F e ) -0 (/e (1)) ansyshn | (1. 15)

Proof., Fix y€I,' for given j and define
dy (v)=
y-ply), 08f5j-1,
Then it is easily seen from Lemma [, 3 that, after leaving sfate (x, y, k), the optimal
strategy immediately accepts Xo-g, 05¢<k, il Xa-p2dy (y). Thus
cx (Y) =552 Mokt i F{de (1)) IS, o0 8 (x) dF (x),
which, combined with (I, 3), yields‘(l.lé). (ii) and (iii) -are from (I.5)" and

(Ln'.

Remark, It is easy to see from remark of Lemma 1.3 that Lemmﬁs .4 and f.S.hold

for Example 2{constant allowance} with F (2¢){l,
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In principle, repeated use of Lenmma 1,54§uccessively determines
a1, bi and Ju(y) for yEfa,, by]

2z, bz and F2(y) for yE[az D)

When F is a uniform distribution on [0, 1], some simplification can be done in
calculating the decision numbers and the decision functions for Examples | and 2,
}Taking account of | |

t/T (proportional‘aflﬁwanée)
g (t) ={ ,
t+c (constant allowance)
we have, for x<l-p(l), - | |
[T F(AEI=AF (1) =fx= 2 {B) ] mdt+fi- oy dt
{ r+7 {I- /1) ™'} /{m+l) (proportional allowance).

¢t {l-{xtc) ™!}/ (m+1) (constant allowance)

Hence, the following corollary is immediate from Lemmas 1, 4 and 1,5,

Corollary I, 6. Assume that F() is a uniform distribution on ([0, I]. Let, for
fixed &,
(e L ly), o<k

L &L

ﬂ.g(” =

Cthen (1, 13)- (1. 15) can be written as follows: -
(i) Example | {proportional allowance)
bx is the unique root y in (bx-:, 1] of the equation

P2 (Fy) 2 L (110 /),
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For yEI,' {isjsk), .
ex () =As (1) 428 (ry) P 2 {rr (1-y2*1) / (01} )

251 A g (1) (4T (- (% (1) /D2 11/ (241))

and
Pl =t lex (y)] 175
(ii) Examplé 2{constant allowance with 0<c<1/2)
by is thé unique root y in (b;-},I] of the equatioﬁ
y* =25 (y;c) ko ic+(l—y’)/i}.
For y€l,' (igish),
ox (y) =As (1)Z4=8 {y=c) 17170 et (I-y2*1) / (1) }

FSEEE Ager (1) et [1- (5 () +6) 211 /7 (0+1)}
and

fk (y)=lex{y)] 7 *-c,

Note that the smallest possible value of x to be accepted in stafe {x, v, k) is
bk—p(b;),. Hence, we may well cbﬁjecture that txéhkfp(bk),kzl, for any allowance
functfon saiisfying (Al) and (A2)', whére tk‘as defined in (I, 13)" is the decision
number of the correspondiﬁg non-allowance }roblem. Howeve;, thisvconjecture is not
true, The following corollary gives an example for which tx{bx-p(bx) holds for some

. , :

Corollary 1.7, Let ply) be

{60

for fized d such that Lu$d for some k22, Then tuCba=p(ba).,

Proof; Define, for x20,

- 11—
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He (x) = {F(B(x)) ] *-2, 50 (F(x)} )05 (F(BL)) ) 2 dF (b)), (1. 16)
Then, when ngvk-—‘l"(o(bk—l), He(x) can be-expressed s |
Hi (x) =sx (x) -cx (B{x)),
because substituting y=g(x) into (L 12) yields
ex (B =Tixy (FOO1THT IR (BN ETAF (1), x2bamimploami),
Considering that, from Lemma |1, I () is fncreasing in x whes bek_.—P_(bk_,) and
that be-p(be) is, from (1, 6)", the unique root x of the equatios su(x)=cx(ﬁ(x)).
we {ind . |
fx (1120, x2bu-plb).
Thus, to prove txlbu-p(ba), it snffices to show Hx(f;)(O. S{n;ellu satisfies, .
from (L 13)", | o
(Ftad b *70 0T aF () = {F (L) b 22320 (F () )27 (R dF ), - (L 1T)
we have, from (l..16) and (I, 17), |
Ha (0 = F (BUL0 )T *-SE2E (F (a1 27155, (R ()] *=4F (1) = F (ta) ) 215, dF (1)
SLF B = (F (0111332 F (012~ [ (0] = [ (0] 0] 4F (1)
S BrEl F()1 0717 CF(0)) 5= (F 0] ] dF (1) |
QO (vhen k22), | - |
where the last equality follows from B(t)=t for td nd the inequality follons from

AL Tor DL,

It is of interest but difficult to investig;te how the prbbabflity of ﬁucces{
depends on the ﬁnderlying distribution F and the allow;nce function. employed.
Before concluding this section, we make, for Examﬁles | and 2, simple comparisons-:
between 2 uniform distribution on [O,Ij and a triangular distribution on [0, 1) when

n=2, Denote by P{Success|F) the probability of success under an 6ptimal policy



when the underlying distribution is F. We accept the first item if X,2ay but
continue and observe the second item i{ X,<a,., Hence,

P(Success|F)=f5 {1=F (t-p(1)) 1 4F (1) 417, F(BL1) 4F (1),

Let
x, 05x€l
Fu (X) =
{l. ol
and k
x% 02xsl
Fr (X) = {
I, 21

Wé have, from,straightforyard calculation,

(i) Example [ (proportional allovance)
P(Success|Fy)=1-T/247/2 (1472),
P(Success|Fy)=1-T2/2472/2 (14T*),
P(Success|Fr)-P (Success]|Fu)

T2 (-T2 + (1-7) T4} /2 (1412) (14T%)

v

0,
and

(ii) Example 2{constant allowance with ¢<{l/2)
P(Success|Fy)=3/4+c-c?,
P(Success|Fr)=3/4+4c/3-2¢2+4¢"/3,
P(SuccessIFT)-P(Success!FU)

=¢ (l+c) (1-2¢) 2/3

itv

0,
Does the inequality PfSuccess!FT)ZP(SuccessIFu) correspond to the stochastic
order relation Fr(x)SFu(x}? The answer is negative. Let
Fa (x) =l-exp (-Ax), x20 and AD0,
Then, for the constant allowance case,
P(Success|Fa) =1-exp (-2Ac) /2 {exp (Ac) +exp (-Ac))
vhich is clearly increasing inA. Thus P(Success|Fa,)2P (Success|Fa,) goes together

with Fa (x)2Fa, (x) for A4,
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