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Relaxation-oscillations in

infinite dimensional dynamical systems

% ¥ —RF
Shin-Ichiro Ei

Department of Mathematics, Hiroshima University

In this paper, we would like to consider the following

reaction- diffusion systems arising in combustion theory:

I%% = A + cf(0)
(1)8 » r € Q, t > 0,
IQQ dAc - ecf(8)

at

where f(6) = erp{— 1%5} and Q is‘a.bounded domain»with smooth
boundary dQ2 in RN. Here, 6 and c afe respectively the
nondimensionalized temperature ahd concentration of fuel. d; £
and H are all positive constants. 'The meaning of these

constants is stated in [2] for instance. The initial and

boundary conditions for 6 and c are

(2) 6(0,1) = 6,(z) =20, c(0,1) = cy(z) 20 1€ clQ
and
(3) 6(t,7) = O, Qﬁ = kolc*-¢c) e, t>0
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respectively, where v is the outward normal unit vector on dQ.
The boundary condition of ¢ indicates that thevfuel is supplied
through the boundary odQ. Its magnitude is proportional to the
difference of ¢ on 3Q and some constant value ¢  with the flux
rate ko. vTo study (l)e’ (2), (3), we 3ssume here ¢ to be
sufficiently small, which is natural from a chemical view point
(see [2],‘[4] for instance) and ko to be ke for some k. The
latter implies that amounts of the consumption and the supply of
fuel would be the same order e¢.

Our aim is to study the dependency of c* on solutions
(G(t,r),c(t,x)) of (1)8, (2) and (3) with kO = ke and to show
the existence of relaxation oscillations in an appropriate range
of ¢* ([31).

First, we analyze the behavior of solutions of (1)5, (2)

and (3) by formal perturbation argument, so called the "two-

timing method"”. Here, We rewrite (l)e and (3) as

(4), ‘Ut = A U) + eF),

where U = (8,c), F(U) = (0,-cf(6)) and Ae(U) = (A@ + cf(@),dAc)
_ : _ Jac _ * .
for U = (0,c) with 6,69 = 0 and avlan = ke(c ’c). We derive
the lowest order approximate function by the two- timing
method. Introducing two time scales: a slow time scale T = ¢t

and a fast time scale ¢, we look for solutions of (4)5 in the

form



(5) Utie) = U%(t,T.x) + eU(e,T,1) + 0(e?).

. . 3 _9_ .93 . . .
With the relation et - 3c ¥ e inserting (5) into (4)£’and

equating coefficients of like powers of go and el, we obtain

(6) U? - AO(UO), t >0, T>0

ror 0 = (6%, ¢0) satisfying 6° - 0 and ac’| . 0

OI‘ - ’ C Sa lS y'll'lg‘ aQ - 'au aQ - ’

(7) UL U = A WUt FW®, t >0, T >0

for U1 = (61 1) tisfyin Gll =0 ‘ d lell = k( * o 0)
= , C sa l Yy g GQ = an aV aQ = C C s

respectively, where A,(U°) = (ABO . c°f(e°),dAc°) and 45 (U°)
représents the Frechet derivative of AO(UO) with respect to UO.
Now, we immediately know the dynamics of UO(t,T;I) for ¢t from
(6). Let us consider the dynamics of Uo(t,T,I) for T. Since'e
is sufficiently small, we may assume T to be O(i) for large
enough ¢, so that we put formally ¢t = « for any‘fixed T > 0.
Consider the asymptotic behavior of Uo(t,T,r) as t = . Since

the equation of“co(t T f) for t is QQO = Ac0 with QQO =0

4 27 Tar 9t av lag © °
the spatial average ofcco(t,T,r) is independent of ¢ and the
asymptotic behavior of co(t,T,r) as t + o is the constant of its

spatial average TéT_J co(t,r,T)dr, say A(T). So that BO(t,T,I)
' 7Q

converges as t =+ «© to the nonnegative stable stationary solution

of
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(8), 6, = A6 + 2f(0), req
with 6|aQ = 0, where 2 = A(T), which implies that it is"

important to consider the stationary problem of (S)Zr
(9) 5 A$ + 2f($) = 0

with ¢ 30 = 0 and ¢ = 0 in Q. This problem has been studied as
"Nonlinear eigenvalue problems” by numerous authors. Specially,

the problem in the case that Q is a ball in RN has been

extensively studied and when @ is a ball in RN with 1 < N < 2,
the global picture of solutions of (9)/1 with respect to A is S-
shaped given as follows mathematically and numerically

(Figure 1) ( Parks[8], Parter, Stein and Stein[10], Parter[9},

Gidas, Ni and Nirenberg[5], Tam[13], etc.):

(H1) There exist A and 1 (0 < A < ) such that only three
families of solutions of (9)1, say {¢1(-;l)},-{¢2(';1)},-
{¢3(-;1)}, exist on 0 < A < A, A< A =<2and 1 = A,

respectively, and satisfy ¢1(1;X) < ¢2(I;l) < ¢3(r;1) for r € Q

and A < 2 < 2 and ¢l(r;7) = ¢2(r;7), $o(z;4) = $,(x;1) for z €
Q.
(H2) #,(z;2) < $,(z;2') for 1 € Qand 0 < A < ' = X ; $,(z:2)

2 $,(z;2") for z € Q and 2 <21 <1’ = a; $o(x;2) < $5(z:2") for
r € Qand ' = R = L.' |

(H3) ¢2(r;l) is a hyperbolic stationary solution of (8)1 for A
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|

< A <

Remark 1. 1i) When @ is a ball, nonnegafive solutions of (9)1
are all Symmetrié (Gidas, Ni and Nifenberg[S]) and Parks[8],
Parter[9], Parter, Stein and Stein{10] investigated symmetric
solutions of (9)1 and they proved that there are at least three
solutions of (9)'1 in a certain rénge of 2.

ii) When N zb3, the global picture of solutions of (9)1 with
respect to A is in general not S- shaped and more complicatgd
(see e.g. Bebernes and Eberly[1]). So we don't consider the
case in this paper, though we can deal with it in a similar
manner. |

iii) If (H1) holds, ¢1 and ¢3 are stable relative to (8)2 for

<2<, 4> A, respectively, and ¢2 is unstable for A < 1 < 2

0

(e.g. sattinger [11]). If we assume both (H1) and (H2), then we

can show that ¢1 and ¢3 are stable and ¢2 is unstable in a
linearized sense (see [3, Lemma A2 in Appendix}).
iv) (H1), (H2) and (H3) hold rigorously in the case that Q is

an interval in Rl, which is shown by [3, Lemma Al in Appendix].

From now on, we assume (Hl), (H2) and (H3) for (8)1 without

assuming necessarily that Q is a ball and 1 <= N < 2. Suppose

Uo(t,T,r) -+ (¢(I;X(T)),X(T)) as t =+ o, where ¢(r;1) = ¢1(I;A) or

¢3(I;l). A(T) is determined as follows: Integrating the
equation of the second component of (7) with respect to r, we

‘have
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(10) %7 e, T,r)dr + %7 e, T, 0)dr = kfag(c* - co(t,T,r))ds

_ f £6°(t.T.2))dz.
Q

Let ¢+ - o in (10). Then, noting that co(t,T,r) > A(T),

6 (¢t,T,1) = ¢(x;A(T)) and gt c (t,T,r)dr - 0 as t =+ o, we have
Q
(11) A - L {pq1a9l(c* - ) - xf F($(z:2))dr)
dT lQl Q ’ ’

which means that the function Uo(w,T,r) moves along (¢(I;A(T)),
l(T)) with the solution A(T) of (11) Since #(r;1) = ¢ (r'l) or

¢3(r,l), we define Fi(l) = |Q|{kd|aQ|(c - A) - Rf f(¢ (z; A))dx}

and rewrite (11) as
(12)i

(i = 1?3) in ordeg to clarify the family of solutions of (9)1
to which we pay attention.

It is expected that Uo(t,T,x) approximates well the
solution of (4)8, 80 that it is worth to consider the behavior
~of UO(t,T,r) in more Qetail. In order to classify’fhe beha&fér
’of UO(L,T,i) with respect to ¢*, we write F (X) = —Hi(l) + ac”,

where H (1) = |Q|{kdIaQ| + f S8,z 2))dz} and a = 34{%%4 Hy(2)

and HS(R) are defined for 0 < 1 < A and 2 > A, respectively.
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1]

Now, we define H, = max_ H

(2) and H*
0=<A<i :

min H3(X). Then, from

1 iy

(H1) and (H2) H4(2) > Hl(l)'holds for 1 < A < 2 and H,(2) (i =
1,3) are monotone increasing, which implies H* = Hl(A) < H =
Hg(4) (Figure 2). Let SQ(t)U = (8,c) be the solution of (6)

with the initial data U = (5,?)¢ that is, the solution  of

[

1ct = dAc

A8 + cf(6)

with 6|69 = 0, == 30 = 0 and (6(0,1),0(0,1)) = U = (5(1).?(1))-

i) < H,/a

In this case, Fl(l) has only one equilibrium A*, which is

stable relative to (12) and FS(X) < 0 for any A > A

l!
(Figure 3-1). Suppose that for the initial data U0 = (OO,CO),
the solution So(t)UO converges to (¢3(r;lo),lo) as t - o, where

A . . - . 0
lo = |Q|I9c0(r)dx. We define this orbit cl{S (t)U0 t = 0} by

19 After reachingl(¢3(x;lo), lo), Uo(t,T,r) varies along
(¢3(1;R(T)),R(T)), where A(T) is the solution of (12)3‘with A(0)
= 10. Since A(T) is decreasing for T, A(T) arrives at A for a

finite time of T and ¢3(I;A) vanishes by coalescing with

¢2(I;X). Let the orbit be 7, = {(¢3(I;l),l) A=< 2 = ). After
A(T) arrives at 1, Uo(t,T,r) is again governed by (6) and
converges to (¢1(1;L),AJ as t + o, This orbit is given by Tg =

cl{(B(t,~),L) l‘—w < t < +w}, where 6(t,r) is the solution of

- 7 -
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(8)2 satisfying 6(t,r) - ¢3(r;i) as t + - and 6(¢t,r) > ¢1(r;i)
as ; -+ + o, The existence of orbits such as T3 is shown,by
Matano([7]. vAfter reaching (¢1(1;i),i), Uo(t,T,r) approaches
(¢l(1;1*j,k*) along (¢1(I;X(T)),X(T)), where 2(T) is the
solution of (12)l with 1(0) = A. Consequently, defining T4 =
(@ | asas2)yirr<a orr, =l mnn | iz
A <2 } if 2, < L; we see that the orbit of Uo(t,T,r) from UO to
(¢1(r;l*),l*) consists of the union of above four drbits
T1VToUT3VT, (Figure 4-1).

If So(t)U0 -+ (¢1(1;10);XO) as t »+ « for the initial data
UO’ then Uo(t,T,r) just approaches (¢1(r;l*),l*) along
(¢1(r;A(T)),R(T)); where A(T) is the solution of (12); with 2(0)
= 2 In this case, defining ri = cl{SO(t)UO I t = 0} and Té =

*

o
{(¢1(1;A),x) 2g < A s ') oir 2y < A" or 1y = {(¢1(x;x),x) 2

< A =< XO} if XO = X*, the orbit of Uo(t,T,x) from U0 to

(¢1(1;l*),l*) is given by r1V7s (F}gure 4-1).

Thus, (¢l(r;l*),l*) is globally stable and there are mainly
two kind of behaviors of Uo(t,T,x), one is the behavior given by
the orbit T1U72UT3UT4, another is the one given by the orbit

riUré, Which depends on the initial data UO'

ii) H*/a < c* < H*/a
In this case, Fl(l) >0 for 0 < A < A and Fa(l) < 0 for A =
A (Figure 3-2).
Suppose that So(t)U0 convérges tok(¢3(1;10),10) as t > oo,

where ld = T%— co(x)dx. The orbit of Uo(t,T,x)fis quite

Vg



similar to that in case 1) until U°(t,T,z) reaches (¢1(r;i),
;). The orbit is represented by 71UT2UT3 if we use the same
symbol in case i). Starting at (¢1(I;L);g), Uo(t,T,r) moves

along (¢1(I;1(T)),X(T)), where A(7T) is the solution ofv(12)1

with A(0) = 2. Since F;(2) > 0 for 0 < 1 < A, A(T) arrives at 2

for a finite time of T. Let the orbit be 7, = {(¢1(I;A),x) l A
< A =< 7}. When A(T) arrives at A, the dynamics of Uo(t,T,I) is

described by (6) and Uo(t,T,r) converges to (¢3(r;7),§) as >
o, after which we can chase the orbit of Uo(t,T,r) by quite a
similar manner in case i). Consequently, we see,that the orbit

of Uo(t,T,z) is asymptotically given by the periodic orbit r =
T1YToUrgur,- Here, Ty = (l{(B(t,x),X) -0 < f < +w}, where

6(t,r) is the solution of (8)_ satisfying 6(t,r) - ¢1(r;7) as t
7 ‘

+ - and 6(t,1) » $,(2;0) as t » w5 7, = {(By(230),0) | 2= 2=

) ,
T rg = cll(8(1,2),2) | -® < 1 < s}, where 6(f,z) is the
solution of (8)1 satisfying 6(t,r) - ¢3(1;A) as t » -» and

6(t,r) = $,(z;4) as t + +o; 7, is as mentioned above

(Figure 4-2). Among them, 71 and 7 are the orbits governed by

T4 are those governed by
(12) with the slow time scale T. Thus, this periodic orbit r

(7},1 with the fast time scale t and Tos

can be regarded as the "relaxation oscillation in infinite

dimensional dynamical systems".

iii) ¢* > #*/a
In this case, F3(1) has only one eQuilibrium A* and Fl(l) >

- 9 -
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0 for 0 < A < 1 (Figure 3-3). Quite similarly to case i), we
find that the orbit of'UO(t,T,r) is given by r = T1YToVT3VT if

s®cou, - (¢1(I;ld),lo) or 1 = rjury 1t 520Uy » ($y(x32y).

A ), where 10 = TﬁTcho(r)dr. Here, Ty cl{S (t)UO l 0 =t <

0

£

< +w}, where 06(t,r) is the solution of (8) satisfying 6(t,r) -
v » o . A

o} 7, = L8 (20, 2) | PRI cticoce,z).7) | —o < ¢

¢1(x;7)Aas t > - and 6(t,r) - ¢3(x;7)‘as t > 45 1,

{(¢3(x;x),x)<| T <2< ir ¥ > 7 or Ty = {(¢3(1;A),x) | ¥ <

As T ar A< T o) - cl{SO(t)UO

OSt<+w};Té=

{(¢3(I;x),x) I T<2<2")if 2> T or T {(¢3(r;l),l) | At <

A = A} if 1%< 7 (Figure 4-3). (¢3(I;x*),x*) is globally

stable.

Let us consider the phenomenal meanings of above results.

Since it follows from (H1), (H2) and (H3) that ¢1(r;11) <

¢2(r;12) < ¢3(1;13) in Q for any 0 < A; < 2, 4 < A, < 2 and 13 >

A, we can regard the solution families {(¢1(r;1),1)} and
{(¢3(I;X),X)} as the cold state and the hot state,
respectively. The case i) (or iii)) implies that:

If the supply: of fuel c*;is below (or beyond) some critical
value, that is, ¢’ < H,/a (or c*> H*/a), the state of combustion
eventually settles down in the cold state of a low temperature

(¢l(r;k*),x*) (or the hot state of a high temperature

(¢3(I;l*),l*),). Moreover, the orbit of Uo(t,T,r) describes how

- 10 -



the combustion proceeds to the final stage. Fof‘example',f
consider the case i). When the ofbit of Uo(t,T,r) is given by
T1YToUraUr, as mentioned in the case i),'r1 means the rapid
burn-up to a hot state of a high temperature with the fast time
scale t (the explosion) and the combustion proceeds lele along
the hot state 7o with the slow time scale T. When the
combustion reaches a critical state (¢3(I;A),l), the combustion
rapidly burns doWn to‘a cold state of a low temperafure along Tg
with the fast time SCalé t and proceeds slowly to a finai stage
(¢1(I:X*);1*) along T4- On the other hand, the orbit given by
riuré means no explosioh. Thus, whether explosion appears or
not depends on the initial data, which is determined by the
behavior of SO(t)UO.

The case ii) implies that: If the supply/of fuel ¢* is in
the appropriate range, that is, in the range H*/a < " < H*/a.
the state of combusfion varies periodically in time. Its'orbit
T1YToUTgVUT, given in the case ii) shows that the cold state of a
low temperature and the hot state of a high temperature appear
alternatively by repeatihg burn- up and burn- down.

Thus, the combustion varies from the cold staté to the hot
state by way. of the periodic state as c¢* increases. The global
picture of combustion with respect to c* is drawn in Figure 5.

Finally, we give the validity of above discussions ([3],
[61). |

In addition to assumptions (H1), (H2) and (H3), we impose
the following'assumption on Q: (H4) There exist a smooth
R

function g(r) for r € Q and positive constants Tor Ro (ro < RO)

- 11 -
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so that r, < Ag(r) =< RO for r € Q and 9g _ 1 for r € Q.

0 dv

Remark 2. Such a function g(x) really exists when Q is a ball.

Let Fi(l), Hi(l) (i = 1,3) and constants‘ﬂ*,‘H* and a be
those given abovei Ue(t)U0 denotes the solution of (4)£ with
UUS(O)UO = Uy- Let B, (i = 1,2) be the Banach space LP(Q) for p
> N with the usual norm and B? be the domain of A? with the

graph norm "'"a’ where A1 = A (Laplace operator in RN) with the

domain D(A,) {6 € WZ'P(Q)I 9 =0 on 3Q) and A, = dA with the

domain D(Az) {c € Wz'p(Q)l %% = 0 on BQ}; When N = 1, we put

p = 2. We define B = B, x B, with the norm U] = |8}l +
1 2 b
L7 (Q)
el for U = (6,c) € B and B* = BY x Bg with the norm JU| =
LP (@) 1 B
HGHa + "C"a' Hereafter, we fix a € (Qag—ﬂ, 1) so that B% c
Cl(Q)xCI(Q) with the continuous imbédding. Moreover, we define
the norm of L9(Q) for g = 1 by || q and define projections Pc =
L

TéijC(r)dr and Qc(x) = c(z) - Pc for ¢ € LP(Q).
Q

Theorem 1. (Point dissipativeness) There exist £ >0, MO > 0
and ¢, > 0, f8(xr) such that a compact set Kz in BY exists for 0 <
£ < g, SO that Ke c {U = (6,c) € B 8(x) = 6(x), ¢, = c(1) < c"
for 1 € Q, Ul < M, and |Qcll . < eM.}, where 6(x) is a

) «a 0 o 0
nonnegative and nontrivial function on Q with 6 aQ = 0, and that
for any UO = (Bo,co) € B with 90(1) = 0 and co(r) = 0 for r € Q,

the solution Ue(t)U0 eventually enters Ke as t = oo,

- 12 -
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Theorem 2. -Suppose 0 < ct < H*/a (or ¢¥ > H*/a ) and let A,

v ' dF
* e svis _ 71
(or A2 ) be the equ;llbrlum of (12)1 (or (12)3). If da (2*) <0
dF3 . o :
(or a3 (A7) < 0), then there exist £ > 0 such that (4)8 has a

unique stationary solution (E(x;g),g(x;e)) for 0 < ¢ < €99 which

satisfies (E(o;e),?(-;e)) € C((O, eO];B) and 1lim (5(';5),z(~;e))
10 ’

= (¢1(°;1*),l*) (or = (¢3(-;1*),l*) ). Moreover,

(§(°;£),Z(-;e)) is globally stable.

Let r = T1YToUraVT, be the orbit mentioned in the case ii)

and Y5

- {(8.¢c) e B I distBa{r,(e,c)} < 8t

Theorem 3. Suppose H*/a < ¥ < H*/a. Then for sufficiently
small 6 > O, there‘exiéts €5 > 0 such that (4)5 hés a periodic
solution Hp(t,r;e) = (Gp(t,rze), cp(t,z;e))‘with the period p(e)
for 0 < ¢ < Py which satisfies Hp(t,~;e) € Yé for 0 < t < p(e¢)

and 0 < ¢ = 55.
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Caption

Fig. 1. Global diagram of stationary solutions of (_9),1 with

respect to 1.

Fig. 2. The graph of Hi(k) (i

it
}_A
w
~—

Fig. 3. The graph of Fi(X) (i 1,3) in the case that: i) 0 <

¢* < H,/a; 11) H /a < " < H/a; 1ii1) ¢" > H"/a.

Fig. 4. Orbits of solutions of (4)8 in the case that: i) 0 < c*

< H*/a; ii) H*/a < ¥ < H*/a; iii) c¥ > H*/a.

Fig. 5. Global structure of dynamics of (4)E with respect to .

- 15 -
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