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0. Introduction

Since the study of w-regualar languages was started by
Biichi[1l, many classes of w-regular languages have been investi-
gated [6, 7). These classes are mainly defined by automata with
various types of accepting conditions. Among others, the follow—
ing four types (E, (E’), tI), and (I') of accepting conditions
are extensively studied. Let & be a finite automaton, w be an
w-word, and r be the run of & on w.

(E) An accepting state of & appears in r.
(E’> All states appearing in r are accepting states.
(I) Accepting state appears infinitely many times in r.
(I”) All states appearing infinitely many times in r are
accepting states.
Recently the following two types of accepting conditions.and
the classes defined thereby are studied [5, 1031:
(LD All accepting states appear infinitely many times in the
run of 4 on w.
(LL’) An accepting state appears at most finitely many times in

the run of A on w.
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The class of w—languages defined by deterministic finite
automata with the acceptance of type E (E', I, I', L or L’) is
denoted by E (&', I, ', L , L°, L or " resp.D.

As is well known in formal language theory, many important
familes are trios. Trios and full trios are closed under many
other operations. (See, for example, [2].) Especially,
morphism and inverse morphism are important, since there are some
characterizations for families of languages without intefsection
with regular sets [9, 111.

In this paper we deal with e—free morphisms and inverse
morphisms. Especially we pay our attention to the classes close
under é—free morphisms and w—free inverse morphisms.

In section 2 we provide the closure property of these classes under
w—free morphisms, and in section 3 under inverse morphisms. In
section 4'we consider a_“duo”, a class of w—languages closed under
e —free morphisms and inverse w-—free morphisms.» We first
investigate the principality for the three duos]Ra), O and E-

In [9] it has%alredy been proved that HQO) and [£' are principal,
i.e., each language in [’ f(Hém ) is obtained from a particular
w—=language in [’ in,,resp.) by finitely many applications of
these two kinds of operations. We show that [’ is also principal.
Furthermore we present representation theorems for the three duos.
Finally we consider for each of F, E*, @I, I', L and L’,.

the smallest duo that contains it.
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1. Preliminaries

Let £ be an alphabet. 5™ denotes the set of all finite
words over %, and *® denote the set of all w-words over %,
i.e., the set of all mappings @ :0,1,2,... } — X. Let »®
=3 U =%, An w-word is written by a = aoal...v'where a =

a(m ((n=20,1,2,...). We call a subset of 2* (Za% resp.)

a language (w-—language) over 2X. We define ‘the w—pdwer of the

: @ _ , _
languages L as L = {wow1w2..‘ | Wor Wiso oo € L {6} 3.
- Here &€ stands the empty word.

A deterministic automaton (DA, for short) &4 over X 'is a

5—-tuple & = <S, X, &,

SO' F>, where S is a finite set of
states, X is an alphabet, &§ : S X X — S is a next state
function, So € S is an initial state, and F & S is a set of
accepting states. Then the run Run(4, a@) of automatﬁn 4 on
anlw—word ¢ is an w-word Q9. - € @® such that

='s = 8(qn, a(n)) (n=0,1,2,...).

%0 o and qQ+1
For a run r, let
Ex(r) = { q€ Q@ | q = q  for some n }, and
Inf(rd) = { q€ Q | q = q  for infinitely many n }.
Now we define the following six types of -acceptances of the
automaton & for w-languages:
E' 4> = (a € 2% | ExQRunCk, a)) C F )
1A = (@ € 2% | InfRun(k, @d) N F # ¢ )
I'A) = (a € 2% | InfRun(A, a)) & F -
LA = {a € 22 | FC InfRun(A, @) )
L' (A) = (a € 2“ | F & InfRunCk, add )

These acceptances are called E-, E'—, I-, I-, and L’*acceptance
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resp., and the class of w=languages (over Z) of the form
EA), E’ 4>, L&, L (;4), ICAY, I'CA), respectively) are
denoted by E, (&, L, L°, I, II'>.

. A nondeterministic automaton (NDA, for short) is a 5—tuple

<S5, %, &, F>, where S, X, s and F have the same meaning

0’ 0’
as for a deterministic automaton, but & is a mapping S X Z
— P (S)~-{$}. For an NDA 4 and an @-word w, let Run(4, w) be
the set of runs of A& on w. Simularly as for the detiarmi’nistic
case, we define the six w-languages NE(A), NE’ (4>, NI(4)D,

NI’ (4>, NLCA), and NL’ (4) accepted by 4.

We denote by NE WE’, NI, NI’, NL, NL’> the class
of w-languages of the form NE(A) ( NE” (4>, NICA), NI’ (4D,
NL(4A), NL’' (4> respectively). For, inclusinon relations among
these classes, see [b]. |

Let £ and A be two alphabets. A morphism h: Z* - A*

is said to be e—free if h(Z) C A+, where AT = A¥-(e).

Let £ be a class of w—languages. &£ is called a duo if it
is closed under e€—-free morphism and inverse e€—free morphism. For
a class £ of w—languages', the smallest duo that contains &£ is
denoted by D(L£). £ is called a principal duo generated by an
w—-language X, denote by HX>, if it is the smallest duo that

contains X. The w—language X is called a generator of £;

2. Closure under morphisms

Morphisms given in this section are e€—free,

~Theorem 2,1 [3, 8]. The classes Rw and £’ are closed under
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morphism.

Theorem 2,2. The class [’ is closed under morphism.

(Proof) Let L = I'(4) for a DA 4 =< Q, X, &, 5 F>,

and ‘h : zoo - Aoo be a morphism. We construct an NDA £’

=<Q, A, &, g5, F' > such that h@) = I" (4"
as follows. First, for q € Q and a € X, define

{(<q, a, 1>, ..., <q, a, |h@|-1>} if |h| = 2
“<q,a> 7 ¢ if |hea| =1
Set S = U {Q<q,'a> | ¢ € Q, a € X1}, and @ =Q US U,
where # ¢ Q U S. Define &' as follows. For ¢ € Q and a €

Y such that h) € A, define &’ by 8’ (g, hda)) =

{ &8§(g, b> | hd hd) }. For q € @ and a € X, let h(a) =

= i ’ = =
X Xge oo X (n=2). Dgflne 8’ (q, xl) (fq, b, 1> | h

h(a) } and define &’ (<q, a, 1>, x2) = {<q, a, 2>},

| h¢a) | =1>, xn) = (& (q, ad}. For any other <z,a> € Q" X A,

., 0’ (<q, a,

define &’ (z, a) = &’ #, a) = {(#}. Last F? = F U 8.

Theorem 2.3. The class NL is closed‘ under morphism.

(Proof) Let L = NL(A) for an NDA 4 = <@, X, &, 45, F>, and
h : qu.__} A% be a morphism., We construct an NDA &' = < Q’,
A, 67, LY F > such that h(L) = NL(4’) as follows. First,

for p, ¢ € Q@ and a € ¥ such that p € 6 (q,a), define

{ <q, a, p, 1>, ..., <q, a, p, |hCa)]|=-1>)
Q ={ T
<q,a, p> é ~if Jh@ | =1
Set S = U {Q<q,a,p> ! P € &(q, a) for some a € %, p, @ € Q 1},

and Q° = Q US U {#)}, where # € @ U S. Define &' as follows.:
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For q € Q and a € X such that h(a) € A, let &’ (g, ha)d =

U { 8¢, B) | h¢a = h) }). For g € Q and a € X, let h(a) =
= i ’ : =

X Xge o X (n_2)-and p € & (q, al). Define &°' (q, xl)

Ul <q, b, p, 1> { h(a) = h(b), p € &(g,a) } and define

&’ (<(I; a, p, 1>9 ) = | <q, a, p, 2> }) v e s J’ (<q’ a, p, ! h (a) ! —1>l

Xo
xn) = S(q, a). For any other <z, a> € Q’ X A,

define 8°(z, a) = &' W, ad> = ( # ),

Theorem 2.4. The class £ is not closed under morphism,.

(Proof) For £ = { a, b}, define h:2° = %% by h(ad = hd

= a., Then hX) = a% ¢ E for every w-language X.

Theorem 2. 5. The classes [[, IL and .’ are not closed under

morphism.

(Proof> Since I & NI, L & NL, and L' & NG’ <I51), it
is obvious from the fact that an w=language of the class
NICNL, NL’> is written as an morphic image of an w-

language in X {_, L’ resp.).

Lemma 2.6. X = { aa, b y¥a® ¢ NL.

(Proof) Suppose that X = NL’ (4D for anNDA A, = <%, Q, &,, q,
F> Take b®, and consider the computation tree of Al on bm, an
infinite tfee labeled with the elements in Q, defined as follows:
The root Cof level 0) is labeled with 9 and if a node v of
level n is labeled with a state g then for each g’ in 51(q, wltn])
v has a child labeled with a’. Since b® £ X, for every f in F

and every path (i.e., run) of the tree, f appears infinitely often
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on the path. By Kbdnig’s lemma, there exists an integer i such that

w

for every run r in RunQAI, b)), FC {rC®, rCld, ..., rdid}.

Similarly, for an w-word ab®, there exists an integer j such that

for every run r’ in Run(Al, abw), FC {r, ;..,‘r’(j)}. Now .

take an w-words wy = b"a® with n=i. Since Wy € X, there exists

a run r” in Rund(4, wl) such that F &£ Inf(r”). On the other hand,

there exist integers k and 1 such that r’ (k) = r” (1) with 1=k=i

1,i~k w
a .

and 1=1=3. Last consider Wy = ab™b Then there exists a

run r, = ' (110" GO r” k*D) .. € RuncAl, W

This contradicts the fact that Wo & X. Thus X &€ NL’.

) such that F <Z Inf(rl).

Theorem 2.7. The class NI’ is not closed under morphism.

(Proof) Let A& be anNDA <{a, b}, {po, pl}, Py S, {p1)> where for

p € Q, &, a) = { qq }, &, b = | pi Y. Obviously NL’ (4)
*2®.  We define a morphism h : {a, b1 = (a, 1™

by h(ad = aa and h(b) = b, Then hNL’ (4>)> = { b, aa }*am

3. Closure under inverse morphisms

Theorem 3.1 [3, 81. The classes Hia) and £’ are closed under

inverse € —free morphisms .

Theorem 3. 2. The class'Ef is closed under inverse e€—free

morphisms.

(Proof) Let X = EC(4A) for a DA & =< @, %, &, F>,

qO’
Without loss of generality, we may assume that for every a € 3

andtd € F, 0(q, a) € F. . Let h : A — % be a morphism. We
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construct an automaton Al = < Q, A, 6‘1, a5 Fl > such that
-1

h "X = E(Al). Define 61(q, a) = &g, h€a)) for g € Q and a

€ A, and set F‘l = F.

Theorem 3. 3. The class I is closed under inverse e—free
‘morphisms.

(Proof) Let L = I(4A) for a DA & = <Q, X, 7, F>, and

‘ CIO:,
00 o) .
let h : A — X be a morphism. We construct an automaton

Al = < Que~, A, & Q~ >, where Q¥ = { ¢~ | q€ Q},

1’ qot
1

such that h_ (L) = I(Al). The function & is defined as follows.

1

For ¢q € Q and a € A with h() = bl"'bn (bj € ), Sl(q, a)

= 6‘1(q~, a) = & (g, h(d)™ if there exists i (1=i=n) such that

o (q,b

i

..b) € F, and 51(q, a) & (q™, a) = (& (q, had))

1"

otherwise.

Theorem 3. 4. The class J[* is closed under inverse &-—free

morphisms.

(Proof) Let L = I (4) for a DA 4 =<4Q, %, &, 1, F>.  Let

1) 0
h : A - 3 be a morphism. We construct an automaton ;41

= < QUQ~, A, 6‘1, 455 F‘1 >, where @~ = { ¢~ | q€ Q}, such that
-1

h @ =1 (Al). The function 31 is defined as follows. For q

€ Q and a € A ha =b1...bn (bi € ), 61(q, a) = 6‘1(q"’, ad

= & (q, h()) if there exists i (I1£i=n) such that 6(q,b1..‘.bi)

&€ F, and 61(q, a) = 61(q"’, a) = (&g, h@)))™ otherwise. Last
L

we set F1 = F7,

Lemma 8.5. X = aCa+b) a® U bGa+b) b® ¢ NL".
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(Proof) The result can be proved by the simular way as in Lemma

2. 6.

Theorem 3.6. The classes L’ and NIL' are not closed under

inversebe—free m‘orphism.
(Proof) Consider the DA 4 = < { dgr 4y 9gs dg Y, X, ©,

qg { q3} >, where X = { a, b}, & is defined by S(qo,‘a)

SOy S(qo. b) = qq. S(ql. a) = Iq a(ql, b) = coF 8(q2. al
Tgs o (q2, b) = qqs o) (q3, a) = qy o) (qs, by = Iy " Next, define
a morphism h : ° > 2% by h¢a) = aa and h() = bb. Then

Wl ()¢ = h "L aNL? ¢4)) ) = aca+b) ¥a® U bCa+b) b which is

not in NIL’', by the previous Lemma,

Theorem 3.7. The classes L and NL are not closed under inverse

e—free morphisms.
(Proof) For %X = { a, b}, let & be a DA < { qo, a

Y, X%, 6, { a5 q2} >, where S(qo, a) = a5

” .qO’
8(q1, a) =

6(q0. b) = 6(q1, b) = Io 6(q2, a) = a;

q2) q3!
6A(q2, b) = qgs 8(q3, a) = 5‘(q8, b) = qq

Then L (4) ab® U ®bad)®. Define a morphism h: {c, d}

— Zoo’ by hd{ec) = ab, and h"(d) = bha. Obviously, h—-1 X = ca)

U 4%, It is not in NL (I51).

Theorem 3.8 The class []| is closed under inverse morphism.

(Proof) Let X = I(A) for a DA A =< Q, X%, &, a9 F>,

0 1o's) . ‘
and let h : A - 2 be a morphism. We construct an autom-—

aton A1»= < Quae~, A, & Q~ >, where Q~ = (g~ | q€ Q};»'

1’ qO!
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and # £ QUQ™ such that nloo = I(Al). The function 51, is

defined as follows,. For ¢ € Q and a € A with hCa) = bl"'bn

(bi € 2, 61(q, a) = BI(q"’, a).= 0 (Cq, h€))~ if there exists

i (1£i=€n) such that & (q,b ..bi) € F, and 6l(q, a)

1
= 6‘1(q"’, a) = (8 (q, h(ad)) otherwise. For ¢ € Q and a € A

with had=e, & (q, a) = & (g™, a) = q.

Theorem 3.9 The classes [, [’ and [[’ are not closed under

inverse morphism.

0 o) .
(Proof) For X = {a, b}, let h:X - 3 be a morphism defined
by h(a) = a and h(b) = €. Then h 'Ga®) = & 0% ¢ [ - E’.
Define g:=° — X% by gCad = b and g = e.

Thus g ' bE®) = bFa)®,

Theorem 3.10. - The class Ra) is closed under inverse morphism.

(Proof) Let X = NI(A)D 'for an NDA automaton & = < Q,

z, g, aq, F>. Let h ¢ A® - 2% be a morphism. Firsr we
cohnstruct an automaton ;41 = < QUQ"’,'A, 61, 9 F‘l >, where

QY = { q~¥ | g€ Q }. The function 61 is defined as follows.

For ¢q € Q and a € A with h(a) = &, define 81(q, a) = 61(q~,

a) =q. For q € Q and a € A with h(a) = bl;..bn b, € ),

define 61(q, a) = é‘l(q"’,‘ a) = (85 (q, h@l)))~ if there exists i

(I1=£i=n) such that S(q,bl...‘bi) € F, and 81(q, a) = 61(q~, a

= §(q, h(a)) otherwise. We setrFl = F~, Similarly as in

Theorem 3.8, h L (NI(4)) = NI GA ).

10
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4., Duos and generators

Theorem 4.1([4]1). (1 Ra) = b((a*b)w)’ @ Er = D(a.w). S

Theorem 4.2. I’ = D(a+b) b®)

. K ‘
(Proof) Since (atb) b® € I’', the inclusion B((a+b)*b@) (-
[’ is obvious by the closure property of I’ under morphisms and

inverse e€—free morphisms.

Let L = 1" (A> for anNDA &4 = < Q, X,0, 45 F> with Q@ =
<q0, Qys e q ). Let T~ = {x¥ | x € Z} and z a new letter

not in X U X~. Define the finite set T by T = { zixz"d
€ %, q; € 8y, X, q € F)Y U (z'x~z" ) |

X

xEZ,qJ.E

10 e tm}andY=v(y1>

6(qi, X), qj € F ). We set T = { t
. ym }. We define the following morphisms:
hy : (a, b 1® — (a; b, 2z}, hyC@ = az", h @ = bz’
h U S~U 0% > @, b, 227, hy@ =z, hy(x) = a,
2 2 2
h2(x“‘)';= b for x € Z.
, 00 - oo _ .
h3 Y Z U Z~ U {2z}, h3(yi) —tj for i =1, ..., m
First note that hl((a+b)*bw)) = (azn+bzn)*(bzn)w and thus
hz—l-h1<<a+b>*b“’>> = ("3~ FeE~2™m?. Then L =

£(T? N (M2 eHFE~2™ ), where f is defined by

f(x) = x, f&x™ = x, {2 =1€ for x € X.. We note that AT®

- n 1 : e N X @
-—kh3 3 Thus we get L = f h3 h:3 h2 hl((a+b) b,

Cororally 4.3, I’ = DG b%).

(Proof) Define two morphisms h: {c¢c, d, e} — { a, b} and

g : {c, d, er’® > (a, br>® by h(e) = h(d = a, h(d =b and

11
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gCc) = a , g(@= gCe> =b. Then g-h G b?) = a+bd b ®,

Covrorally 4. 4 EVery‘ w—-language X in [[' is of the form
-1

_ ) . . -1 X, w
X-—h5 h4 h3 h2 hl(a b))

whe.re hl’ h2, h3, h4 and h5 are €—-free morphisms.

Theorem 4.5 [3] (1) Every w-language X in [’ is of the form

1 =1

_ v —1 ) e .
X = h:3 h2 h1 (a ) where hl’ h2 and h3 are €—free morphisms.

(2) Every w-language X in,Rw is of the form X =

-1 * @ —
hs-h2 'hl((a b) 7>, where hl’ h2 and ,h3 are €—free morphisms.

Lemma 4.6, D ba+bd)®>) = [,

(Proof) Define the three morphisms h': {a, by P - {a, b, ey ® by

h(a) = ac, h(b) = bec, g : {al, bl’ a, b2} — {a, b, c¢} by

g(al) = ac, g(bl) = b, glad) = ca, g(bz) = cb and f : { a

a2, b2 } —» { a, b} by f(al) = a, f(az) = f(bl) = f(bz)'= b. Then
-1

g 1 -ha b+ ® = al*b1<a2 *+ b Hence fog 1 ha™ b @)

%
* @ It is obvious that DH(a bG+b)®) = I' by the fact that

= ab

a’bath)® € [°.

Theorem 4.7. D@E) = DA’ = DWL*> =1’ and DA =
D> = HNL) = K. ”
(Proof) For an alphabet 2 which contains a and b , a*bzw €
L' N [E. Define a morphism h: =% — ( a, b 1%, by h(a) = a
and h(6) = b for ¢ € A ={ a ). Then habx®> = a™bca+b)®.
From Lemma 4.6, D{> = HA’) = HDWL*> = [[’'. From the fact

that ™)@ € L (151, HA) = HNL) = HAD = R,

12
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