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1. Introduction

The discrete Boltzmann equation is the fundamental equation
describing the time-evolution of a discrete velocity gas which
consists of particles with a finite number of velocities ([6]). The
aim of this note is to survey the author's recent works [10,11,12]
concerning the global existence and asymptotic behavior of solutions
to the mixed problems for the discrete Boltzmann equation on &
bounded region 0<x<d.

The general form of the discrete Boltzmann equation in one space

dimension is written as

SFi SFi
(1) ci[é—t— vy 55?) = Q;(F), 1€A,
where A is”a finite set {1,...,m}, c, are positive constants, and

1

each Fi=Fi(X,t) represents the mass density of gas particles with the
i-th velocity at time t and position x; each vy denotes the
x-component of the i-th velocity and hence R i€A, are not
necessarily distinct. For the derivation of (1) from the original

discrete Boltzmann equation in Rn (n=2 or 3), we refer the reader to
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[9]. Collision terms Qi(F) on the right hand side of (1) are given
as
ki

- iJ - :
Q, (F) —jEQ(AkQFkFﬂ AyyF ) i€A,

where the summation is taken over all j,k,%€A, and where the

coefficients AlJ are nonnegative constants Satisfying

)
(A1) Adl _ald o opld

ki ke~ ek’

ij Co _
(A2) AkQ(Vi+Vj Vi VQ) = 0,
ij _ k&

for any i,j,k,2€A. (A2) implies the conservation of momentum (in the
Xx-direction) in the microscopic collision process and (A3) is called
the micro-reversibility condition.

We prescribe the initial data:
(2) Fi(x,O) = FiO(X)’ i€A.

Let A+={i€A;Vi>O} and A_={i€A;vi<O}, and we impose the boundary

conditions as follows: on the left boundary x=0, either

0 .
(3) Fi(O,t) = Bi’ 1€A+, or
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] _ - O .
(3) ciFi(O,t) = zj Biij(O,t), i€eA ,
and on the right boundary x=d, either

1 .
(4) Fi(d,t) = Bi’ i€eA , or

' _ <t 41 .
(4) c,F,(d,t) = Ej By F;(d.t), i€eA_.

Here the boundary data B? and B; are positive constants, the

coefficients Bg are nonnegative constatns, and Z? mean the

J
summations taken over all jeAi, respectively. For the boundary

condition (3)', we require as in [7] that

+ 0 _ .
(Bl)o Zi ViBij voeyvy o= 0, JEA ,
0 < .0 .0 )
(B2),, c;M; = 3] By M, ieA, .

0_,.0 . o _ .
where M —(Mi)iGA is some constant Maxwellian; a vector M—(Mi)ieA is

called Maxwellian if Mi are all positive and satisfy Aii(MiMj—M MQ)=O

for any 1i,j,k,2€A. Analogous conditions are required also for (4)':

- 1 _ .

(B1), Ei viBij * vy = 0, jeA,,
1 _ ot o1 1

(B2), c, M, = zj Biij, ieA_,

where M1=(M%)ieA is a constant Maxwellian not necessarily equal to

the M° in (B2),. The conditions (B1), and (B1), imply that the total

- 3 -
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momentum density ZiciviFi»vanishes on the boundaries x=0 and x=d,

respectively. For the meaning of (B2)0 1> we refer the reader to [7].

2. Global solutions
For convenience of later references, we shall list up our mixed

problems formulated in Section 1.

Problem (I) : {(1),(2),(3),(4)},
Problem (I) : {(1),(2),(3),(4)"'},

Problem (@) : {(1),(2),(3)',(4)'}.

Note that the problem consisting of (1),(2),(3)' and (4) is
essentially the same as the above problem (I).

For a nonnegative integer k, we denote by Ck(Q) the space of
k-times continuously differentiable functions on a set 1, and by
CE(Q) the totality of strictly positive function in Ck(Q). Then our

global existence result can be stated as follows.

A . 1
Theorem 1., Suppose that F0=(Fio)i€A,ts in C_([0,d]). Then
the mized problem (1), (I) or () has a unique global solution
F=(Fi)jep
gsponding compatibility conditions up to order one.

in Ci([O,d]x[O.w)), provided that FO satisfies the corre-

Remark. A similar global existence result holds true also
for the mixed problem (1),(2),(3) (or (3)') on the half-space 0<x<w
([11]). For global existence results to the pure initial value

problem (1),(2) on the whole space -w«<x<=, see [1,2].
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To give an outline of the proof‘of Theorem 1, we introduce

E0 = max sup FiO(X)’ E(t) = max sup F.(x,t),
i 0<x<d i O0x<xx<d
0Lttt
(5)
¢(t,r) = sup > c.F,(x,t)dx,
IT1<r¥1 1 & °

where the supremum in the last expression is taken over all the
intervals I contained in [0,d], with the length ]IISr. The standard
method based on the contraction mapping priciple shows that each
problem has a unique local solution in Ci([O,d]x[O,TO]) for some T0>0'

depending only on the sup-norm E, of the initial data. Therefore,

0
key to the proof of Theorem 1 is to derive a suitable a priori
estimate for the sup-norm E(t) of solutions in Ci([O,d]x[O,T]) for
any fixed T>0. The desired a priori estiamte is given in the

following

Proposition 1. Let T>0 and let‘FeCi([O,d]x[O,T]) be a
golution to the mixed problem (1), (I) or (I). Then there erists a

constant K(E,,T) such that
(6) E(t) < K(EO,T), te[0,T].

Here'K(EO,T)vdepends only on EO and T, and inereases monotonously as

E.—® or T—w,

0

The a priori estimate (6) can be derived easily from the
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difference inequality (7) for E(t), combined with the estimate (8)

for d(t,r):

Lemma 1. There is a positive constant C such that for any

t20 and h>0 satisfying t+h<T and 2vh<d (where v=max;|v;|), we have
(7) E(t+h) < CE(t) + C(th + ®(t,2vh))E(t+h).

Moreover there is another positive constant C such that for any O<t<T

and 0<r<d, we have
(8) o(t,r) £ CE;(1+T)8(r),

where 8(r) is a continuous and increasing fumnetion of r such that

8(r)—0 as r—0.

Remark. The term th in (7) comes from the boundary data in

(3) and (4), and hence this term is unnecessary for the problem (II).

Lemma 1 can be proved by a method similar to the one employed in
[2] for the pure initial value problem. (Of course we need suitable
modifications to deal with the boundary effects.) More specifically,
in the proof of (7), we use the characteristic method and the
identities obtained by integrating the conservation equations of mass
and momentum, given in (9) below, over various regioné in the

rectangle [0,d]x[0,T].
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(9)

on the other hand, the estimate (8) is essentially based on the
identity obtained by integrating the equation of modified H-function,
given in (10) below, over the rectangle [0,d]Xx[0,t] with 0<t<T, and'
on the argument of Crandall-Tartar [15].

(10) > c. iFy 1og(F /M ) + z c,v;F; log(F /M )
i

St i

1 | N
--1 5 Al (F F; - F Fy)1og(F F /FF))
4 ijke kg kL Lk

i 8
2 ¢V 1 i axlogM

where M=(Mi)ieA is a Maxwellian depending smoothly in x and is chosen
according to the boundary conditions of each mixed problem. For the

details, see [10,11].
3. Stationary solutions

We consider the corresponding stationary problems (pure boundary

value problems) for the discrete Boltzmann equation:

(11) Vi X < Qi(F), i€A,
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0 .
(12) F,(0) = By, 1€A_, or
* - - 0 .
(13) F.(d) = BY, ieA , or
1 1 - _
' et L1 R
(13) ciFi(d) = EJ. Biij(d)’ ieA_

There are essentially the foilowing three stationary problems.

Problem (i) : {(11),(12),(13)},
‘Problem (ii) : {(11),(12),(13)"},

Problem (iii): {(11),(12)',(13)'}.

Let AO={i€A;Vi=O}. We observe that if AO¢¢, the ordinary
differential equations»(ll) partially degenerate into the algebraic

equations
(14) Qi(F) = 0, ieA

so that in order to solve the stationary problems, we need to require

the solvability of (14) with respect to (Fi)iEA . Here we introduce
: , 0 ‘

(15) W = {F=(Fi)i€A+UA_ ; F;>0 for i€A,UA_},

and propose the following condition.



104

Condition 1. (Solvability of (14)). There exists a set of

mappings ("i) with the following conditions:

1€AO
(i) Each ni is a Cl—mapping of W into R+'(the totality of positive
real numbers) and is nondecreasing.

(ii) For any given ﬁ=(Fi) EW, we put Fi=ni(ﬁ) for iEAO. Then

i€A VA_

F=(Fi) solves (14).

i€A
Under the above condition we can solve the stationary problems

as follows.

Theorem 2. Assume Condition 1 if A0#¢. Then the stationary

problem (i) or (ii) has a solution F=(Fi) in Ci([o,d]).

i€A
Remark. This result is an improvement of the earlier wofk [4]
where AO=¢ is assumed in technical reason. Uniquenesé of the
solutions is unknown in general. (In this respect, see Theorem 3
below.) The stationary problem (iii) is unsolved as yet. For an
existence result of the stationary problem (11),(12) on the

half-space 0<x<w, see [3].

As in [4], we can prove the above theorem by applying the

following fixed point theorem of Leray-Schauder type.

Fixed point theorem by Browder-Potter ([14]). Let S be a closed
conver subset of a Banach space X. Let @l(F) be a continuous mapping

of (F,x)€eSx[0,1] into a compact suitset of X such that
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1) o%@®s) ¢ s,

2) for 0<2<1, 01(~) has no fizxed point on 8S.

Then ¢1(°) has a firxed point in S.

In application to our stationary,problem (i) or (ii), we take

x=c%([0,d]) and
(18) S = {Ff(Fi)ieAGX ; OsFi(x)sR for x€[0,d], 1€A},

where R>0 is some large constant. We shall define the mapping

¢l=(¢;) as follows: Let (G,x)€Sx[0,1]. Then Fi=®;(G), 1€A VA_,

i€A
are defiend by solving the linearized problem

dF,

- i _ _ _ :
(17), Vi dx - A(Qi(G) ri(G)Fi)’ 1€A VA_,

with the boundary conditions (12),(13) (or (12),(13)'), where

- i | )
.(6G) = 3 Alde . G,, r.,@) = 3 af%G..
i ik kd k4 i ke i3]

Furthermére, since the resulting Fi=¢;(G), i€A+UA_, are strictly

positive, we can define

-

A - by ‘ .

where ni are the mappings in Condition 1. Note that F=®k(G) thus

- 10 -
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defined is strictly positive and satisfies (14). 'Also, we see easily
that our F=¢1(G) is COntinuous‘mapping of (G,r)€Sx[0,1] into a
compact subset of X and satisfies ¢O(S)CS (a stronger version of
QO(SS)CS). Therefore, for the proof of Theorem 2, it suffices to
check the condition 2) of the fixed point theorem. To this end, we
suppose that F is a fixed point, namely, F=¢1(F). Then we have
dFi

ciVi dax - AQi(F), i€A,
with the boundary conditions under consideration. In particular, we
have the nonstationary version of the conservation equations of mass
and momentum

d_ - d_ 2. .
(18) > c.v F = 0, ax % ciViFi = 0.
The strict positivity of F and the identities obtained by integrating
(18) over [0,d] or [0,x] with 0<x<d yield the a priori estimate
O<Fi(x)$C for x€[0,d] and i€A, where C is a positive constant
independent of both R and x. This implies that FéBS. Thus we have
verified the condition 2) and the proof of Theorem 2 is complete. See

{12] for details.

4. Stationary solutions near Maxwellian
We wish to show the uniqueness of solutions to the stationary
problems (i) and (ii) in a neighborhood of a constant Maxwellian. To

this end, after introducing several notations, we formulate a

- 11 -
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condition which‘We call the:stability cohdition in stationary case.

Let

(19) V = diag(vy)jepr

eR™ satisfying

and let ﬂo be the totality of vectors ¢=(¢i)ieA

ij . -
(20) AkQ‘¢i+¢j Lo ¢Q) 0,

for any i,j,k,%€A. A vector ¢=(ci¢.) is called collision

i’i€A
invariant of the discrete Boltzmann equation (1) if $=(8,); A4,
totality of collision invariants is denoted by #. Notice that X

X Tﬁe

iep and (€3Vi)ep-

contains the vectors (ci) Our stability condition

is then formulated as follows.

Condition 2. (Stability condition in stationafy case).‘ Let Ve

and let V¥=0. Then ¥=0.

Note that Condition 2 with & replaced by “0 leads to an equivalent
condition. This stability condition enables us to prove the
existence and uniqueness of solutions to the stationary problems (i)

and (ii).

Theorem 3. We cbnSider the statibnary problem (i) under

Condition 2. Let M=(Mi)ieA’be any fixed‘constant Haxuellian and put

(21) 5 =3 lBg - M|+ 3] IB% - M 1.

- 12 -
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If & i8 small enough, then there erists a unique solution F=(Fi)ieA
which belongs to Cl([o,d]) and satisfies the estimate IF—M|1$C6 for

gsome positive constant C, where I-I1 denotes the norm of Cl([o,d]).

Remark. A similar existence and uniqueness result holds true

also for the stationary problem (ii); in this case we should take

T st 0 1
M=M~ (in (B2)1) and S-Z'iIBi Mil‘
For the proof of Theorem 3, we first consider a linearization of

the collision term. Let us denote by Qi(F,G) the bilinear form

corresponding to the collision term Qi(F) and put-Q(F,G)=(Qi(F,G))iGA.

- Then we get the expression
(22) Q(M+1Mf,M+IMf) = - LMf + FM(f,f)

for fGRm, where‘M=(Mi) is a Maxwellian, I =diag(Mi) and

i€A M i€A

The following property of the linearlized collision operator LM is.
well known. See, for example, [6,8].
Lemma 2. LM i8 real symmetric and nonnegative definite. The

null space of LM coincides with the subspace “0 defined by (20), and

hence Condition 2 is equivalenl to the following condition.

- 18 -
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(24) Let LM¢ = 0 and let V¢ = 0. Then ¢ = 0.

- Now we briefly sketch the. proof of Theorem 3. We define the

constant vector F=(Fi)i€A by

0 |
BY. i€A,,
(25) Fl = Mi’ iEAO,
BY. i€A_

Also, we introduce another constant vector f'=(f‘i)i€A and a new
unknown f=(fi)i€A by

(26) F=M+1.Ff, F=F+IFf=M#+ IM(f+f),

respectively. Then the stationary problem (i) can be transformed into

~ _df _ - _ _
(28) | fi(O) = 0, i€A+, fi(d) = 0, 1ie€eA ,

e

where IM=dlag(ciMi)ieA’ We wish to solve the problem (27),(28),
which is equivalent to the original problem (i), by applying the
contraction mapping principle. To this end, we consider the
linearized equation

~ _df

(29) IM ax LMf = h,

- 14 -
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with the boundary conditions (28).- Let L2(0,d) be the space of
square integrable functions on (0,d), with the norm |-ll. For a
positive integer 2, we denote by Hg(o,d) the standard szsensé
Sobolev space of order &, on (0,d), equipped With'the norm H°H£. With

these notations, the following existence and regularity result for

the linearized problem (29), (28) can be stated.

Proposition 2. Suppose that h is in Hl(O,d). Then the
linearized stationary problem (2%), {(28) has a unique solution T in

Hl(o,d).‘Moreover we have the estimates

(30), I£1, < Clhl,

, af, o oafy
(30), hen + Zi g1+ Ei I < Clhi.

where C i8s a positive constant.

Once Proposition 2 is established, the proof of Theorem 3 is

immediate. In fact, we put

(31) S = {feH'(0,d) ; Il <R3},

for a suitably large constant R>0, and define the mapping g—f by
solving the linearized problem (29),(28) with h=—LMf+FM(f+g,f+g).

Then it follows from the estimates (30)1 and |f|<C8 (for a constant

- 15 -



C) that g—f is a contraction mapping of S into itself if & is small
enough. This completes the proof of Theorem 3.

It remains to prove Proposifion 2. We introduce the boundary
subspaces ﬁo and ﬂl associated with the boundary conditions in (28):

R: . . :
0 {f=(F, )leA : fieo for i€A.},

o
il

(32)

o)
I

{£=(t, ) cp€R™ ; £,=0 for ieA_}.

ieA

Then a simple calculation shows the following

Lemma 3. The boundary subspace ﬂo is mawimal‘nonnegative
with respect to the boudnary matriczc —TMV such‘that
> - o2
(33) —<IMVf,f> z‘czi fi, f=(f, )lGA

where ¢ i8 a positive constant and < , > is the imner product of R™.
A similai statement holds true for the subsbace 3, and the
corresponding ﬁatrim TMV.

By virtue 6f Lemmas 2 and 3, the standard}energy method can be
applied to our problem (29),(28) andee obtain the estimates (30)1,2
(as a priori estimates) with the aid of the Poincaré inequality: the
condition (24) which is equivalent to Condifion 2 is used to derive

the estimates of (fi)ieA . On the other hand, the existence of
0 .

solutions to the problem (29),(28) follows from the arguments

essentially based on Friedrichs' theory [5] for symmetric positive

- 16 -



systems. We omit the details and refer the reader to [12].

5. Large-time behavior of solutions

It is expected that the solution to the mixed problem (I) or (I)
converges to the corresponding unique stationary solution constructed
in Theorem 3 as t—». This is indeed true for the problem (I) if we
assume the following stability condition previously formulated in

[13].

Condition 3. (Stability condition in nonstationary case). Let

YeEHX and let Vy=ay for i1€R. Then ¥=0.
Note that this condition is equivalent to

(34) Let L = 0 and let V¢ = 1¢ for 2€R. Then ¢=0.

m?

Theorem 4. | Ve consider the mired problem (1) under Condition
3. Suppose that FO ié in Hl(O,d) dnd satisfies the compatibilitj
conditions of order zero. Let M be any fized constani Mazwellian and
suppose that IIFO—MII1 ig small enough. Then there erisis a unique
global sotution F in C°([0,=);H'(0,d))nc’(10,%);L%(0,d)). MHoreover,
this solution F(x,t) converges, uniformly imn x€[0,d], to»the solution
F7(x) of the eofresponding stationary problem (i), which is

constructed in Theorem 3, at an exponential rate eiat, a>0,‘a3 t—,

Remark. We have proved in Section 4 the existence and

uniqueneés of solution also for the stationary problem (ii). However,

- 17 -
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we do not know in general whether the solution to the mixed problem
(I) converges to that stationary solution as t—e. In this respect,
we refer the reader to [12]. The problem concerning the asymptotic

behavior of solutions to the mixed problem (II) is completely open.

We give an outline of the proof of Theorem 4. Let F be the
stationary solution of the problem (i) constructed in Theorem 3. We
introduce the kndwn function £~ and and a new unknown f by
(35) F =M+ IMf , F=F + IMf =M + IM(f +f),
respectively. . Then, as in the preceding section, we can transform

the mixed problem (I) into

= (ot , .8f _ PPN
(36) IM(Bt + VBX) + LMf = FM(Zf +f,f),
(37) £(x,0) = £,(x),
(38) fi(O,t) =0, iGA+, fi(d,t) = 0, 1€A_,

where f0=1ﬁ1(F0—Fm)=I&1(FO—M)—fw. The corresponding linearized

problem is

~ (3f af _
(39) IM(_STZ + Vé;] + LMf = h,

with the initial and the boundary conditions, (37) and (38). For

T>O,‘we put

- 18 -
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x1 = c®(ro,11;8' (0, 0))nct (10,T1:L%(0,d)),

(40)

2 2 T 2
wew? o= sup mecoud + [ owecernZac,
, 0<t<T 0

where meiQHin+Haf/8t“2. Then we can prove the following result for

the linearized problem (39),(37),(38).

Proposition 3. Consider the linearized mizxed problem (39),
(37),(38). Let T>0 and suppose that h is in X%. Suppose furthermore
that £, is in H'(0,d) and satisfies the compatibility conditions of
order zero. Then there exrists a unique solution f in X%. Moreover,
there are posiiive constants %, and C (independent of T) such that

for any ae[o,ao], we have

t

(41) Xuecern? + [ e*Twr(orniac < cuecoyn? +

0

’ t
v ce®n(e)n® + cf e*Fun(ouidr,  tefo,T1.
0

Once Proposition 3 is established, Theorem 4 can be proved by
applying the cdntraction mapping principle. 1In fact, we define a

closed convex subset S by

_ 1 -
(42) 8 = {fexy ; Wl 5 < RIFy-MI},

_.19_
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where R>0 is a suitably large constant, and consider the mapping g—f
defined by solving the linearized problem (39), (37), (38) with
<C8 by Theorem 3, we have |f

h=rM(2f +g,g). Since |f | gCHFO—MHl

1 oy
and hence Mf(o)mlsCHFo—Mul, where C is some constant. Therefore,
applying the estimate (41) with =0, we find that g—f is a

contraction mappping (with respect to the norm [|-]i ) of S into

1,T
jtself, if IIFO—MIIl is small enough. Thus we have a unique fixed
point f in S. This fixed point f is the desired solution of the

problem (36),(37),(38), which is equivalent to the original mixed

problem (I), and satisfies the estimate

t

(43) Xtueern? + [ e®ue(oniar < cirg-miZ, te[0,T],

0

for any aG[O,aO], where C is a constant independent of T. = This
proves Theorem 4 since T>0 is arbitrary.

Proposition 3 is proved by a rather technical energy method
which is similar to the one employed in [8] for the pure initial
value problem. More specifically, our enefgy method is essentially
based on the properties stated in Lemmas 2 and 3, and on the
existence of a skew-symmetric matrix K given in Lemma 4 below; we
also make use of thé elliptic estimate (30)2 in Proposition 2 and the
Poincaré inequality. For a complete proqf of Proposition 3, We refer

the reader to [12].

Lemma 4. We assume the condition (34) which is equivalent to

Condition 3. Then there exists a skew-symmetric matriz K with the

- 20 -
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following properties.

(i) Kf=0 holds for any f=(fi)ieA

(ii) There is a positive constant c such that for any f=(fi)

€R™ with £,=0, 1€A UA_.

m
ieASR
we have

+ .2 - p2
<(KV-VK)f,f> + <VL,Vf,f> 2 c(§i £+ 21 £7).

We remark that Lemma 4 is a simple corollary of Theorem 1.1 in [13]

or Theorem 3.2 in [9].
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