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On the Nonlinear Mean Ergodic Theorems for Asymptotically

Nonexpansive Mappings in Banach Spaces

‘Hiroké?u’Oka
Department of MgeiLM§f§;£?}Waseda University
1. Introduction. |
Throughout this note X denotes a uniformly convex real Banach
space and C is a closed convex subset of X. The value of x*e X* at
x € X will be denoted by (x,x*).
The duality mapping J (multi-valued) from X into X* will be defined
by J(x) = {x*e.X*: (x,x*) = lellz= Hx*HZ} for x e X. |

We say that X is (F) if the norm of X is Fréchet differentiable,

i.e., for each x € X with x » 0, lim t—l(Hx+tyH—HxH) exists
t-0

uniformly in y € Bl’ whéfe Br= {z e X :llzll £ r} for r > 0. It is

easily seen that X is (F) if and only if for any’bounded set B c X
1 2 2

and any x e X, 1im(2t) Mx+ty ™ =-UxN™) = (y,JGO)Y uniformly in
t-0
y € B. We say that X satisfies Opial’s condition if w—1lim x = x

n->o

implies that 1lim sup llx_ — xIl < lim sup llx — vyl for all vy e X with y »* x,
n-ow n n-oo n

A mapping T : C » C is said to be asymptotically nonexpansive if

for each n = 1,2, +--
(1. D T x - TnyH s (1+an)Hx—yH for any x,y € C,

where lim an= 0. In particular, if‘an= 0 forn 21, T is said to be
n->o

nonexpansive. The set of fixed points of T will be denoted by F(T).
Throughout the rest of this note let T : C » C be an

asymptotically nonexpansive,mapping satisfying (1. 1>.



A sequence {xn}nzolln C is called an almost—orbit of T if

1.2 lim [ sup Hx ., — T 1 1 = 0.
nao m20 n+m n

A sequence {zn} in X is said to be strongly ( or weakly ) almost
n=1 ' : ,

convergent to z € X if o I Zitk converges strongly ( or weakly ) as
i=0

n 2> ® to z uniformly in k 2 0. The convex hull of a set E ( ¢ X )

is dénoted by co E, the closed convex hull by clco E, and ww({xn})

denotes the set of weak subsequential limits of {xn} as n 2> o,

We get the following (nonlinear) mean ergodic theorems.

Theorem 1. Suppose that'{xn} is an almost—orbit of T and C

n=0
is bounded. If X satisfies Opial’s condition or if X is (F>, then

{xn} is weakly almost convergent to an element of F(T).

Theorem 2. Suppose that {xn}nZO is an almost—orbit of T and C
is bounded. If lim lix - x . exists uniformly in i 2 0, then {x_}
n->o .

is strongly almost convergent to an element of F (I,

Theorem 1 is an extension of [5, Theorem 1.], [1, Corollary 2.11,

[4, Theorem 2.1] and Theorem 2 is an extension of [6, Theorem 1].°

2. Lemmas.
Throughout this section, we assume that C is bounded. By Bruck’s
inequality [2, Theorem 2.1], we get

Lemma 1. There ‘exists a strictly increasing, continuous,

convex function v : [0,®) > [0,®) with v(0)=0 such that



n - n
NTEC T Ax) - F AL Tox,
i=t Vb=t t

-1 T | k
P4 (1+ak)Y ¢ max [ Ix, xjH T+a nT

151, jsn ! k

X .= Tkx.H 1 >
i J

n ,
for any k, n 2 1, any Al"..’An 2 0 with X'Ai = 1, and any"

i=1

xl,'“,xn e C.
Hereafter, let v Be as in Lemma 1.

Lemma 2. Suppose that (xn}nZO and {yn}nZO are almost—QFblts
of T. Then {Hxn— ynH} converges as n > o,

- _oem - _ om
Proof. Put a = sup ”xn+m T an and bn sup “yn+m T ynH for
m20 m20

n 2 0. Then ag » 0 and bn - 0 as n » o,

Since
m m m m -
an+m yn+m" S ”xn+m T an HT xn T ynH nT yn yn+m“
Sa +b + (+aDllx — y I, we have
n n m n n

lim sup Hx - 1] a
P olx = v 2

m-o

+ b + lx - y Il for every n 2 0.
n n n n. »

Taking the lim inf as n -» o,

we obtain lim sup me— ymH S lim inf Hxn— ynH and so the conclusion
m-w n-oo -

holds. ' Q. E.D.

We now put D = diameter C and' M = sup (1+an),
nal



Lemma 3. Suppose that {x§p)}j21(p = 1,2,++»+) are almost—orbits

of T. Then for any € > 0 and n 2 1 there exist Ng 2 1 and in(S) = 1,

where N8 is independent of n, such that

n n
HTk( A xfp)) - ¥ Tkpr)H < £ for any k 2 N_, any i 2 i (=),
= P p=1 P i 3 n

and any A

n
1;"'»>\n e 0 Wlth Z A.p= 1.

p=1

Proof. For any # > 0 choose 6 > 0 so that Y—l(d) < /M. Then

there exists N2 2 1 such that «

k
Since (ngp)— x§q)ﬂ}j21 converges as j 2 ® by Lemma 2,

< 6/4D for k 2 NE.'

for each p,gq 2 1 there exists io(s,p,q) 2 1 such that

)_ (@, _ P _ W@
Hx, xi H ”xi+k xi+k

Moreover, there is

N < 674 if 1 2 10(8,p,q) and k 2 0.
il(s.p) 2 1 such that agp) < &6/4

®_ ®)_ 13, By

i i £
for all i 2 11( ,p), where a, sup ”xi+j i

j=20
Put in(s) = max {iO(E,p,q), il(E,p): 1 $p,g $n} for nz 1.

If i 2 i_() and k 2 N_, then
n £

nx Pr- Oy o L gk @) gk (@,
i i 1+e i
- k
@ _ (@, _ ®)_ (@ (pd (@ ®)_ (@
s Hxi X, I ”xi+k xi+k” ta,; + a, too lix, x; <6
for 1 s p,qa S n and by Lemma 1,
n n :
Nt ¢ T oA xPy - T TP < s
n .
for any A1,~--,xn 2 0 with § Ap= 1. Q. E.D.

p=1



k

For any € > 0 and k 2 1, we put FS(Tk) = {x e C : IT x — xIl s =},

Since C is bounded, F(T) » ¢. (For example, see [3, Theorem 1].)

Lemma 4. Suppose that {xi}iz is an almost—orbit of T. Then

0
for any € > 0 there exists N£ 2 1 such that for each k 2 NE,'there

is N (=Nk(8)) 2 1 satisfying

k

1not k

;izo*i+g e F_(T) for a;l n 2 N, and all & 2 0.

Proof. Let £ > 0 be arbitrarily given and o be the inverse"
function of t » MY_1(3t) + t. Put 6 = min { 0(%),—%6-} and M = M+1.

‘ -1 62 = '

Choose h > 0 and Nl’sz 1 §o that v " (n) < oM and oy < a(g)/D
for k 2 N1 < Furthermore, by Lemma 3, there exists N2 82 1 such

that for any p 2 1 there is ip(s) 2 1 satisfying

_1 p...
k 1P : 1
2. D T = ¥ x.,..0) = ¥
+j+
Pizg 1Hi+8 P

: _ o
xi+j+&” < 67/8

for any k 2 N2 £+ any i ip(S), and any 2 2 0.

Put N8 = max (N N, s) and let k 2 NS be}fixed;-By-Lemma 1 and

1,82
the choice of 6§, we get
k k

2.2 clco Fé(T) CFs/s(T d.

Dk . 62 . |
Next, choose p 2 1 so that ;- s bl and let p be fixed. Since

{xi}izo is an almost—orbit of T, there exists N 2 1 such that
sup lix . = T x Il < e for m 2 N. Set w.= = § xi+. for i 2 0.
qZO m+q m 1 pj=0 J

If i 2 ip (g) + N, by (2.1,



K
"wi+k+a T wi+gn
p—1 ‘ p—1 p—1 9
1 - 1k 17k ~ Tk L [
s “p_§ (xi+j+k+g T xi+j+g)” + np‘g I Xi4i+9 T (p‘_ xi+j+g)” < 7
i=0 i=0 =0
DCi (£)+N) 52
for all 2 2 0. Choose N3(k) 2 ip(S)+N+1;such that pn < 1
for all n 2 Ng(k). If n 2 NgGo, then '
1n—l K 1n--l :
2.3 ;.E Hwi+gf T wi+gu s ;‘g ”wi+Q_ wi+k+&”
i=0 i=0
i +N-1 - n-1 (i +NOD 2
+ Lo Py o4 T Dlw, ~ TRy, s B2 L8 o 42
n . .- eil s i+tk+9 i+Q P n . 4
i=0 1—1p+N

for all 9 2 0, where ip= ip(S). Finally, choose N4(k) 2 1 so that
(E‘I)D ‘ E__ =
on < SM/for all n 2 N4(k)‘ Put Nk max (N3(k),N4(k)) and

let n 2 Nk be fixed andyﬁ 2z 0.

P . . _ _k
Set Ak,n,?) = {i e Z ; 0 i s n—-1 and "wi+a T L N 2 6} and

Q2
Bk,n, = {0,1,---,n-1N\ACk,n, 2. By (2.3, #Ak,n, 2 S né,

where # denotes cardinality. Let f € F(T). Then,

1n—l 1n—l I‘p—l
L X T b ¥Wig Y p LoD 0 47 Xigen-1’

i=0 i=0 i=1
= [ % (#A(k;n,a))-f + % ¥ Wiig ] [ % Y (W'+g" £ ]

ieB(k,n, $ ieA (k,n, 3
p Pl
+ == -i -
i=1(p 1)(§i+g_1 xi+ﬂ+n—1)'

The first term on the right side of the above equality is contained

. k .
in clco FG(T )f(anéjthe rest term 1n7B28/3M4;By>(2.2}, we'get\

1

1" k . ,
= L x. e F_(T™) for all & 2 0. o . Q. E.D.
ni 0 ite €

o1



Lemma 5. Let {xn} in C be such that w—lim x = X. Suppose that
n-oo

for any £ > 0 there exists N¢) 2 1 such that for k 2 N(&) there is

Then x e F({ID.

. . k. _
Nk 2 1 satisfying NT xn an < £ for all n 2 Nk'

Proof. We shall show that lim HTkx - xll = 0. For any £ > 0
k2o
choose 6 > 0 so that 1_1(6) < %ﬁ and take NI(S) 2 1 such that
oy < %5 for all k 2 N, (). Put 6'= min C &, .

By the assumption, there exists N(g) 2 1 such that
for each k 2 N(£) there is Nk = 1 satisfying,HTkxn— an <s’

for all n 2 N,.
Put Ny(=) = max (N, (£),N(=)) and let k 2 N,

fixed. Since x € clco {xn tn 2 Nk}, there exists a sequence

() be arbitrarily

<1> *n i)
{.E kn w (1)} c co {x i1 n 2 Nk} such that lim ;Efkn Xy (= X
i=1 n-2o ji=1 n
! Q
LD , s
Therefore there is Ns(k) 2 1 such that Higlxn an(i)_ xll < Zﬁ'for
' 9
all n 2 NG and hence if n z N>, 1¥x - T8¢ ¥ A(l) o< =
3 3 ’ Wn(i)

i=1 4

On the other hand, by Lemma 1 and the choice of & and k,’we get

Q
n
) _ (. k £
ntk ( Z An w (i) _g.An Toxy (M < 1 for all n 2 1.
i=1 i=1 n v
2 |
Consequently, HTkx - xll s HTkx -~ TkCrE X(l)x PR B |
..'n v (i)
i=1 n
Qn Qﬁ
k GD) (i) .k
+ UT (‘E N (i)) 'g AL T Xy
i=1 n i=1 n



‘ Q ‘ Q -
: n : n
(1) -k _ (id _
+ H.E )\n (T X¢' %D Xw (i))” + H‘E )\n xw D) xll < g,
i=1 n n i=1 n
where n =2 NS(k)'
This shows that ITSx - xll < & for k 2z N, (2. | Q. E.D.
Lemma 6. Suppose that X is (F) and {xn} is an almost—orbit of

T. Then the following hold:
(i> {(x_,J(f-g>)} converges for every f,8 € F(T).

(i1 F(D n clco ww({xn})‘is at most a singleton.

Proof. Let A e (0,1) ahd f,g € F(T). By Lemma 3, for ény € >0

there exist N, 2 1 and i,(2) 2 1 such that if k 2 N_ and n 2 i,(2),
K k

NT> ( Axn+(1—k)f > = AT xn‘— -2 1 < =,

. m
+ — - -
Since HAx } (1=-xf gl & Alx vl ’T.X N

+ NTM(C Ax +(1=A) £ ) - Amen - Aa-fn + <1+am)uxxn+<1—x)f’— gll

Q ‘
- + + - -
s ;:g Hxn+g. T xnn £ + (1l+a )H}\xn a-x>f gl

for m 2 Ns and n 2 i,(g), we have

2

Lim sup WAx +(1=X)f = gll & sup lix o= Tox Il + & + IAx +U-Xf - gl

+
M- 920 N8

for n 2 12(8). Letting n » « and then = ¢ 0, we get

l1im sup Hkxm+(1—k)f - gt £ 1lim inf HAxn+(l—A)f - gl

m- o n-2o

and so HAxn+(1—A)f — gll converges as n = o,



The boundedness of {Hxn— f”}nZO and the Fréchet differentiability

of X imply that a(i,nd =,(2A)—1(Hf - g ¥ A(xn— 1% - nt - g1
converges to (xn— f,J(f-g)) as A 4 0O uniformly in n 2 0.
Hence liﬁ (xn— f,J(f-g)) = 1lim a(l,n) exists. This proves (i),

n-oo A=20+, now»

It follows from (i) that (u-v,J{f-g)) = 0 for all u,v € ww({xn})
and hence for all u, v € clco ww({xn}). Therefore, F(T) n clco,mw({xn})

is at most a singleton. Q. E. D.

We set

1n—l .
s(n;m) = ;1£0xi+m (n21;mz20)

for an almost—orbit {xn} of T.

Lemma 7. Let {xn} be an almost-orbit of T. Then tﬁere exists
a sequence {in} of nonnegative integers with in 2 «© as n’+ o
satisfying the following:
Let (kn} be a sequence of nonnegative integefs with kﬁ 2 i
for all n. Then, we.have the following:
() Wistnsk > - £l is convergent as n » ® for every f e F(D.

(iid If X satisfies Opial’s condition or if X is (F), then there

exists an element f of F(T) such that w—lim s(n;kn) = f.
n->ow

Moreover, F(T) n clco ww({xn}) = {f} in case X is (F).

Proof. By Lemma 3, there -exist divergent sequences {Nn} and

{in} of nonnegative integers such that if k 2 N and i 2 i
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-_— 1 ‘
k 1
EOT xp+iu <o

7 ' n-1 n
2. 0 urk(% L xpep) - %
p=0 " P

Let f € F(T) and {kn} be a sequence of nonnegative integers with

k 2 i for all n. By (2.4),
n n
v+_7
1 kn Nn 1 n+m—1 n—1
N—1 Y + X Y= F§ x - f£HO1
n+m} p=0 p=k_+N nq=0 p+q+kn+m
n n
(kn+Nn)D 1 n+m—1 n—1 p+kn+m—kn
s X = ¥ - T x )
+
n+m n+m p=k +N nq___0 p+q+kn+m q+kn
n n
. _ _ _
ln 1p kn+m kn p+kn+m kn 1 1
+( 5 v T Xook T (; X 4k > D
q=0" L q=0 %0
ptk -k n-1
+ (T OMtm “(% L x4 > = £
-~ q=0 Ty
(kn+Nn)D 1n—l 9 1
§ ———— + =% sup lix - T7x N+ =+ lIsth;k > - fHl
n+m nq=0 920 Sl+q+kn q+kn n n
1 n+m-1
+ —— ) o . D whenever n + m 2 k_+ N_+ 1.
n+m p=k +Nn p+kn+m kn , n n
Therefore,
s (ntm; k ) = fli
; n+m
+N - n . .
1 kn gn 1_ ‘n+g—1 1n'—l
s = + S (= X - £l
n+m p=0. p=k +N N4=0 p+q+kn+m '
n n .
1 n-1
—— ¥ (n=-p)lIx : - x ]
+ A - / +n+m—
n:n m)p=1 | p+kn+m 1 p+kn+m n+m—1
G +N DD ol : 0 '1 ~
s ——————— + =7 sup lx - T7x W+ =+ listn;k > - fii
+ +q+ +
n+m nq=0 920 Q+q kn q kn n n
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p  nimel ' (n=1)D o .
+ ntm _ L ap+k -k D + o (ntmy for n + m 2 kn+ Nn+ 1.
r=k_+N n+m " n :
n n
Hence
lim sup tHis(m;k > — fiIl 8 1im inf HUs(;k > - fll.
m->o m n-o>ow n

This proves (i),

Now, lgt W be the set of weak subsequential limits of

{s(n;kn)} as n » o, Since X is reflexive and {s(n;kn)} is bounded,
W is nonempty. To prove (ii) it suffices to show that )

W c F(T) and W is a singleton. By Lemmas 4 and 5, W ¢ F({D) ahd so
{Hs(n;kn) — vil} converges as n 2 ® for every v é W by (i,

First, suppose that X satisfiés Opial's conditiog and lef v, € W,

i =1,2 and vi= w—1lim s (n i)k ), where {nC¢id}, i =1,2, are

n (i) -+ n (i

subsequences of {n}. Suppose vy » Vo Then, by Opial’s condition,

)= le

lim Nls(n;k > - v i Lim s (n(1);k
n 1 n

n-w n(1)-e 2

< lim sk ) = vall

n(1)-w v 2
= lim ls(n;k_ > — vgll.
n 2
n_-)cn
In the same wdy we have lim lis(n;k. ) — v ll < lim Hsn;k. > — v, Il
n 2 n 1

n-wo n-wo

This is a contradiction. Consequently, vy = vy and W is a singleton.

Next, suppose that X is (F). We can easily see that

o .
W c'g clco {xn :n2 i} =clco ww({xn})‘<
i=0
Thus W ¢ FC(T) n clco ww({xn}) and hence W is a singleton by Lemma 6

(Gii). | | | Q. E. D.

-11-
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Lemma 8. Let {xn} be an almost—orbit of T and {kn} a sequence
of nonnegati?e integers. If (s(h;kh+ﬂ)},cdnverges weakly C or
strongly ) as n » ®, uniformly in @ 2 0, to an element y of X, then
{s(h;9)} converges weakly ( or strongly ) as n ~» o, uniformlybinb

Q2 0, to y.

Proof. Suppose that lim s(n;kn+9) = y uniformly in 2 2 O.
noo C

Then, for any £ > 0 there is N 2 1 such that us(N;kN+n)'— yll < =

for all 8 2 0.

k. —1
1 N n—1
s ;) =yl & 2CE + £ Dlls N3 i+8) = yli
i=0  i=k
N
- N-1 .
+ Ly on-nx - x I
nNi=1 i+9-1 i+9+n—1
X..D _ |
s N4 4 DD o 2 k. + 1 and 9 2.0,
n, 2n “ N ,

This shows that lim s(n;Q =y uniformly in 2 2 O.
n-=>o : :

In a similar way we can prove the weak case. Q. E.D.

Throughout the rest of this section, we assume that {xn} is an

almost—orbit of T satisfying

.l exists uniformly in i 2 O.

2.5 lim HIx. - x
n, n+i

n-=wo

Lemma 9. The following holds:

lim nTg<l—ﬁEIx Pl - A N+ e N su=o0
2n,2 Titn 2m,2 . T1i 2n, itn 2m, i+m” - '
Q,m, n2® i=0 i=
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g sl gntlg
In particular, lim NT (< § xi+n) ey v T Xi4n! = 0
Q,n-ow i=0 i=0 ,
Proof. By Lemma 1,
-1 m—1 n—1 m—1
9,1 " 1] _ 1 9 1 9
(2. 6) T (2n.E xi+n+ 2m.§ xi+m) (2n.§ T x +n 2m.§ T xi+m)n
i=0 i=0 ~i=0 i=0
-1 _ I B .8 _
£ My ~( max {lei+n xj+n” 1+a&HT Xi4n T xj+n“’ “x1+n X4+ I
1 9 9 _ 1 9 .8
1+ag"T Xi4n T xp+mn, "xp+m xq+mn 1+aQ”T xp+m T xq+mn

0sS i,ij Ssn-1, 0SS p,g S m1pP for any n,m 2 1 and 2 2 O.

For any € > 0 choose 6 > 0 such that Y—l(é) < /M. By the assumption,
there exists N 2 1 such that sup | HIx - x .0 —1lix - x ..l | < 6/4,
. n n+i m m+i
i20
sup x . — Tfx It < 6/4, and «, < 6/4D for every 2, m, n 2 N.
n+r n Q

rz0
It 9, m nzhN lx., - x., Il - NT %, . = T, I

} i ’ i+tn T j+m 1+ocQ i+n j+m
s lx - X - lix - X N+ Hx - Tgx “

i+n j+m i+Q+n j+e+m i+9+n i+n
+ lx - Tgx N+ e, llx - X H < 6 for every i j = 0.

j+o+tm jtm Q Ti+n j+m ‘ *
Combining this with (2.6,

-1 m—1 n—1 m—1
9 1" 1 9 1 Q
= V. + - (= + == ¥ <
T G L xyunt om b Xiap) — G L Tixy v o0 L Tixg 0 < =
i=0 i=0 i=0 i=0

for every 9, m, n 2 N. : : : ‘ . Q. E.D.

Lemma 10. {s(:n)} is strongly convergent as n » ®© to an

element y of F(D).
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Proof. Take f € F(T) and set u = sn;n) — f for n 2 1.
Similarly as the proof of Lemma 7 (i), using Lemma 9, we can see

that HunH = lls(n;n) — fll converges as n =2 ®©, Put d = lim Hu I
n->w n
Then, we have

2.7 lim lu + u_ .l = 2d for every i 2 1

n->o© n+1
because llu. — u Il > 0 as n =» o,
n n+l
Since
‘ +k-1 :
1 " . (n-1DD
n+ - .
s (n+k ;n+k) e iEO s(n;n+tk+i) + v(n,k), llvn,kK)Il S S (ntk)
n-
where v(n,k) = ;?;:EY Z =i Xy ™ i+2(n+k)—1)
it follows that
1 ntk-1
1L S R ewre iEO C s(nyn+k+id + s @mym+k+id — 2f D1l
m-n nt+k—1
+ l?EIfTTH:ET iEO C sm;mtk+id = £ 1
1 m+k—1 ‘
+ ||l— ¥ Csm;mtk+id) = £ O + Hvn, ko + lvim, kol
mtk ,
i=n+k
ntk-1
s -2 Tong 1_( s(n;n+k+i) + s (m;m+k+id ) — fi + 2m=n)D
: n+k i=0 m+tk

-1>D . m-1DD

o (n+k) 2 (mtk) for m 2 n 2 1 and k 2 0.

Moreover,

2”1 s intk+id + s (msmtk+id ) - £l
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y Aol 9 y molo 9
s =— Y sup Hx, - T7x., I + 5= %  sup lx, wo~ Tox I
2“j=0 920 jtn+e jtn 2mJ 0 920 Jfm*R  © Tjtm
n-1 ., m—1 n—1 , . m—1
sy DT e e g T, - T1+k(én L% * Ln x o
£+ e, N2 s + 27 s am - £

for m, n &2 1 and i, k 2 0.

By Lemma 9, for any € > 0 there exists N 2 1 such that

-1 m—1 : m—1 S
k1" 177 S 1"k
T (2n.£ Xi+n + 2m.Z xi+m) 2 Z n-+ 2m.Z T xi+m)“ <%
~i=0 i=0 i=0 i=0
r : ‘ V S
i;g ”xn+r— T an < £, and oy < £/D for every k, m, n 2 N‘

Consequently, we obtain

2(m-n)D 4-(n—1)D + (m—1)D
m+k 2 n+k) 2 (m+k)

llu + u

o+ +
n+k Il & 6= Hun + umH

m+k

for every m2 n 2 N and k 2 N. Letting k » », it follows from (2.7)

that 2d £ 6 + Hun + umn for every m, n 2 N, Hence

2d & lim inf llu + u il S 1lim sup Hlu + u Il § 2d
n m n m

‘n, m->w n, moe
and so lim llu + umH = 2d. By uniform convexity of X
n, moo
and lim Hunn =d, lim llstin) - sm;mdll = 1lim lHu_ - umH = 0,
n-oo ' m-® n, ma®
whence {s(n;n)} converges strongly. Put y = lim's(n;n).

n-o>w

Then we have

ly - T&yﬂ Sy — s;ndll + UHs(n;n) - sh;n+WI
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-1 n-1 n—-1
L - e S
+ ”n.E X n+q Ot L Tox, - TG L x,, Ol

T x
i+ +
0 10 i=0 j=g "M

+ 1T s sy - Ty

S M+ Dily - stin)ll + 28 + 2D for all n, & 2 N,

[¥)

Hence lim HTgy -yl = 0 and so y € F(D). Q. E.D.

Q2

3. Proof of Theorems.
Proof of Theorem 1. Let {xn} be an almost—orbit of T. First,
suppose that X is (F). By Lemma 7 (ii), there e#ist a sequence {in}
of nonnegative integers and an‘element‘y of F(T) such that

{y} = F(D n clco ww({xn}) and w—lim s(n;kn) = y for any sequence
n->w

{k_} with k. 2 i_ for all n. This implies that
n “n n

w—lim s(n;in+ﬂ) = y uniformly in & 2 0. Hence {xn} is weakly almost
n-o .

convergent to y by Lemma 8.

Next, suppose that X satisfies Opial’s condition. We denote by A
the set of sequences {kn} of noﬁnegative integers with kn'z in for
éll n, where {in} is as in Lemma 7. It follows from Lemma 7 (iid
that Hs(n;kn) - fu converges as n > © for every {kn} e A
and f € F(T). Define rf{kn};f), r({kn}), and r by

r{k_}if) = lim sk ) - £l for (k_} e A and f e F(D, .

n-ow
r({kn}) = inf {r({kn};f) : f e F(TD} for {kn} e A,
and

r= inf {r({kn}) : {kn} e A},

respectively. Now, choose {k;l)} e A, i =1,2,+++, such that



(i),

. ()4, _ _
lim r({kn‘ }) = r, and let hn‘ ma*’{kn :

iooo
where {Nn} is as in the proof of Lemma 7. Clearly {hn} e A.

Moreover, we obtain
3. D r({hn}) = r.

To show this, let n 2 i 2 1 and f € F(T). Then,

- n-l B T N
3. 2 Hs(n;hn) - fll £ H-E ij+h - T x (i)”
j=0 n j+k
, n

,n=1 hn—k;i) hn—kél) n=1
+ =5 T X L, = T =7 x LD

n,> . (1 n,>. 7. (i

i=0 J+kn j=0 J+kn
n—kél) ln-_1 ln—l . )
+ NIT (;'g X (i)) - fli s ;wg‘ sup Hx' (" T X (j)H
j=0 j+k j=0 920 jtk +9Q jt+k
n n n
+ U+« (.))Hs(n;kéi)) - 1.
h -k *
n n

Letting n » ®, it follows that r¢{h_};f) = r({kél)};f)

for all f e F(D and so r¢{h_}> & lim r({kii)}) = r.

i

But r s.f({hn}) by the definition of r. Thus (3.1) holds.

17

1 $isSn} + Nn for n 2 1,

1

L

n

Since F(T) is closed convex ( For example, see [3, Theorem 2].) and

{s(n;hn)} is bounded, the reflexivity of X implies that there is an

element y of F(T) such that rth )iy = rcth 1 < =r ).

Set hh =h + N . Then we shall show
n n n

3.3 w—1im s(n;h;+9) =y uniformly in & 2 O.
n->w R

If this is shown, the conclusion follows from Lemma 8.

Z17-
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. : : /
To show (3.3) let {Qn} be an arbitrary sequence such that &n 2 hh
for all n. {Qn} e A and by Lemma 7 (ii) there exists

z € F(T) such that w—1lim s(n;Qn) = z. Suppose z ¥ y.
n-o>o

Then Opial’s condition implies that

r({&n}) S lim Hs(n;ﬁn) -zl < lim Hs(n;&n).— ylh = r({&n};y).

n-= n-2o

But, by the same way as in (3.2), we have
r({ﬂn};y) s r({hn};y) s r({hn}) = r. Thus;r({ﬂn}) < r and this

contradicts the definition of r. Hence z = y and so w~1im,s(n;§n) = vy,
. ‘n-ow

Clearly, this implies (3.3). Q. E.D.

Proof of Theorem 2. Let {xn} be an almost-orbit of T and

suppose that lim llx - xn+i” exists uniformly in i 2 0,
n-ow

We shall show that there exists an element y of F(T) such that

lim s(;2n+9) = y uniformly in 2 2 0. By Lemma 8, for any = > 0
now ‘ :
there exists N 2 1 such that

n—1

n—1
1 n+Q _ nt+Q 1 , , _ I
- v T Xitn T (n X xi+n>u < = and sup x 4. T an < =

i=0 : i=0 r20

~for every n 2 N and 2 2 0.

By Lemma 10, there exists an element y of F(T) such that

lim s(n;n) = y. Then we have
n->o
n—1
1 : L n+Q
. + -— — —
lIs (n; 2n+9) yll s niEOHxi+2n+g T xi+n”
n—1 E ; o.n—1 : n—1 o
+
T O N LN Lt P N R T T ihliate S (VU
n,_ i+n n,- i+n n,_-_ i+n
i=0 i=0 i=0
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S 25 + M Hs(ni;n) — yll for every n 2 N and & 2 O.

Hence lim s(n;2n+9) = y uniformly in 2 2 0 and so the conclusion
) n->o

follows -from Lemma 8. d Q. E.D.
Remark. The assumption "™ € is bounded ” in Theorems 1 and 2

may be replaced by " F(T) » ¢ ”,
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