Relaxation-oscillations in infinite dimensional dynamical systems

Department of Mathematics, Hiroshima University

In this paper, we would like to consider the following reaction-diffusion systems arising in combustion theory:

$$(1)_{\varepsilon} \begin{cases} \frac{\partial \theta}{\partial t} = \Delta \theta + c f(\theta) \\ \frac{\partial c}{\partial t} = d \Delta c - \varepsilon c f(\theta) \end{cases} \qquad x \in \Omega, \quad t > 0,$$

where $f(\theta) = exp\{-\frac{H}{1+\theta}\}$ and Ω is a bounded domain with smooth boundary $\partial\Omega$ in \mathbb{R}^N . Here, θ and c are respectively the nondimensionalized temperature and concentration of fuel. d, ϵ and H are all positive constants. The meaning of these constants is stated in [2] for instance. The initial and boundary conditions for θ and c are

(2)
$$\theta(0,x) = \theta_0(x) \ge 0$$
, $c(0,x) = c_0(x) \ge 0$ $x \in cl\Omega$

and

(3)
$$\theta(t,x) = 0$$
, $\frac{\partial c}{\partial v} = k_0(c^*-c)$ $x \in \partial \Omega, t > 0$

respectively, where ν is the outward normal unit vector on $\partial\Omega$. The boundary condition of c indicates that the fuel is supplied through the boundary $\partial\Omega$. Its magnitude is proportional to the difference of c on $\partial\Omega$ and some constant value c^* with the flux rate k_0 . To study $(1)_{\varepsilon}$, (2), (3), we assume here ε to be sufficiently small, which is natural from a chemical view point (see [2], [4] for instance) and k_0 to be $k\varepsilon$ for some k. The latter implies that amounts of the consumption and the supply of fuel would be the same order ε .

Our aim is to study the dependency of c^* on solutions $\left(\theta(t,x),c(t,x)\right)$ of $\left(1\right)_{\varepsilon}$, (2) and (3) with $k_0=k\varepsilon$ and to show the existence of relaxation oscillations in an appropriate range of c^* ([3]).

First, we analyze the behavior of solutions of $(1)_{\epsilon}$, (2) and (3) by formal perturbation argument, so called the "two-timing method". Here, We rewrite $(1)_{\epsilon}$ and (3) as

$$(4)_{\varepsilon} \qquad U_{t} = A_{\varepsilon}(U) + \varepsilon F(U),$$

where $U=(\theta,c)$, $F(U)=(0,-cf(\theta))$ and $A_{\varepsilon}(U)=\left(\Delta\theta+cf(\theta),d\Delta c\right)$ for $U=(\theta,c)$ with $\theta\left|_{\partial\Omega}=0$ and $\frac{\partial c}{\partial\nu}\right|_{\partial\Omega}=k\varepsilon(c^*-c)$. We derive the lowest order approximate function by the two-timing method. Introducing two time scales: a slow time scale $T=\varepsilon t$ and a fast time scale t, we look for solutions of $(4)_{\varepsilon}$ in the form

(5)
$$U(t;\varepsilon) = U^{0}(t,T,x) + \varepsilon U^{1}(t,T,x) + O(\varepsilon^{2}).$$

With the relation $\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial T}$, inserting (5) into (4)_{\varepsilon} and equating coefficients of like powers of ε^0 and ε^1 , we obtain

(6)
$$U_t^0 = A_0(U^0), t > 0, T > 0$$

for $U^0 = (\theta^0, c^0)$ satisfying $\theta^0 \Big|_{\partial\Omega} = 0$ and $\frac{\partial c^0}{\partial \nu} \Big|_{\partial\Omega} = 0$,

(7)
$$U_t^1 + U_T^0 = A_0(U^0)U^1 + F(U^0), \quad t > 0, \quad T > 0$$

for $U^1=(\theta^1,c^1)$ satisfying $\theta^1\Big|_{\partial\Omega}=0$ and $\frac{\partial c^1}{\partial\nu}\Big|_{\partial\Omega}=k(c^*-c^0)$, respectively, where $A_0(U^0)=\left(\Delta\theta^0+c^0f(\theta^0),d\Delta c^0\right)$ and $A_0(U^0)$ represents the Frechet derivative of $A_0(U^0)$ with respect to U^0 . Now, we immediately know the dynamics of $U^0(t,T,x)$ for t from (6). Let us consider the dynamics of $U^0(t,T,x)$ for T. Since ε is sufficiently small, we may assume T to be O(1) for large enough t, so that we put formally $t=\infty$ for any fixed T>0. Consider the asymptotic behavior of $U^0(t,T,x)$ as $t\to\infty$. Since the equation of $c^0(t,T,x)$ for t is $\frac{\partial c^0}{\partial t}=\Delta c^0$ with $\frac{\partial c^0}{\partial\nu}\Big|_{\partial\Omega}=0$, the spatial average of $c^0(t,T,x)$ is independent of t and the asymptotic behavior of $c^0(t,T,x)$ as $t\to\infty$ is the constant of its spatial average $\frac{1}{|\Omega|}\int_{\Omega}c^0(t,x,T)dx$, say $\lambda(T)$. So that $\theta^0(t,T,x)$ converges as $t\to\infty$ to the nonnegative stable stationary solution of

(8),
$$\theta_f = \Delta\theta + \lambda f(\theta), x \in \Omega$$

with $\theta \mid_{\partial\Omega}$ = 0, where $\lambda = \lambda(T)$, which implies that it is important to consider the stationary problem of (8)_{λ}:

$$(9)_{\lambda} \qquad \Delta \phi + \lambda f(\phi) = 0$$

with $\phi |_{\partial\Omega} = 0$ and $\phi \ge 0$ in Ω . This problem has been studied as "Nonlinear eigenvalue problems" by numerous authors. Specially, the problem in the case that Ω is a ball in \mathbb{R}^N has been extensively studied and when Ω is a ball in \mathbb{R}^N with $1 \le N \le 2$, the global picture of solutions of $(9)_{\lambda}$ with respect to λ is S-shaped given as follows mathematically and numerically (Figure 1) (Parks[8], Parter, Stein and Stein[10], Parter[9], Gidas, Ni and Nirenberg[5], Tam[13], etc.):

(H1) There exist $\underline{\lambda}$ and $\overline{\lambda}$ (0 < $\underline{\lambda}$ < $\overline{\lambda}$) such that only three families of solutions of (9) $_{\lambda}$, say $\{\phi_{1}(\cdot;\lambda)\}$, $\{\phi_{2}(\cdot;\lambda)\}$, $\{\phi_{3}(\cdot;\lambda)\}$, exist on 0 < λ < $\overline{\lambda}$, $\underline{\lambda}$ < λ < $\overline{\lambda}$ and λ > $\underline{\lambda}$, respectively, and satisfy $\phi_{1}(x;\lambda)$ < $\phi_{2}(x;\lambda)$ < $\phi_{3}(x;\lambda)$ for $x \in \Omega$ and $\underline{\lambda}$ < λ < $\overline{\lambda}$ and $\phi_{1}(x;\overline{\lambda})$ = $\phi_{2}(x;\overline{\lambda})$, $\phi_{3}(x;\underline{\lambda})$ = $\phi_{2}(x;\underline{\lambda})$ for $x \in \Omega$.

$$\begin{split} &(\mathrm{H2}) \ \phi_1(x;\lambda) \leq \phi_1(x;\lambda') \ \text{for} \ x \in \Omega \ \text{and} \ 0 \leq \lambda \leq \lambda' \leq \overline{\lambda} \ ; \quad \phi_2(x;\lambda) \\ &\geq \phi_2(x;\lambda') \ \text{for} \ x \in \Omega \ \text{and} \ \underline{\lambda} \leq \lambda \leq \lambda' \leq \overline{\lambda}; \quad \phi_3(x;\lambda) \leq \phi_3(x;\lambda') \ \text{for} \\ &x \in \Omega \ \text{and} \ \lambda' \geq \lambda \geq \underline{\lambda}. \end{split}$$

(H3) $\phi_2(x;\lambda)$ is a hyperbolic stationary solution of (8), for λ

- Remark 1. i) When Ω is a ball, nonnegative solutions of $(9)_{\lambda}$ are all symmetric (Gidas, Ni and Nirenberg[5]) and Parks[8], Parter[9], Parter, Stein and Stein[10] investigated symmetric solutions of $(9)_{\lambda}$ and they proved that there are at least three solutions of $(9)_{\lambda}$ in a certain range of λ .
- ii) When $N \geq 3$, the global picture of solutions of $(9)_{\lambda}$ with respect to λ is in general not S- shaped and more complicated (see e.g. Bebernes and Eberly[1]). So we don't consider the case in this paper, though we can deal with it in a similar manner.
- iii) If (H1) holds, ϕ_1 and ϕ_3 are stable relative to (8) $_{\lambda}$ for 0 $\leq \lambda < \overline{\lambda}$, $\lambda > \underline{\lambda}$, respectively, and ϕ_2 is unstable for $\underline{\lambda} < \lambda < \overline{\lambda}$ (e.g. sattinger [11]). If we assume both (H1) and (H2), then we can show that ϕ_1 and ϕ_3 are stable and ϕ_2 is unstable in a linearized sense (see [3, Lemma A2 in Appendix]).
- iv) (H1), (H2) and (H3) hold rigorously in the case that Ω is an interval in \mathbb{R}^1 , which is shown by [3, Lemma A1 in Appendix].

From now on, we assume (H1), (H2) and (H3) for (8) λ without assuming necessarily that Ω is a ball and $1 \le N \le 2$. Suppose $U^0(t,T,x) \to \Big(\phi(x;\lambda(T)),\lambda(T)\Big)$ as $t\to\infty$, where $\phi(x;\lambda)=\phi_1(x;\lambda)$ or $\phi_3(x;\lambda)$. $\lambda(T)$ is determined as follows: Integrating the equation of the second component of (7) with respect to x, we have

$$(10) \quad \frac{\partial}{\partial t} \int c^{1}(t,T,x) dx + \frac{\partial}{\partial T} \int c^{0}(t,T,x) dx = k \int_{\partial \Omega} \left(c^{*} - c^{0}(t,T,x)\right) ds$$
$$- \int_{\Omega} f(\theta^{0}(t,T,x)) dx.$$

Let $t \to \infty$ in (10). Then, noting that $c^0(t,T,x) \to \lambda(T)$, $\theta^0(t,T,x) \to \phi(x;\lambda(T)) \text{ and } \frac{\partial}{\partial t} \int_{\Omega} c^1(t,T,x) dx \to 0 \text{ as } t \to \infty, \text{ we have}$

(11)
$$\frac{d\lambda}{dT} = \frac{1}{|\Omega|} \{ kd |\partial\Omega| (c^* - \lambda) - \lambda \int_{\Omega} f(\phi(x;\lambda)) dx \},$$

which means that the function $U^0(\infty,T,x)$ moves along $\Big(\phi(x;\lambda(T)),\lambda(T)\Big)$ with the solution $\lambda(T)$ of (11). Since $\phi(x;\lambda)=\phi_1(x;\lambda)$ or $\phi_3(x;\lambda)$, we define $F_i(\lambda)=\frac{1}{|\Omega|}\{kd|\partial\Omega|(c^*-\lambda)-\lambda\int_{\Omega}f(\phi_i(x;\lambda))dx\}$ and rewrite (11) as

$$(12)_{i} \qquad \frac{d\lambda}{dT} = F_{i}(\lambda)$$

(i = 1,3) in order to clarify the family of solutions of (9) $_{\lambda}$ to which we pay attention.

It is expected that $U^0(t,T,x)$ approximates well the solution of $(4)_{\varepsilon}$, so that it is worth to consider the behavior of $U^0(t,T,x)$ in more detail. In order to classify the behavior of $U^0(t,T,x)$ with respect to c^* , we write $F_i(\lambda) = -H_i(\lambda) + ac^*$, where $H_i(\lambda) = \frac{\lambda}{|\Omega|} \{kd |\partial \Omega| + \int_{\Omega} f(\phi_i(x;\lambda)) dx \}$ and $a = \frac{kd |\partial \Omega|}{|\Omega|} H_1(\lambda)$

and $H_3(\lambda)$ are defined for $0 \le \lambda < \overline{\lambda}$ and $\lambda > \underline{\lambda}$, respectively.

Now, we define $H_* = \max_{0 \le \lambda < \overline{\lambda}} H_1(\lambda)$ and $H^* = \min_{\lambda > \underline{\lambda}} H_3(\lambda)$. Then, from (H1) and (H2) $H_3(\lambda) > H_1(\lambda)$ holds for $\underline{\lambda} < \lambda < \overline{\lambda}$ and $H_i(\lambda)$ (i = 1,3) are monotone increasing, which implies $H_* = H_1(\overline{\lambda}) < H^* = H_3(\underline{\lambda})$ (Figure 2). Let $S^0(t)\overline{U} = (\theta,c)$ be the solution of (6) with the initial data $\overline{U} = (\overline{\theta},\overline{c})$, that is, the solution of

$$\begin{cases} \theta_t = \Delta\theta + cf(\theta) \\ c_t = d\Delta c \end{cases}$$

with $\theta \Big|_{\partial\Omega} = 0$, $\frac{\partial c}{\partial\nu}\Big|_{\partial\Omega} = 0$ and $\Big(\theta(0,x),c(0,x)\Big) = \overline{U} = \Big(\overline{\theta}(x),\overline{c}(x)\Big)$.

i) $c^* < H_*/a$

In this case, $F_1(\lambda)$ has only one equilibrium λ_* , which is stable relative to $(12)_1$, and $F_3(\lambda) < 0$ for any $\lambda > \underline{\lambda}$ (Figure 3-1). Suppose that for the initial data $U_0 = (\theta_0, c_0)$, the solution $S^0(t)U_0$ converges to $(\phi_3(x;\lambda_0),\lambda_0)$ as $t \to \infty$, where $\lambda_0 = \frac{1}{|\Omega|} \int_{\Omega} c_0(x) dx$. We define this orbit $cl\{S^0(t)U_0 \mid t \ge 0\}$ by τ_1 . After reaching $(\phi_3(x;\lambda_0),\lambda_0)$, $U^0(t,T,x)$ varies along $(\phi_3(x;\lambda(T)),\lambda(T))$, where $\lambda(T)$ is the solution of $(12)_3$ with $\lambda(0) = \lambda_0$. Since $\lambda(T)$ is decreasing for T, $\lambda(T)$ arrives at $\underline{\lambda}$ for a finite time of T and $\phi_3(x;\lambda)$ vanishes by coalescing with $\phi_2(x;\lambda)$. Let the orbit be $\tau_2 = \{(\phi_3(x;\lambda),\lambda) \mid \underline{\lambda} \le \lambda \le \overline{\lambda}\}$. After $\lambda(T)$ arrives at $\underline{\lambda}$, $U^0(t,T,x)$ is again governed by (6) and converges to $(\phi_1(x;\underline{\lambda}),\underline{\lambda})$ as $t \to \infty$. This orbit is given by $\tau_3 = cl\{(\theta(t,\cdot),\underline{\lambda}) \mid -\infty < t < +\infty\}$, where $\theta(t,x)$ is the solution of

 $(8)_{\underline{\lambda}} \text{ satisfying } \theta(t,x) \to \phi_3(x;\underline{\lambda}) \text{ as } t \to -\infty \text{ and } \theta(t,x) \to \phi_1(x;\underline{\lambda}) \\ \text{as } t \to +\infty. \text{ The existence of orbits such as } \tau_3 \text{ is shown by} \\ \text{Matano[7].} \text{ After reaching } \left(\phi_1(x;\underline{\lambda}),\underline{\lambda}\right), \ U^0(t,T,x) \text{ approaches} \\ \left(\phi_1(x;\lambda_*),\lambda_*\right) \text{ along } \left(\phi_1(x;\lambda(T)),\lambda(T)\right), \text{ where } \lambda(T) \text{ is the} \\ \text{solution of } (12)_1 \text{ with } \lambda(0) = \underline{\lambda}. \text{ Consequently, defining } \tau_4 = \\ \left((\phi_1(x;\lambda),\lambda) \mid \underline{\lambda} \leq \lambda \leq \lambda_*\right) \text{ if } \underline{\lambda} < \lambda_* \text{ or } \tau_4 = \left((\phi_1(x;\lambda),\lambda) \mid \lambda_* \leq \lambda \leq \lambda_*\right) \\ \text{ if } \lambda_* < \underline{\lambda}, \text{ we see that the orbit of } U^0(t,T,x) \text{ from } U_0 \text{ to} \\ \left(\phi_1(x;\lambda_*),\lambda_*\right) \text{ consists of the union of above four orbits} \\ \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4 \text{ (Figure 4-1)}. \end{aligned}$

If $S^0(t)U_0 \to \left(\phi_1(x;\lambda_0),\lambda_0\right)$ as $t \to \infty$ for the initial data U_0 , then $U^0(t,T,x)$ just approaches $\left(\phi_1(x;\lambda_*),\lambda_*\right)$ along $\left(\phi_1(x;\lambda(T)),\lambda(T)\right)$, where $\lambda(T)$ is the solution of $(12)_1$ with $\lambda(0)=\lambda_0$. In this case, defining $\gamma_1'=cl\{S^0(t)U_0 \mid t \geq 0\}$ and $\gamma_2'=\{(\phi_1(x;\lambda),\lambda) \mid \lambda_0 \leq \lambda \leq \lambda^*\}$ if $\lambda_0 \leq \lambda^*$ or $\gamma_2'=\{(\phi_1(x;\lambda),\lambda) \mid \lambda^* \leq \lambda \leq \lambda_0\}$ if $\lambda_0 \geq \lambda^*$, the orbit of $U^0(t,T,x)$ from U_0 to $\left(\phi_1(x;\lambda_*),\lambda_*\right)$ is given by $\gamma_1'\cup\gamma_2'$ (Figure 4-1).

Thus, $\left(\phi_1(x;\lambda_*),\lambda_*\right)$ is globally stable and there are mainly two kind of behaviors of $U^0(t,T,x)$, one is the behavior given by the orbit $\tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$, another is the one given by the orbit $\tau_1' \cup \tau_2'$, which depends on the initial data U_0 .

ii) $H_*/a < c^* < H^*/a$

In this case, $F_1(\lambda) > 0$ for $0 \le \lambda \le \overline{\lambda}$ and $F_3(\lambda) < 0$ for $\lambda \ge \underline{\lambda}$ (Figure 3-2).

Suppose that $S^0(t)U_0$ converges to $\left(\phi_3(x;\lambda_0),\lambda_0\right)$ as $t\to\infty$, where $\lambda_0=\frac{1}{|\Omega|}\int_{\Omega} c_0(x)\mathrm{d}x$. The orbit of $U^0(t,T,x)$ is quite

similar to that in case i) until $U^{0}(t,T,x)$ reaches $\phi_{1}(x;\underline{\lambda})$, The orbit is represented by $r_1 \cup r_2 \cup r_3$ if we use the same symbol in case i). Starting at $(\phi_1(x;\underline{\lambda}),\underline{\lambda})$, $U^0(t,T,x)$ moves along $(\phi_1(x;\lambda(T)),\lambda(T))$, where $\lambda(T)$ is the solution of $(12)_1$ with $\lambda(0) = \underline{\lambda}$. Since $F_1(\lambda) > 0$ for $0 \le \lambda \le \overline{\lambda}$, $\lambda(T)$ arrives at $\overline{\lambda}$ for a finite time of T. Let the orbit be $\gamma_4 = \{(\phi_1(x;\lambda),\lambda) \mid \underline{\lambda}\}$ $\leq \lambda \leq \overline{\lambda}$. When $\lambda(T)$ arrives at $\overline{\lambda}$, the dynamics of $U^0(t,T,x)$ is described by (6) and $U^0(t,T,x)$ converges to $\left(\phi_3(x;\overline{\lambda}),\overline{\lambda}\right)$ as $t \to 0$ ∞ , after which we can chase the orbit of $U^0(t,T,x)$ by quite a similar manner in case i). Consequently, we see that the orbit of $U^0(t,T,x)$ is asymptotically given by the periodic orbit γ = $\gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$. Here, $\gamma_1 = c l \{ (\theta(t, x), \overline{\lambda}) \mid -\infty < t < +\infty \}$, where $\theta(t,x)$ is the solution of $(8)_{\frac{1}{2}}$ satisfying $\theta(t,x) \rightarrow \phi_1(x;\overline{\lambda})$ as t \rightarrow -\infty and $\theta(t,x) \rightarrow \phi_3(x;\overline{\lambda})$ as $t \rightarrow +\infty$; $\gamma_2 = \{(\phi_3(x;\lambda),\lambda) \mid \underline{\lambda} \leq \lambda \leq \lambda \}$ $\overline{\lambda}$; $\gamma_3 = c l\{(\theta(t,x),\underline{\lambda}) \mid -\infty < t < +\infty\}$, where $\theta(t,x)$ is the solution of (8) λ satisfying $\theta(t,x) \rightarrow \phi_3(x;\lambda)$ as $t \rightarrow -\infty$ and $\theta(t,x) \rightarrow \phi_1(x;\lambda)$ as $t \rightarrow +\infty$; γ_4 is as mentioned above (Figure 4-2). Among them, au_1 and au_3 are the orbits governed by (7) with the fast time scale t and r_2 , r_4 are those governed by (12) with the slow time scale T. Thus, this periodic orbit γ can be regarded as the "relaxation oscillation in infinite dimensional dynamical systems".

iii) $c^* > H^*/a$

In this case, $F_3(\lambda)$ has only one equilibrium λ^* and $F_1(\lambda)$ >

Let us consider the phenomenal meanings of above results. Since it follows from (H1), (H2) and (H3) that $\phi_1(x;\lambda_1) < \phi_2(x;\lambda_2) < \phi_3(x;\lambda_3)$ in Ω for any $0 \le \lambda_1 < \overline{\lambda}$, $\underline{\lambda} < \lambda_2 < \overline{\lambda}$ and $\lambda_3 > \overline{\lambda}$, we can regard the solution families $\{(\phi_1(x;\lambda),\lambda)\}$ and $\{(\phi_3(x;\lambda),\lambda)\}$ as the cold state and the hot state, respectively. The case i) (or iii) implies that:

If the supply of fuel c^* is below (or beyond) some critical value, that is, $c^* < H_*/a$ (or $c^* > H^*/a$), the state of combustion eventually settles down in the cold state of a low temperature $\begin{pmatrix} \phi_1(x;\lambda_*),\lambda_* \end{pmatrix}$ (or the hot state of a high temperature $\begin{pmatrix} \phi_3(x;\lambda^*),\lambda_* \end{pmatrix}$). Moreover, the orbit of $U^0(t,T,x)$ describes how

the combustion proceeds to the final stage. For example, consider the case i). When the orbit of $U^0(t,T,x)$ is given by $\tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ as mentioned in the case i), τ_1 means the rapid burn-up to a hot state of a high temperature with the fast time scale t (the explosion) and the combustion proceeds slowly along the hot state τ_2 with the slow time scale T. When the combustion reaches a critical state $\left(\phi_3(x;\underline{\lambda}),\underline{\lambda}\right)$, the combustion rapidly burns down to a cold state of a low temperature along τ_3 with the fast time scale t and proceeds slowly to a final stage $\left(\phi_1(x;\lambda_*),\lambda_*\right)$ along τ_4 . On the other hand, the orbit given by $\tau_1^*\cup\tau_2^*$ means no explosion. Thus, whether explosion appears or not depends on the initial data, which is determined by the behavior of $S^0(t)U_0$.

The case ii) implies that: If the supply of fuel c^* is in the appropriate range, that is, in the range $H_*/a < c^* < H^*/a$, the state of combustion varies periodically in time. Its orbit $\tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ given in the case ii) shows that the cold state of a low temperature and the hot state of a high temperature appear alternatively by repeating burn- up and burn- down.

Thus, the combustion varies from the cold state to the hot state by way of the periodic state as c^* increases. The global picture of combustion with respect to c^* is drawn in Figure 5.

Finally, we give the validity of above discussions ([3], [6]).

In addition to assumptions (H1), (H2) and (H3), we impose the following assumption on Ω : (H4) There exist a smooth function g(x) for $x\in\Omega$ and positive constants r_0 , R_0 $(r_0\leq R_0)$

so that $r_0 \le \Delta g(x) \le R_0$ for $x \in \Omega$ and $\frac{\partial g}{\partial v} = 1$ for $x \in \partial \Omega$.

Remark 2. Such a function g(x) really exists when Ω is a ball.

Let $F_i(\lambda)$, $H_i(\lambda)$ (i=1,3) and constants H_\bullet , H^\bullet and a be those given above. $U_\epsilon(t)U_0$ denotes the solution of $(4)_\epsilon$ with $U_\epsilon(0)U_0=U_0$. Let B_i (i=1,2) be the Banach space $L^p(\Omega)$ for p>N with the usual norm and B_i^α be the domain of A_i^α with the graph norm $\|\cdot\|_\alpha$, where $A_1=\Delta$ (Laplace operator in \mathbb{R}^N) with the domain $D(A_1)=\left\{\theta\in \mathbb{W}^{2,p}(\Omega) \middle| \theta=0 \text{ on }\partial\Omega\right\}$ and $A_2=d\Delta$ with the domain $D(A_2)=\left\{c\in \mathbb{W}^{2,p}(\Omega)\middle| \frac{\partial c}{\partial \nu}=0 \text{ on }\partial\Omega\right\}$. When N=1, we put p=2. We define $B=B_1\times B_2$ with the norm $\|U\|=\|\theta\|_{L^p(\Omega)}+\|c\|_{L^p(\Omega)}$ for $U=(\theta,c)\in B$ and $B^\alpha=B_1^\alpha\times B_2^\alpha$ with the norm $\|U\|_\alpha=\|\theta\|_{L^p(\Omega)}$. Hereafter, we fix $\alpha\in \left(\frac{p+N}{2p}\right)$, 1) so that $B^\alpha\subset C^1(\Omega)\times C^1(\Omega)$ with the continuous imbedding. Moreover, we define the norm of $L^q(\Omega)$ for $q\geq 1$ by $\|\cdot\|_{L^q}$ and define projections $Pc=\frac{1}{|\Omega|}\int_{\Omega}c(x)dx$ and Qc(x)=c(x)-Pc for $c\in L^p(\Omega)$.

Theorem 1. (Point dissipativeness) There exist $\varepsilon_0 > 0$, $M_0 > 0$ and $c_* > 0$, $\underline{\theta}(x)$ such that a compact set K_{ε} in B^{α} exists for $0 < \varepsilon \leq \varepsilon_0$ so that $K_{\varepsilon} \subset \left\{U = (\theta,c) \in B^{\alpha} \middle| \underline{\theta}(x) \leq \theta(x), c_* \leq c(x) \leq c^* \right\}$ for $x \in \Omega$, $\|U\|_{\alpha} \leq M_0$ and $\|Qc\|_{\alpha} \leq \varepsilon M_0$, where $\underline{\theta}(x)$ is a nonnegative and nontrivial function on Ω with $\underline{\theta} \middle| \partial \Omega = 0$, and that for any $U_0 = (\theta_0, c_0) \in B$ with $\theta_0(x) \geq 0$ and $c_0(x) \geq 0$ for $x \in \Omega$, the solution $U_{\varepsilon}(t)U_0$ eventually enters K_{ε} as $t \to \infty$.

Theorem 2. Suppose $0 < c^* < H_*/a$ (or $c^* > H^*/a$) and let λ_* (or λ^*) be the equilibrium of $(12)_1$ (or $(12)_3$). If $\frac{dF_1}{d\lambda}(\lambda_*) < 0$ (or $\frac{dF_3}{d\lambda}(\lambda^*) < 0$), then there exist $\varepsilon_0 > 0$ such that $(4)_{\varepsilon}$ has a unique stationary solution $\left(\overline{\theta}(\mathbf{x};\varepsilon),\overline{c}(\mathbf{x};\varepsilon)\right)$ for $0 < \varepsilon \le \varepsilon_0$, which satisfies $\left(\overline{\theta}(\cdot;\varepsilon),\overline{c}(\cdot;\varepsilon)\right) \in C\left((0,\varepsilon_0];B\right)$ and $\lim_{\varepsilon \downarrow 0} \left(\overline{\theta}(\cdot;\varepsilon),\overline{c}(\cdot;\varepsilon)\right) = \left(\phi_1(\cdot;\lambda_*),\lambda_*\right)$ (or $= \left(\phi_3(\cdot;\lambda^*),\lambda^*\right)$). Moreover, $\left(\overline{\theta}(\cdot;\varepsilon),\overline{c}(\cdot;\varepsilon)\right)$ is globally stable.

Let $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ be the orbit mentioned in the case ii) and $Y_{\delta} = \{(\theta,c) \in B \mid dist_{B^{\alpha}} \{\gamma,(\theta,c)\} < \delta\}.$

Theorem 3. Suppose $H_*/a < c^* < H^*/a$. Then for sufficiently small $\delta > 0$, there exists $\varepsilon_{\delta} > 0$ such that (4) ε has a periodic solution $\Pi_p(t,x;\varepsilon) = \left(\theta_p(t,x;\varepsilon),\ c_p(t,x;\varepsilon)\right)$ with the period $p(\varepsilon)$ for $0 < \varepsilon \le \varepsilon_{\delta}$, which satisfies $\Pi_p(t,\cdot;\varepsilon) \in Y_{\delta}$ for $0 \le t \le p(\varepsilon)$ and $0 < \varepsilon \le \varepsilon_{\delta}$.

References

- [1] J.Bebernes and D.Eberly, Mathematical problems from combustion theory, Appl. Math. Sci. 83, Springer-Verlag, 1989.
 [2] D.A.Frank-Kamenetzky, Diffusion and heat exchange in
- chemical kinetics, translated by N.Thon, Princeton Univ. Press, Princeton, 1955.

- [3] S.-I.Ei and M.Mimura, Relaxation-oscillations in singlestep combustion models of thermal self-ignition, preprint.
- [4] I.M.Gelfand, Some problems in the theory of quasilinear equations, AMS Translations Ser. 2, 29(1963), 295-381.
- [5] B.Gidas, W.-M.Ni and L.Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68(1979), 209-243.
- [6] D.Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, 1981.
- [7] H.Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sec. IA, vol. 30, No. 3(1984), 645-673.
- [8] J.R.Parks, Criticality criteria for various configurations of a self-heating chemical as functions of activation energy and temperature of assembly, J. Chem. Phys. 34(1961), 46-50.
- [9] S.Parter, Solutions of a differential equation arising in chemical reactor process, SIAM J. Appl. Math. 26(1974), 686-715.
- [10] S.V.Parter, M.L.Stein and P.R.Stein, On the multiplicity of solutions of a differential equation arising in chemical reactor theory, Stud. Appl. Math. 54(1975), 293-314.
- [11] D.H.Sattinger, A nonlinear parabolic system in the theory of combustion, Quarterly of Appl. Math. (1975), 47-61.
- [12] D.H.Sattinger, Stability of solutions of nonlinear equations, J. Math. Anal. Appl. 39(1972), 1-12.
- [13] K.K.Tam, Construction of upper and lower solutions for a problem in combustion theory, J. Math. Anal. Appl. 69(1979),

131-145.

Caption

- Fig. 1. Global diagram of stationary solutions of (9) $_{\lambda}$ with respect to $\lambda\,.$
- Fig. 2. The graph of $H_i(\lambda)$ (i = 1,3).
- Fig. 3. The graph of $F_i(\lambda)$ (i = 1,3) in the case that: i) 0 < c^* < H_*/a ; ii) H_*/a < c^* < H^*/a ; iii) c^* > H^*/a .
- Fig. 4. Orbits of solutions of (4) $_{\epsilon}$ in the case that: i) 0 < c^* < H_*/a ; ii) $H_*/a < c^* < H^*/a$; iii) $c^* > H^*/a$.
- Fig. 5. Global structure of dynamics of (4) with respect to c^* .

